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Overview

Binary search tree: concept

We begin with an overview of the applications of trees in computing: to represent
hierarchical data, for compression, and efficient access to elements. We examine the
linked implementation of trees. We pay particular attention to binary search trees.

General objective:
This week you will be able to design and modify computer programs based on the
concept of a binary search tree.

1 44



Preamble

Learning objectives



Learning objectives

Name applications of binary search trees.
Describe the essential properties of binary search trees.

Readings:
Pages 257-268 and 282-296 of E. Koffman and P. Wolfgang.
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Theory



Definition
A binary tree is a hierarchical data structure such that each node stores one value and
has at most two children, called left and right.
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Applications



Applications (general trees)

Represent hierarchical information such as hierarchical file systems (HFS)
(directories and subdirectories), programs (parse tree);
Huffman trees are used to compress information (files);
The binary tree is an efficient data structure for implementing abstract data types
such as heaps, priority queues, associative structures and sets.
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All nodes have only one parent, except for one node that has no parent, and is
called the root (this is the node at the very top of the diagram);
Each node has either 0, 1 or 2 children;
The childless nodes are the leaves of the tree (or outer nodes);
The links between the nodes are the branches of the tree.
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Definitions
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A node and its descendants are a sub-tree;
The size of a tree is the number of nodes in the tree. An empty tree has a size 0;
Since we will only deal with binary trees, I will sometimes use the term tree to refer
to a binary tree.
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Definitions

We can give a recursive definition:
A binary tree is empty, or;
A binary tree consists of a value and two subtrees (left and right).
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Definitions

The node depth represents the number of links you have to follow from the root in order
to access that node. The root is the most accessible node.
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What’s the depth of the root? The root is always at depth 0.
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Definitions

The node depth represents the number of links you have to follow from the root in order
to access that node. The root is the most accessible node.
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The depth of a tree is the maximum depth of a node in the tree.

11 44



Discussion
All the trees shown here have a property in common. What is it?
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Definition
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A binary search tree is a binary tree whose nodes satisfy the following properties:
all the nodes of its left subtree have smaller values than this node (or the left
subtree is empty);
all the nodes of its right subtree have greater values than this node (or this subtree
is empty).

Corollary: the values are unique.
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Implementation

How are we going to implement this class?
Indeed, we’ll use a “nested” and “static” class, Node.
What are its instance variables?

The instance variables are: value, left and right;
What is the type of these variables?

value is of type Comparable, left and right are of type Node.
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Implementation

A static nested class to save a value and create the structure of the tree.
pub l i c c l a s s BinarySearchTree <E extends Comparable<E>> {

p r i v a t e s t a t i c c l a s s Node<T> {
p r i v a t e T v a l u e ;
p r i v a t e Node<T> l e f t ;
p r i v a t e Node<T> r i g h t ;

}

}
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Implementation

What are the instance variables of the BinarySearchTree?
pub l i c c l a s s BinarySearchTree <E extends Comparable<E>> {

p r i v a t e s t a t i c c l a s s Node<T> {
p r i v a t e T v a l u e ;
p r i v a t e Node<T> l e f t ;
p r i v a t e Node<T> r i g h t ;

}

p r i v a t e Node<E> r o o t ;
}
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Memory diagram

8

root
Node

BinarySearchTree

rightleft
value

Comparable

17 44



8

9 15

115

root Node

BinarySearchTree



Representations
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Observations
A leaf is a node such that its two descendants are both null.
The variable root can be null, so the tree is empty and of size 0.
For the sake of simplicity, I will often use the more abstract representation on the
right.
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contains



boolean contains(E element)
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1. Empty tree? element is not found;
2. The local root contains element? element is found; Otherwise? Where are we

looking for?
3. If element is smaller than the value stored in the current node? Look for element in

the left subtree;
4. Otherwise (element is necessarily greater than the value in the current node.)? Look

for element in the right subtree.
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boolean contains(E element)
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Exercises: apply the algorithm to find the values 8, 9 and 7 in the tree above.
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public boolean contains(E element)

The presentation suggests a recursive algorithm.
What will be the signature of the method?
pub l i c boolean c o n t a i n s (E e lement ) {

i f ( e l ement == nu l l ) {
throw new N u l l P o i n t e r E x c e p t i o n ( ) ;

}
re tu rn c o n t a i n s ( root , e l ement ) ;

}

Like the recursive processing of linked lists, our methods will have two parts, a
public part, and a private part whose signature has a parameter of type Node.
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boolean contains(Node<E> current, E
element)

Base case:
i f ( c u r r e n t == nu l l ) {

r e s u l t = f a l s e ;
}

but also
i f ( e l ement . e q u a l s ( c u r r e n t . v a l u e ) ) {

r e s u l t = t rue ;
}
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boolean contains(Node<E> current, E
element)

General case: . Search left or right (recursively).
i f ( e l ement . compareTo ( c u r r e n t . v a l u e ) < 0) {

r e s u l t = c o n t a i n s ( c u r r e n t . l e f t , e l ement ) ;
} e l s e {

r e s u l t = c o n t a i n s ( c u r r e n t . r i g h t , e l ement ) ;
}
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p r i v a t e boolean c o n t a i n s ( Node<E> c u r r e n t , E e l ement ) {

boolean r e s u l t ;

i f ( c u r r e n t == nu l l ) {
r e s u l t = f a l s e ;

} e l s e {
i n t t e s t = e lement . compareTo ( c u r r e n t . v a l u e ) ;
i f ( t e s t == 0) {

r e s u l t = t rue ;
} e l s e i f ( t e s t < 0) {

r e s u l t = c o n t a i n s ( c u r r e n t . l e f t , e l ement ) ;
} e l s e {

r e s u l t = c o n t a i n s ( c u r r e n t . r i g h t , e l ement ) ;
}

}

re tu rn r e s u l t ;
}



public boolean contains(E element) (take 2)

Is the method boolean contains(E element) necessarily recursive?
No.

Develop a strategy.
1. Use a local variable current of type Node;
2. Initialize the variable to designate the root node of the tree;
3. If current is null then the value is not found, stop;
4. If current.value is the value sought, stop;
5. If the sought value is smaller than current = current.left, goto 3;
6. Else current = current.right, goto 3.
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public boolean contains(E element) (take 2)

pub l i c boolean c o n t a i n s 2 (E e lement ) {

boolean found = f a l s e ;
Node<E> c u r r e n t = r o o t ;
whi le ( ! found && c u r r e n t != nu l l ) {

i n t t e s t = e lement . compareTo ( c u r r e n t . v a l u e ) ;
i f ( t e s t == 0) {

found = t rue ;
} e l s e i f ( t e s t < 0) {

c u r r e n t = c u r r e n t . l e f t ;
} e l s e {

c u r r e n t = c u r r e n t . r i g h t ;
}

}
re tu rn found ;

}

28 44



Traversing a tree



Traversing a tree

Sometimes one has to traverse the tree in order to visit all of its nodes.

When visiting a node, you perform certain operations on the node.
Pre-order traversal: visit the root, traverse the left subtree, traverse the right
subtree;
In-order (infix, symmetrical) traversal: traverse the left subtree, visit the root,
traverse the right subtree;
Post-order (suffix) traversal: traverse the left subtree, traverse the right subtree,
visit the root;
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Exercises

The simplest operation is to display the value stored in the node.
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Give the result displayed for each strategy, pre-order, in-order and post-order.
What strategy is displaying the data in ascending order?
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Traversing a tree

Pre-order: root, left, right;
In-order: left, root, right;

Post-order: left, right, root.
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Traversing a tree

p r i v a t e vo id v i s i t ( Node<E> c u r r e n t ) {
System . out . p r i n t ( c u r r e n t . v a l u e ) ;

}

pub l i c vo id preOrde r ( ) {
p reOrde r ( r o o t ) ;

}

pub l i c vo id i nOrde r ( ) {
i nOrde r ( r o o t ) ;

}

pub l i c vo id pos tOrde r ( ) {
pos tOrde r ( r o o t ) ;

}
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Traversing a tree

Pre-order



Pre-order

p r i v a t e vo id preOrde r ( Node<E> c u r r e n t ) {

i f ( c u r r e n t != nu l l ) {

v i s i t ( c u r r e n t ) ;
p r eOrde r ( c u r r e n t . l e f t ) ;
p r eOrde r ( c u r r e n t . r i g h t ) ;

}

}
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Traversing a tree

In-order



Infixe

p r i v a t e vo id i nOrde r ( Node<E> c u r r e n t ) {

i f ( c u r r e n t != nu l l ) {

i nOrde r ( c u r r e n t . l e f t ) ;
v i s i t ( c u r r e n t ) ;
i nOrde r ( c u r r e n t . r i g h t ) ;

}

}
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Traversing a tree

Post-order



Post-order

p r i v a t e vo id pos tOrde r ( Node<E> c u r r e n t ) {

i f ( c u r r e n t != nu l l ) {

pos tOrde r ( c u r r e n t . l e f t ) ;
pos tOrde r ( c u r r e n t . r i g h t ) ;
v i s i t ( c u r r e n t ) ;

}

}
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Observations

Methods that follow only one path, from the root to a leaf, for example, are easy to
implement without recursive calls, see contains;
Methods that visit several subtrees are often more easily implemented using
recursivity.
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Summary

A binary search tree is a binary tree where each node satisfies the following two
properties:

All the nodes in its left subtree have smaller values than this node’s or its left subtree is
empty;
All the nodes of its right subtree have greater values than this node or its right subtree
is empty.

Implemented using linked elements.
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Next module

Binary search trees : removal of an element.
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