ITI 1121. Introduction to Computing Il

Graphical User Interface (GUI)

by
Marcel Turcotte

Version April 4, 2020

Preamble

Preamble

Overview

Graphical User Interface (GUI)

We explore the application of previously seen concepts, including interfaces and
inheritance, to the design of graphical user interfaces. We will see that graphical user
interfaces require a special style of programming called "event-driven programming".

General objective:

= This week you will be able to design the graphical user interface of a simple
application.

Preamble

Learning objectives

Learning objectives

= Apply inheritance concepts to produce the visual rendering of a graphical user
interface.

= Design an event handler to produce the necessary behaviors following a user action.

Preamble

Plan

Preamble

Graphic rendering
LayoutManager
Event-oriented programming

Prologue

Graphic rendering

AWT, Swing, and JavaFX

= Abstract Window Toolkit (AWT) is the oldest class library used to build graphical
interfaces in Java. AWT has been part of Java since its very beginning.
= Swing is an improved and newer library.

= JavaFX is the latest.

[SNG)G) Play List Manager
A Dream Within A Dream - Alan Parsons Project - m Karma Police - Radiohead - OK Computer

Aerials - System Of A Down - Toxicity Mosquito Song - Queens Of The Stone Age - Songs For The Deaf
Bullet The Blue Sky - U2 - Joshua Tree Aerials - System Of A Down - Toxicity

Clint Eastwood - Gorillaz - Clint Eastwood

Flood - Jars Of Clay - Jars Of Clay

Goodbye Mr. Ed - Tin Machine - Oy Vey, Baby

Here Comes The Sun - Nina Simone - Anthology

In Repair - Our Lady Peace - Spiritual Machines A

In The End - Linkin Park - Hybrid Theory =

Is There Anybody Qut There? - Pink Floyd - The ¥

(Sort By Name) C Sort By Artist) C Sort By Album) Print

= A graphical element is called a graphical component. Consequently, there is a class
named JComponent which defines the characteristics co mmunes of the
components.

= Subclasses of JComponent include: JLabel, JList, JMenuBar, JPanel, JScrollBar,

JTextComponent, etc.
JLabel JList JPanel ' JTextComponent

JEditorPane JTextArea JTextField

| JLabel I ‘ JList ‘ | JPanel | ‘JT&XIComnonemi

|JEdIIarPnnc| ‘JYenArea ‘ ‘ JTextField |

= AWT and Swing use inheritance heavily. The Component class defines the set of
methods common to graphical objects, such as setBackground(Color c) and
getX().

* The class Container defines the behavior of graphical objects that can contain
graphical objects, the class defines the methods add(Component component) and
setLayout(LayoutManager mgr), among others.

Hello World (1.0)

The JFrame class describes a graphical element with a title and a border.

import javax.swing.JFrame;

public class Hello {

public static void main(String|[]
JFrame f;
f = new JFrame("Hello World!");
f.setSize (200,300);
f.setVisible(true);

args) {

Objects of the classes JFrame, JDialog and JApplet cannot be inserted inside other
graphical components (we say that they are "top-level components").

Hello World (1.0)

DrJava: Hello World (1.0)

We can also experiment from the interaction window in DrJava *. Run the following
statements one by one.

import javax.swing.JFrame;

JFrame f = new JFrame("Hello World!");
f.setSize(100,200);
.setVisible (true);
.setVisible(false)
.setVisible (true);
.setVisible (false)

VVVVVVYV

- —h —h —h

You will see that the window is not visible at first.

*Alternatively, you can use jshell.
|

DrJava: Hello World (1.0)

® © @ Hello World!
[New = Open [@Save [Close ¥ Cut [Copy @ Paste & Undo @ Redo # Find Compile Reset Run Test Javadoc
(Untitled)

Console Compiler Output

Welcome to Drlava. Working directory is /Users/turcotte/Desktop
> import javax.swing.JFrame;

> JFrame f = new JFrame("Hello World!™");

> f.setSize(100,200);

> f.setVisible(true);

> f.setSize(200,400);

> f.setSize(400,400);

> f.setSize(200,400);

>

| Editing (Untitled)

Hello World (2.0):

An illustration of inheritance

= A specialized class of JFrame with all the characteristics required for this
application.

= The constructor is responsible for determining the initial appearance of the window.

public class MyFrame extends JFrame {
public MyFrame(String title) {
super(title);
setSize (200,300);
setVisible (true);

Hello World (2.0)

public class MyFrame extends JFrame {
public MyFrame(String title) {
super(title);
setSize (200,300);
setVisible (true);

}

that we use like this:

public class Run {
public static void main(String[] args) {
MyFrame f;
j = new MyFrame("Hello World");

Hello World (2.0)

Adding graphic elements

MyFrame is a specialization of the class JFrame, which is itself a specialization of the
class Frame, which specializes the class Window, which itself specializes Container.
Thus, MyFrame can contain other graphical elements.

import javax.swing.x;

public class MyFrame extends JFrame {

public MyFrame(String title) {
super(title);

add(new JLabel("Some text!")); // <—

setSize (200,300);
setVisible (true);

}
Which method add is that?

14

& O O Hello World

Some text!

LayoutManager

LayoutManager

When adding graphical elements, you want to control their layout.

We call layout manager, the object that controls the layout and size of objects in a
container.

* LayoutManager is a interface and Java provides over 20 implementations for it.
The main classes are:

= FlowLayout adds the graphical elements from left to right and top to bottom; this is
the default manager for JPanel (the simplest of the containers).

BorderLayout divides the container into 5 zones: north, south, east, west and center,
the default for the class JFrame.

» GridLayout divides the container into m X n zones.

BorderLayout

import java.awt.x;
import javax.swing.x;

public class MyFrame extends JFrame {

public MyFrame(String title) {
super(title);

add(new JLabel("Nord"), BorderLayout.NORTH);
add(new JLabel("Sud"), BorderLayout.SOUTH);

add (new JLabel("Est"), BorderLayout.EAST);
add(new JLabel("Ouest"), BorderLayout.WEST);
add(new JLabel("Centre"), BorderLayout.CENTER);

setSize (200,300);
setVisible (true);

Quyest Centre Est

Sud

FlowLayout

import java.awt.x;
import javax.swing.x;

public class MyFrame extends JFrame {

public MyFrame(String title) {
super(title);
setLayout (new FIowLayout());
add(new JLabel("—a—"))
add(new JLabel("—b-"));
add(new JLabel("—c—"));
add(new JLabel("—d-"))
add(new JLabel("—e—="))
setSize (200,300);
setVisible (true);

JPanel: create complex visual renderings

* The class JPanel defines the simplest container.

* A JPanel is used to group together several graphical elements and associate them
with a layout manager.

import java.awt.x;
import javax.swing.x;
public class MyFrame extends JFrame {
public MyFrame(String title) {
super(title);
setLayout(new BorderLayout());

JPanel p = new JPanel();
p.setLayout(new FlowLayout());
p.add(new JLabel("—a-"));
p.add(new JLabel("-b-"));
p.add(new JLabel("—c—"));
p.add(new JLabel("—d-"));

setSize (200,300);
setVisible (true);

add(new JLabel("Nord"), BorderLayout.NORTH);
add(new JLabel("Est"), BorderLayout.EAST);
add(new JLabel("Ouest"), BorderLayout.WEST);
add(new JLabel("Centre"), BorderLayout.CENTER);

add(p, BorderLayout.SOUTH); /) <—

Ouest Centre E=t

Event-oriented programming

Event-oriented programming

(event-driven programming)

= Graphical applications are programmed in a paradigm that differs from other types
of applications.

* The application is almost always waiting for an action from the user; click on a
button for example.

= An event is an object that represents the user's action within the graphical
application.

Event-oriented programming

In Java, the graphical elements (Component) are the source of the events.

An object is said to either generate an event or be the source of one.

When a button is pressed and released, AWT sends an instance of the class
ActionEvent to the button, through the processEvent method of the object of the

class JButton.

Callback methods (functions)

How do you associate actions with graphical elements?

Let's put ourselves in the shoes of the person in charge of the Java JButton class
implementation.

= When the button is pressed and released, the button will receive an ActionEvent
object, via a call to its processEvent(ActionEvent e) method.

What to do?

We'd have to make a call to a method of the application. That method will do
the necessary processing.

= What concept can we use in order to force the programmer to implement a
method with a well-defined signature? (A specific name, a specific list of
parameters)

ActionlListener

Indeed, the concept of interface can be used to force the implementation of a method,
here actionPerformed.

public interface ActionListener extends EventlListener {

J**

* Invoked when an action occurs.

*/

public void actionPerformed (ActionEvent e);

Answering machine analogy

We are still in the skin of the programmer of the Java JButton class implementation.

Our strategy will be the following: let’s ask the application to leave us its
“coordinates” (addListener) and we will call it back (actionPerformed) when the
button has been pressed.

= The button’s addListener(...) method allows an object to register as a listener:
= ‘“when the button has been pressed, call me"

What is the parameter type of the addListener(...) method?

Um, how will you interact with this listener?

Its method actionPerformed(ActionEvent e)!

This object will have to implement the ActionListener interface!

Example: Square

In order to better understand, we will create a small application displaying the square of
a number!

Here are the declarations necessary to create the graphical aspect of the application.

Square

public class Square extends JFrame {
private JTextField input = new JTextField ();

public Square() {
super("Square GUI");
setLayout(new GridLayout(1,2));
add(input);
JButton button = new JButton("Square");
add(button);
pack ();
setVisible (true);

Doing the work!

= The class JTextField has a method getText(), which we will use to obtain the
user’s string.

= As well as a method setText(String), which we will use to replace the user's string
by its square.

So this is the content of the square method:

private void square() {
int v = Integer.parselnt(input.getText());
input.setText(Integer.toString(vxv));

import java.awt.x;
import javax.swing.x;

public class Square extends JFrame {

private JTextField input = new JTextField ();

public Square() {
super("Square GUI");
setLayout(new GridLayout(1,2));
add(input);
JButton button = new JButton("Square");
add(button);
pack ();
setVisible (true);

}

private void square() {
int v = Integer.parselnt(input.getText());
input.setText(Integer.toString(vxv));

What’s missing from our application?

* What's missing from our application?

* The application must know to call the method square when the button is pressed!

import java.awt.event.x;
import javax.swing.x;

public class Square extends JFrame implements ActionListener {
private JButton button = new JButton("Square");
private JTextField input = new JTextField ();
public Square() {
super("Square GUI");
setLayout(new GridLayout(1,2));
add (button);

add(input);
button.addActionListener (this);
pack ();
setVisible (true);

}

public void actionPerformed (ActionEvent e) {
int v = Integer.parselnt(input.getText());
input.setText(Integer.toString(vxv));

}

JFrame.EXIT_ON_CLOSE

public Square() {
super("Square GUI");
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
setLayout(new GridLayout(1,2));
add(button);
add(input);
button.addActionListener (this);
pack ();
setVisible (true);

Prologue

The classes of AWT and Swing are organized hierarchically (inheritance).

The placement of the graphical elements is under the control of a manager, an object
that realizes the LayoutManager interface.
= Graphical user applications are programmed according to the event driven
programming model.

» A class must realize the interface ActionListener

= This class must implement the method actionPerformed.

= The reference of an object whose class realizes the ActionListener interface is provided
to the button via the method addActionListener.

Next module

= Parameterized types (« generics »)

References |

[d E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Graphic rendering
	LayoutManager
	Event-oriented programming
	Prologue

