ITI 1121. Introduction to Computing Il

Graphical user interface : Model-View-Controller

by
Marcel Turcotte

Version April 4, 2020

Preamble

Preamble

Overview

Graphical user interface : Model-View-Controller

In software development, a design pattern is a specific arrangement of classes. It's a
standard way to solve well-known problems. Programmers in the industry are familiar
with these patterns. This week, we discover the design pattern Model-View-Controller
(MVC) which is used in the development of graphical user interfaces.

General objective:

= This week, you will be able to design the graphical user interface of a simple
application by applying the Model-View-Controller design pattern.

Preamble

Learning objectives

Learning objectives

= Describe in your own words the Model-View-Controller design pattern.
= Use the Model-View-Controller design pattern to produce the visual rendering of a
graphical user interface.

Readings:

* https://en.wikipedia.org/wiki/Model-view-controller
* http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf

https://en.wikipedia.org/wiki/Model-view-controller
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf

Preamble

Plan

Preamble
Théorie
Exemple

Prologue

Design pattern

* In software development, a design pattern is a specific arrangement of classes.

* It's a standard way to solve well-known problems.

* Programmers in the industry are familiar with these patterns.

Model-View-Controller

»(Model |=
2 4
1]
Controller [>| View
3

= MVC separates the data, the view and the logic from the application.

Allows you to modify or adapt each part of the application independently;
Promotes the implementation of several views;

The association between the model and the view is done dynamically at
runtime (not at compile time), which allows the view to be changed during execution.

* Model — implementation, state: attributes and behaviors;

* View — the output interface, a representation of the model for the outside world;

= Controller — the input interface, routes user requests to update the model.

Contains the application data and methods for transforming the data;

Possesses a minimal knowledge of the graphical interface (sometimes no
knowledge at all);

= The view and the model are very different.

= A representation (graphical, textual, vocal, etc.) of the model for the user.

Controller

= A controller is an object that allows the user to transform the data or the
representation;

= Knows the model very well.

incret?;ent() Walue()
rese etValue
=" »[Model |&——

actionPerformed()
Controller [% > View

update()

= A graphical interface for the class Counter.

Counter: Model

public class Counter {
private int value;
public Counter() {
value = 0;
}

public void increment() {
value++;
}

public int getValue() {
return value;
}

public void reset() {
value = 0;
}

public String toString() {
return "Counter: {value="4value+"}";
}

public interface View {
void update();
}

* To facilitate the development of multiple views, we create the interface View.

= Our example will have two views: GraphicalView and TextView.

public class TextView implements View {
private Counter model;

public TextView(Counter model) {
this . model = model;

}

public void update() {
System.out. println (model.toString ());
}

public class GraphicalView extends JFrame implements View {
private JLabel input;
private Counter model;

public GraphicalView(Counter model, Controller controller) {
setLayout(new GridLayout(1,3));
this . model = model;
JButton button;
button = new JButton("Increment");

button.addActionListener(controller);
add (button);
JButton reset;
reset = new JButton("Reset");
reset.addActionListener(controller);
add(reset);
input = new JlLabel ();
add(input);
}
public void update() {
input.setText(Integer.toString(model.getValue()));
}

public class Controller implements ActionlListener {
private Counter model;

private View[] views;
private int numberOfViews;

public Controller() {

views = new View[2];
numberOfViews = 0;

model = new Counter();

register (new GraphicalView (model, this));
register (new TextView(model));

update ();

private void register (View view) {
views [numberOfViews] = view;
numberOfViews++;

}

private void update() {
for (int i=0; i<numberOfViews; i++) {
views[i].update();
}

public void actionPerformed (ActionEvent e) {

if (e.getActionCommand().equals("Increment")) {
model .increment ();

} else {
model . reset ();

}

update ();

Application Counter

increment()
reset()

Model

actionPerformed()

getValue()
]

Controller

update()

View

public class App {
public static void main(String[] args) {

Controller controller;
controller = new Controller();

Counter

o0 Counter MVC Example . counte ava App
Increment Reset 7 lgedeon[503]: java App
Counter: {value=0}

Counter: {value=1}
Counter: {value=2}
Counter: {value=3}
Counter: {value=4}
Counter: {value=5}
Counter: {value=6}
Counter: {value=0}
Counter: {value=1}
Counter: {value=2}
Counter: {value=3}
Counter: {value=4}
Counter: {value=5}
Counter: {value=6}
Counter: {value=7}

= The application Counter and its two views: textual and graphical.

Prologue

= The MVC clearly separates the data, the views, and the logic of an application.

Excercises

Implement each of the following applications using the Model-View-Controller (MVC)
design pattern.

= A game of tic-tac-toe
* A game of battle ship

= A game of memory
= Game 2048

Next module

References |

[d E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Theory
	Example
	Prologue

