
Introduction to Computer Science II (ITI 1121)
Midterm Examination

Instructor: Marcel Turcotte

February 2007, duration: 2 hours

Identification

Student name:

Student number: Signature:

Instructions

1. This is a closed book examination;
2. No calculators or other aids are permitted;
3. Write comments and assumptions to get partial marks;
4. Beware, poor hand writing can affect grades;
5. Do not remove the staple holding the examination pages together;
6. Write your answers in the space provided. Use the backs of pages if necessary.

You may not hand in additional pages;

Marking scheme

Question Maximum Result
1 36
2 15
3 15
4 12
5 22

Total 100

February 2007 ITI 1121 Page 2 of 18

Question 1: (36 marks)

A tuple holds two Natural numbers (objects of the class Natural). All the tuples have a method
getFirst, as well as a method getSecond, returning a reference to the first, and second, number
of the tuple, respectively. A tuple has a method divides that returns true if the first element is a
factor of the second element, and false otherwise.

Natural

+getValue() : in t

-value : int

<<interface>>
Tuple

+getFirst() : Natural
+getSecond() : Natural
+divides() : boolean

AbstractTuple

Pair ArrayPair

For this question there is an interface named Tuple, an abstract class named AbstractTuple,
and two concrete implementations, called Pair and ArrayPair. Their complete description can
be found on the next pages. The implementation of the class Natural is given on page 18. The
execution of the statements below produces the following output: 7 is a factor of 42.

Natural n1, n2, n3;

n1 = new Natural(7);

n2 = new Natural(17);

n3 = new Natural(42);

Tuple t1, t2;

t1 = new Pair(n1, n2);

t2 = new ArrayPair(n1, n3);

if (t1.divides()) {

System.out.println(t1.getFirst() + " is a factor of " + t1.getSecond());

}

if (t2.divides()) {

System.out.println(t2.getFirst() + " is a factor of " + t2.getSecond());

}

Make sure to include the constructors and access methods that are necessary for the execution of
the above statements.

February 2007 ITI 1121 Page 3 of 18

A. Implement the interface Tuple. The interface declares 3 methods. There are two access
methods, named getFirst and getSecond, and both return a reference to a Natural object.
Finally, the interface also declares a method called divides that returns a boolean value. (8
marks)

B. Write the abstract class named AbstractTuple, which implements the interface Tuple. The
class AbstractTuple has a concrete implementation of the method divides, which returns
true if the first element of the tuple is a divisor of the second element, and false otherwise.
A divisor of n is a number that divides n without leaving a remainder. (8 marks)

February 2007 ITI 1121 Page 4 of 18

C. Write a concrete implementation of the class AbstractTuple called Pair. The implemen-
tation has two instance variables that are references to the first and second element of this
tuple. Add all the necessary constructors and access methods. (10 marks)

February 2007 ITI 1121 Page 5 of 18

D. Write a concrete implementation of the class AbstractTuple called ArrayPair. The imple-
mentation uses an array of size 2 to store references to the first and second element of this
tuple. Add all the necessary constructors and access methods. (10 marks)

February 2007 ITI 1121 Page 6 of 18

Question 2: (15 marks)

Complete the implementation of the static method boolean isPalindrome(CharReader r).
Let’s define a palindrome as a word or a phrase that reads the same forward and backward if the
punctuation symbols and spaces are ignored. Examples of palindromes include:

• i prefer pi

• never odd or even

• was it a cat i saw

For this question, the data is read using a CharReader object. Therefore, you don’t know the
actual size of the input and it is impossible to read it again, once read. Follow all the directives.

• boolean isPalindrome(CharReader r). Write a stack-based algorithm that returns true
if the whole word or phrase specified by the reader is a palindrome according to the above
definition, and false otherwise;

• The parameter of the method is a CharReader. A CharReader has exactly two instance
methods (and no public variables). Once the data has been read it is impossible to read it
again.

– boolean hasMoreChars(); returns true if the reader has more characters to return,
that is if a call to char nextChar() would succeed, and false otherwise;

– char nextChar(); returns the next character of the input.

• You cannot use arrays or strings to store the characters that are read from the input, you
have to use implementations of a stack;

• Assume the existence of a class StackImpl that implements the interface Stack. For this
question, a Stack stores characters.

public interface Stack {

public abstract boolean isEmpty();

public abstract char peek();

public abstract char pop();

public abstract void push(char element);

}

• StackImpl can store an arbitrarily large number of characters;

• Character.isLetter(char ch) determines if the specified character, ch, is a letter.

February 2007 ITI 1121 Page 7 of 18

public static boolean isPalindrome(CharReader reader) {

}

February 2007 ITI 1121 Page 8 of 18

Question 3: (15 marks)

The class DynamicArrayStack below uses the technique seen in class, as well as in the assignment
3, to increase or decrease, its physical size according to the needs of the application.

• DynamicArrayStack uses an array to store the elements of this stack;

• The interface Stack and its implementation, DynamicArrayStack, have a formal parameter
type (in other words, the implementation uses the concept of generics types, introduced in
Java 1.5);

• The initial capacity of this array is given by the first parameter of the constructor;

• The physical size of the array is increased by a fixed amount (increment) when the method
void push(E elem) is called and the array is full;

• The physical size of the array is decreased by a fixed amount (increment) during a call to
the method E pop() if the number of free cells becomes increment or more;

• The increment is given by the second parameter of the constructor;

• The instance variable top designates the top element (i.e. the cell where the last element was
inserted, or -1 if the stack is empty).

A. Correct at least 5 mistakes (compile-time or runtime errors) in the partial implementation.
(5 marks)

B. Complete the partial implementation of the class DynamicArrayStack given the above
information. (10 marks)

public class DynamicArrayStack<E> implements Stack<E> {

// Instance variables

private static E[] elems; // Stores the elements of this stack

private static int top = -1; // Designates the top element

private final int capacity; // Memorizes the initial capacity

private final int increment; // Used to increase/decrease the size

public DynamicArrayStack(int capacity, int increment) {

E[] elems = (E[]) new Object[capacity];

this.capacity = capacity;

this.increment = increment;

}

// Returns true if this stack is empty;

public boolean isEmpty() {

return top == 0;

}

// Continues on the next page ...

February 2007 ITI 1121 Page 9 of 18

DynamicArrayStack (continued)

public void push(E element) {

if (___________________________) {

increaseSize();

}

elems[top] = element;

top++;

}

private void increaseSize() {

E[] newElems;

int newSize;

newSize= elems.length + increment;

newElems = new E[newSize];

for (int i=0; i<elems.length; i++) {

newElems[i] = elems[i];

}

______________________________;

}

// Continues on the next page ...

February 2007 ITI 1121 Page 10 of 18

DynamicArrayStack (continued)

public E peek() {

return ______________________________;

}

// Complete the implementation of pop()

public E pop() {

E saved;

saved = elems[top];

elems[top] = _______________;

top--;

return saved;

}

private void decreaseSize() {

E[] newElems;

int newSize;

newSize = elems.length - increment;

if (newSize < capacity) {

newSize = capacity;

}

__;

for (int i=0; i<=top; i++) {

newElems[i] = elems[i];

}

elems = newElems;

}

} // End of DynamicArrayStack

February 2007 ITI 1121 Page 11 of 18

DynamicArrayStack (continued)

Complete the implementation of the method main. It declares a stack of Integer objects, creates a
new stack of Integer objects, pushes 20 elements onto the stack, removes and prints those elements.

public class Test {

public static void main(String[] args) {

// Declare a reference to a stak of Integer objects

_____________ s;

// Create an instance of DynamicStack to store Integer objects

s = ______________________________________;

for (int i=0; i<20; i++) {

s.push(new Integer(i));

}

while (! s.isEmpty()) {

// Declares an Integer

_______________ elem;

// Removes an element from the stack

elem = _______________;

System.out.println(elem);

}

}

} // End of Test

February 2007 ITI 1121 Page 12 of 18

Question 4: (12 marks)

Complete the implementation of the class Time below. Linked elements are used to store the
hours, minutes and seconds of this Time object. Specifically, the class Time has a single instance
variable, called first. The variable first is a reference to an Elem object, which is used to store
the hours of this Time value. The variable next of that element designates an Elem object, which
is used to store the minutes. The variable next of that Elem object designates the last element,
which is used to store the seconds of this Time value. For instance, the creation of this object:
new Time(13, 30, 0), has the following associated memory diagram.

first
13 30 0

Here, the values that are stored in the Elem objects are of type int (a primitive type).

public class Time {

private static class Elem {

private int value;

private Elem next;

private Elem(int value, Elem next) {

this.value = value;

this.next = next;

}

}

private Elem first;

public Time(int hours, int minutes, int seconds) {

}

February 2007 ITI 1121 Page 13 of 18

public int getHours() {

}

public int getMinutes() {

}

public int getSeconds() {

}

} // End of Time ;-)

February 2007 ITI 1121 Page 14 of 18

Question 5: (22 marks)

A. Use the stack-based algorithm seen in class to evaluate the following postfix (RPN) expression
and show the content of the stack immediately before and after processing each operator. The
notation −x is used to denote the first, second and third subtraction of the expression. (8
marks)

8 2 −a 10 8 1 −b −c /

Before −a After −a Before −b After −b

Before −c After −c Before / After /

February 2007 ITI 1121 Page 15 of 18

B. Write the following infix expression in postfix (RPN) notation. (4 marks)

15− 3 ∗ 5 + 8/2

Solution:

February 2007 ITI 1121 Page 16 of 18

C. The following class hierarchy is part of a software system for tracking professional expenses.

Specification:

• All expenses have a description (a character string);

• Transportation and Meal are sub-classes of Expense;

• Expense, Transportation and Meal are abstract classes;

• PrivateCar and Airfare are sub-classes of the class Transportation; Breakfast,
Lunch and Dinner are sub-classes of the class Meal;

• All the transportation expenses have a destination (a character string);

• The class Transportation implements the interface Taxable (not shown in the above
diagram);

• The interface Taxable declares the method double getTax();

• A transportation expense using a private car has a distance (of type int);

• A transportation expense by air has a fixed amount (of type double) specified when a
new transportation expense is created;

• All the meal expenses have an attribute which represents the number of meals;

• All the expenses have a method to calculate the amount represented by this expense:

– The amount for a transportation expense using a private car is a fixed rate times
the distance traveled;

– The amount for a transportation expense by air is a fixed amount (specified when a
new transportation expense is created);

– The amount for a meal expense is the number of meals times a fixed rate. The rate
depends on the kind of meal: Breakfast, Lunch or Dinner;

February 2007 ITI 1121 Page 17 of 18

Which statements are valid? (10 marks)

(a) Transportation t = new Transportation("ISMB 2007", "San Fransisco");

(b) Expense e = new Transportation("ISMB 2007", "San Fransisco");

(c) Taxable t = new Transportation("ISMB 2007", "San Fransisco");

(d) Expense e = new Airfare("ISMB 2007", "San Fransisco", 789.0);

double a = e.getAmount();

(e) Taxable t = new Airfare("ISMB 2007", "San Fransisco", 789.0);

(f) Taxable t = new Airfare("ISMB 2007", "San Fransisco", 789.0);

double x = t.getTax();

(g) Expense e = new Airfare("ISMB 2007", "San Fransisco", 789.0);

double x = e.getTax();

(h) Taxable t = new Taxable(); double x = t.getTax();

(i) Expense e = new Airfare("ISMB 2007", "San Fransisco", 789.0);

String s = e.getDestination();

(j) Expense t = new Airfare("ISMB 2007", "San Fransisco", 789.0);

double x = t.getAmount();

February 2007 ITI 1121 Page 18 of 18

A Natural

/* The Natural class wraps a value of the primitive type int in an

* object. Furthermore, the value is greater than or equals to

* zero. An object of type Natural contains a single field whose type

* is int.

*/

public class Natural {

private int value; // instance variable

/* Constructs a newly allocated Natural object that represents

* the specified int value. Throws IllegalArgumentException if the

* specified value is negative.

*/

public Natural(int value) {

if (value < 0) {

throw new IllegalArgumentException("less than zero");

}

this.value = value;

}

/* Returns the value of this Natural as an int.

*/

public int getValue() {

return value;

}

/* Returns a String representation of this Natural.

*/

public String toString() {

return Integer.toString(value);

}

}

