
Université d’Ottawa
Faculté de génie

École de science informatique
et de génie électrique

University of Ottawa
Faculty of Engineering

School of Electrical Engineering
and Computer Science

Introduction to Computing II (ITI 1121)
FINAL EXAMINATION

Instructors: Guy-Vincent Jourdan and Marcel Turcotte

April 2019, duration: 3 hours

Identification
Last name: First name:

Student #: Seat #: Signature: Section: A or B or C

Instructions
1. This is a closed book examination.
2. No calculators, electronic devices or other aids are permit-

ted.

(a) Any electronic device or tool must be shut off, stored
and out of reach.

(b) Anyone who fails to comply with these regulations
may be charged with academic fraud.

3. Write your answers in the space provided.

(a) Use the back of pages if necessary.

(b) You may not hand in additional pages.

4. Do not remove pages or the staple holding the examination
pages together.

5. Write comments and assumptions to get partial marks.
6. Beware, poor hand-writing can affect grades.
7. Wait for the start of the examination.

Marking scheme

Question Maximum Result
1 15
2 15
3 15
4 15

Total 60

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from the instructors.

April 2019 ITI 1121 Page 2 of 20

Question 1 (15 marks)
Implement the instance method merge for the class LinkedList that has the following characteristics.

• The list always starts with a dummy node, which is used as a marker for the beginning of the list. The
dummy node is never used to store data. The empty list is made up of the dummy node only;

• In the implementation for this question, the nodes in the list are doubly linked;

• In this implementation, the list is circular, i.e. the reference from the last node in the list points to the
dummy node, the reference prev of the dummy node points to the last node in the list. In the empty
list, the dummy node is the first and last node of the list, its references prev and next point to the node
itself;

• The last node is easily accessible, because it’s always the node preceding the dummy node, the header
of the list does not have a pointer to the tail element.

The method merge adds all the elements of the list designated by the parameter other to this list. After a call
to the method merge, the list designated by the parameter other is empty.

• This question assesses your understanding of linked structures. For this reason, you cannot use the
methods of the class LinkedList. In particular, you cannot use the methods add() or remove().

• The method never throws an exception.

public class Test {
public static void main(String[] args) {

LinkedList<String> firstList, secondList;
firstList = new LinkedList<String>();
secondList = new LinkedList<String>();

firstList.addLast("alpha");
firstList.addLast("bravo");
firstList.addLast("charlie");
firstList.addLast("delta");

secondList.addLast("echo");
secondList.addLast("foxtrot");

System.out.println(firstList);
System.out.println(secondList);

firstList.merge(secondList);

System.out.println(firstList);
System.out.println(secondList);

}
}

Running the above program produces the following on the console.

[alpha, bravo, charlie, delta]
[echo, foxtrot]
[alpha, bravo, charlie, delta, echo, foxtrot]
[]

April 2019 ITI 1121 Page 3 of 20

Complete the implementation of the method merge.

public class LinkedList<E> implements List<E> {

private static class Node<T> {
private T value;
private Node<T> prev;
private Node<T> next;
private Node(T value, Node<T> prev, Node<T> next) {

this.value = value;
this.prev = prev;
this.next = next;

}
}

private final Node<E> head;
private int size;

public LinkedList() {
head = new Node<E>(null, null, null);
head.next = head.prev = head;
size = 0;

}

public void merge(LinkedList<E> other) {

if (&&) {

Node<E> thisLast, otherFirst, otherLast;

thisLast = ;

otherFirst = ;

otherLast = ;

= thisLast;

= otherFirst;

= otherLast;

otherLast.next = ;

other.head.next = ;

= ;

= ;

= ;

}

}
}

April 2019 ITI 1121 Page 4 of 20

Question 2 (15 marks)
Complete the implementation of the method findAndReplace for the class LinkedList on the next page.
The method replaces all the occurrences of the object specified by the parameter target with the value of the
parameter replacement. It also returns the total number of elements that were replaced by the method.

This is a recursive method. Please note that the list is simply linked and that there is no dummy node. To
help you understand the expectations, here is a test program.

LinkedList<String> list;
list = new LinkedList<String>();

System.out.println(list);

System.out.println(list.findAndReplace("I", "she"));

System.out.println(list);

list.addLast("I");
list.addLast("said");
list.addLast("she");
list.addLast("said");
list.addLast("she");
list.addLast("said");
list.addLast("I");
list.addLast("said");

System.out.println(list);

System.out.println(list.findAndReplace("I", "she"));

System.out.println(list);

System.out.println(list.findAndReplace("I", "she"));

System.out.println(list);

Running the program above will produce the following result on the output.

[]
0
[]
[I, said, she, said, she, said, I, said]
2
[she, said, she, said, she, said, she, said]
0
[she, said, she, said, she, said, she, said]

April 2019 ITI 1121 Page 5 of 20

Complete the implementation of the method findAndReplace.

public class LinkedList<E> implements List<E> {

private static class Node<T> {

private T value;
private Node<T> next;

private Node(T value, Node<T> next) {
this.value = value;
this.next = next;

}
}

private Node<E> head;
private int size;

public int findAndReplace(E target, E replacement) {

if () {

;

}

return findAndReplace(, target, replacement);
}

private findAndReplace(, E target, E replacement) {

int number;

if () { // base case

;

} else { // general case

= findAndReplace(, target, replacement);

if () {

}

}

return ;
}

}

April 2019 ITI 1121 Page 6 of 20

Question 3 (15 marks)
For this question, our goal is to implement five (5) methods for a dynamic circular array list. That list has
the following instance variables:

• array is a reference variable to the array containing the elements of the list;

• size is the logical (current) size of the list;

• first is the index of the first element of the list in array;

• last is the index of the last element of the list in array;

• capacity is the capacity of the array.

By convention, when the list is empty, both first and last are zero. We have two constructors for our class:
the first one, without parameter, creates an array of the default capacity, while the second one uses the value
of its parameter as the initial size of the array. The size must be at least 1.

Here is a partial implementation for our class:

public class CircularDynamicArrayList<E> {

private E[] array;
private int size;
private int first, last;
private int capacity = 100;

@SuppressWarnings("unchecked")
public CircularDynamicArrayList() {

array = (E[]) new Object[capacity];
first = last = 0;
size = 0;

}

@SuppressWarnings("unchecked")
public CircularDynamicArrayList(int capacity) {

if (capacity < 1) {
throw new IllegalArgumentException("Minimum capacity is 1");

}
this.capacity = capacity;
array = (E[]) new Object[capacity];
first = last = 0;
size = 0;

}

public boolean isEmpty() {
return size == 0;

}

public boolean isFull() {
return size == capacity;

}

// More code

}

April 2019 ITI 1121 Page 7 of 20

Question 3.1 ensureSpace
The first method we want to write is ensureSpace. This method makes sure that the list will be able to
accommodate a new element. If necessary it doubles the size of the array. Complete the source code for the
implementation below.

public class CircularDynamicArrayList<E> {

// (...)

private void ensureSpace() {

if () {

newArray =

for (int i = ; i < ; i++) {

newArray[] =

}

first =

last =

capacity =

array =

}
}

}

April 2019 ITI 1121 Page 8 of 20

Question 3.2 addFirst
The method addFirst adds a new element to the list at the first position. All the other elements are kept. We
must ensure to check for invalid conditions. You can use the methods of the class written so far in this new
method.

public class CircularDynamicArrayList<E> {

// (...)

public void addFirst(E newElement) {

if () {

throw

}

if (isEmpty()) {

} else {

first =

}

array[] =

size =

}
}

April 2019 ITI 1121 Page 9 of 20

Question 3.3 removeFirst
The method removeFirst removes and returns the element at the first position. All the other elements are
kept. We must ensure to check for invalid conditions. You can use the methods of the class written so far in
this new method.

public class CircularDynamicArrayList<E> {

// (...)

public E removeFirst() {

if () {

throw

}

E resultat =

array[] =

size =

if (size == 0) {

} else {

}

return

}
}

April 2019 ITI 1121 Page 10 of 20

Question 3.4 add
The method add adds a new element to the list at the specified position. Indexes are 0-based. All the other
elements are kept. We must ensure to check for invalid conditions. You can use the methods of the class
written so far in this new method.

public class CircularDynamicArrayList<E> {

// (...)

public void add(E newElement, int index) {

if () {

throw

}

if () {

throw

}

if (isEmpty()) {

addFirst(newElement);

} else {

int currentIndexLocation =

int i =

while (i !=) {

array[] =

i =

}

}
}

}

April 2019 ITI 1121 Page 11 of 20

Question 3.5 remove
Finally, the method remove removes the element at the specified index in the list, and returns it. All the other
elements are kept. We must ensure to check for invalid conditions. You can use the methods of the class
written so far in this new method.

public class CircularDynamicArrayList<E> {

// (...)

public E remove(int index) {

if() {

throw

}

if() {

throw

}

E resultat;

if (size == 1) {

} else {

int currentIndexLocation =

resultat =

int i =

while (i !=) {

array[] =

i =

}

}

}
}

April 2019 ITI 1121 Page 12 of 20

Question 4 (15 marks)
In this question, we are using lists and binary search trees together. Specifically, we will work with the
following interface List:
public interface List<E> {

// Returns the current size of the list
int getSize();

// Returns true if and only if the list is empty
boolean isEmpty();

// Adds elem as the first element of the list
void addFirst(E elem);

// Adds elem as the last element of the list
void addLast(E elem);

// Adds elem at (0-based) index ‘‘index’’ in the list
void add(int index,E elem);

// Returns the reference of the first element of the list
E getFirst();

// Returns the reference of the last element of the list
E getLast();

// Returns the reference of the element at index ‘‘index’’ in the list
E get(int index);

// Removes and returns the reference of the first element of the list
E removeFirst();

// Removes and returns the reference of the last element of the list
E removeLast();

// Removes returns the reference of the element at index ‘‘index’’ in the list
E remove(int index);

}

In the following, we have access to two implementations of the interface List. We do not specify which
one to use yet. We also have a class BinarySearchTree. Some parts of its implementation is provided below.

April 2019 ITI 1121 Page 13 of 20

Question 4.1 buildSortedList
Our first goal is to add a method buildSortedList to the class BinarySearchTree. That method receives a
reference to an initialized, empty List, as an input parameter, and it populates that list with all the elements
currently in the binary search tree, in increasing order.

For example, the following test code:

public static void testBuildSortedList(List<String> list) {

BinarySearchTree<String> tree;
tree = new BinarySearchTree<String>();

tree.add("F"); tree.add("A"); tree.add("C");
tree.add("X"); tree.add("M"); tree.add("N");
tree.add("O"); tree.add("B"); tree.add("L");

System.out.println(list);
tree.buildSortedList(list);
System.out.println(list);

}

produces the following output:

[]
[A, B, C, F, L, M, N, O, X]

If the tree is currently empty, then the lists remains unchanged. For example, the following test code:

public static void testBuildSortedList2(List<String> list) {

BinarySearchTree<String> tree;
tree = new BinarySearchTree<String>();

System.out.println(list);
tree.buildSortedList(list);
System.out.println(list);

}

produces the following output:

[]
[]

April 2019 ITI 1121 Page 14 of 20

A partial, incomplete listing of the class BinarySearchTree is provided next:

public class BinarySearchTree <E extends Comparable<E>> {

private static class Node<T> {
private T value;
private Node<T> left;
private Node<T> right;
private Node(T value) {

this.value = value;
left = null;
right = null;

}
}

private Node<E> root;
private int size;

public BinarySearchTree() {
root = null;
size = 0;

}

public int getSize() {
return size;

}

public boolean contains(E obj) {
// hidden to save space

}

public boolean add(E obj) {
// hidden to save space

}

public String toString() {
// hidden to save space

}

// More code not shown

}

April 2019 ITI 1121 Page 15 of 20

In the space below, provide the code for the method buildSortedList. As you can see, the method uses a
private method, suggesting a recursive implementation.

public class BinarySearchTree <E extends Comparable<E>> {

// Lots of code not shown

public void buildSortedList(List<E> list) {

if (list == null) {
throw new NullPointerException("List must not be null");

}

if (list.getSize() != 0) {
throw new IllegalArgumentException("List must be empty");

}

}

private void buildSortedList(List<E> list, Node<E> current) {

}

}

April 2019 ITI 1121 Page 16 of 20

Question 4.2 Constructing a balanced tree
We now use the sorted list to construct a new binary search tree. In this section, we need to add a new
constructor to the class BinarySearchTree. That constructor receives as parameter a reference to a List,
which is assumed to be sorted. The goal of the constructor is to create a new binary search tree containing all
the elements of the list. The resulting tree should be as balanced as possible.

For example, assume that list designates a list with the following elements: [1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377]. This list contains 13, consecutive, sorted Fibonnacci numbers.

The following code snippet:

System.out.println(list);
BinarySearchTree<Integer> tree;
tree = new BinarySearchTree<Integer>(list);

produces the following output:

[1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]
null

377
null

233
null

144
null

89
null

55
null

34
null

21
null

13
null

8
null

5
null

3
null

2
null

1
null

In other words, it builds the following tree:

21

3 89

233

5

1 8

13 144 377

34

552

April 2019 ITI 1121 Page 17 of 20

In the space below, provide your implementation of the new constructor. Here again, the method uses a
private method.

public class BinarySearchTree <E extends Comparable<E>> {

// Lots of code not shown

public BinarySearchTree(List<E> list) {

if(list == null || list.getSize() == 0) {
return;

}

root =

}

private Node<E> buildBalanced(int from, int to, List<E> list) {

}

}

April 2019 ITI 1121 Page 18 of 20

Question 4.3 Efficient implementation
The ultimate goal of our two methods is to be able to create a balanced binary search tree from an existing
possibly unbalanced binary search tree, using code similar to the following:

public BinarySearchTree<E> createBalanced(BinarySearchTree<E> unbalanced) {

List<E> list;

list = // initialization goes here

unbalanced.buildSortedList(list);

BinarySearchTree<E> balanced;

balanced = new BinarySearchTree<E>(list);

return balanced;
}

We need that code to be as efficient as possible1, which means that our method buildSortedList and our
new binary search tree constructor must be efficient.

For our list implementation, we have two choices: our first choice is a circular doubly-linked list with a
dummy node. That implementation has a single constructor, without parameter:

public class DoublyLinkedListDummyNode<E> implements List<E> {

public DoublyLinkedListDummyNode() {
// some code

}

// more code
}

Our second choice is a circular dynamic array list implementation similar to the one of Question 3. In this
implementation, the size of the array is doubled when an element is added to a full array. That implementation
has two constructors: a constructor without parameter, and another one which received a int value as input
parameter. With the first constructor, some default value is used for the initial size of the array. With the
second constructor, the input parameter is used as the initial size of the array:

public class CircularDynamicArrayList<E> implements List<E> {

public CircularDynamicArrayList() {
// Some code. Uses some default value for the
// initial size of the array

}

public CircularDynamicArrayList(int initialSize) {
// Some code. Uses initialSize for the
// initial size of the array

}

// More code
}

1Specifically, it must be linear in the size of the unbalanced binary search tree.

April 2019 ITI 1121 Page 19 of 20

You need to decide which implementation are we going to use in the method createBalanced in order to
have a fast implementation. Add your initialization of the variable list in the code below:

public BinarySearchTree<E> createBalanced(BinarySearchTree<E> unbalanced) {

List<E> list;

list =

unbalanced.buildSortedList(list);

BinarySearchTree<E> balanced;
balanced = new BinarySearchTree<E>(list);

return balanced;

}

April 2019 ITI 1121 (blank space)

