ITI 1121. Introduction to Computing Il

List: recursive list processing

by
Marcel Turcotte

Version March 22, 2020

Preamble

Preamble

Overview

List: recursive list processing

We revisit the concept of recursivity, this time in the context of processing linked lists. We
develop a general strategy, “head & tail”, that can be applied to all the problems covered
in this course.

General objective:

= This week, you will be able to design recursive methods for processing linked lists.

« To iterate is human, to recurse diviney

L. Peter Deutsch

Preamble

Learning objectives

Learning objectives

Recognize the problems for which recursion is appropriate.

Discuss the efficiency of recursive list processing in Java, especially in relation to
memory consumption.

= Explain the role of parameters to control the flow of recursive program execution.
= Paraphrase the “head & tail” for recursive processing of lists.
= Use the “head & tail” strategy to design a recursive method for processing a linked
list.
Readings:

Pages 233-238 of E. Koffman and P. Wolfgang.

Preamble

Plan

Preamble
Theory
Implementation
Principles

Prologue

Discussion

= What problems have you solved using recursivity?

What do these problems have in common?

The solution to a given problem can be constructed from the solutions of the
subproblems;

These sub-problems are of the same nature and therefore can be solved in the
same way;

The sub-problems are getting smaller and smaller (convergence);

Finally, there is a size of problems that can be solved in a trivial way, without
recursive calls, which are the base cases.

Recursivity and iteration are of the same nature.

It is important that the size of the problems to be handled decreases, otherwise

there would be an infinite number of recursive calls (equivalent to the infinite

loop); in practice the program will terminate when all the memory reserved for

method calls is exhausted.

= So there has to be a size of problem that can be solved without recursive calls,
in order to stop recursivity.

= These are the base cases. There has to be at least one, but there can be more
than one.

= The base cases should be processed first in order to stop the recursion, if

necessary.

Remarks (continued)

The programming languages Lisp, Prolog and Haskell, to name but a few, have no
iterative control statements, iteration is replaced by recursivity.

= Compilers automatically transform some forms of recursivity into iteration.
The XSLT Transformations technology used in particular for certain Web
applications is based on the concept of recursivity.

Some treatments of binary search trees will be very simple to express using
recursivity, but very complex otherwise.

Theory

Pattern

Pattern

type method(parameters) {
type result;
if (test) { // base case
result = calculating the result // no recursive call
} else { // general case
// pre—processing: partitioning the data
result = method(sub—problem); // recursive call

// post—processing: combine the result

return result;

9

Theory

Factorial

Factorielle

public static int factorial(int n) {
int s, result;
if (n<=1) { // base case
result = 1;
} else { // general case
int nl = n—1;
s = factorial(nl);
result = n % s;

}

return result;

= The above method corresponds to the proposed model:

* First we check the base case, its result is calculated without recursive call (recursivity
stops herel!);
= The general case creates smaller and smaller subproblems.

Factorial — a terse implementation

public static int factorial(int n) {

if (n<=1) {
return 1,
}

return n x factorial (n—1);

= The statement return returns control to the caller, it stops the execution of the
method, no other statement of this call will be executed.

Factorial — a terse implementation

public static int factorial(int n) {

if (n<0) {
throw new lllegalArgumentException(Integer.toString(n));
}

if (n<=1) {
return 1,
}

return n x factorial (n—1);

Theory : “head & tail”

= Let's establish a general strategy for recursive list processing.
= Breaking the list into two parts, the first element (head) and the rest of the list
(tail)*

*Here, head and tail are not the instance variables.
13

Implementation

Implementation of the class LinkedList

= We'll use a singly linked list.

public class LinkedList<E> implements List<E> {

private static class Node<T> {
private T value;
private Node<T> next;
private Node(T value, Node<T> next) {

this.value = value;
this.next = next;
}
}
private Node<E> head;
/o
}

Implementation

size

Calculating the size of a list

Let's first consider calculating the size of a list.

= Let current, a variable of type Node, designate an element of the list.

= Knowing that the size of the list starting with the element designated by
current.next is n,
= what is the size of the list starting with the element designated current?

= The size of the list starting with the element designated by current is n+1.

Calculating the size of a list

The strategy “head & tail’ suggests that we start by posing the recursive call,
passing current.next.

int n = size(current.next);

What's the value of n? What does n mean?

= This is the length of the list starting with the element designated by current.next.

What is the size of the list starting with the element designated current?
= The length of the list starting with the element designated by current is n+1.

Calculating the size of a list

= What's the shortest valid list and how long is it?
It's the empty list and its length is 0.
= What is the value of current if the list is empty?
= The value of current is null.

Calculating the size of a list

= This suggests the following partial implementation:

int n;
if (current == null) {
n=0;
1 else {
n=1+4 size(current.next);
}

= What is the type of the parameter for the method size?
The type of the parameter is Node.

Calculating the size of a list

int size(Node<E> current) {
int n;
if (current == null) {
n = 0;
} else {

n =1+ size(current.next);

int size(Node<E> current) {
if (current == null) {
return 0;

return 1 + size(current.next);

}

int

size (Node<E> current) {

if (current == null) {
return O;

}

return 1 + size (current . next);

size (current[1])
(D4 size (current . nexi)

\

size (current[1])

(Dt size (current . next x

size (currentt])
D+ size (current . n

N

ext)

size (current[]—._,r)

0 v

= Notice that the method size uses no instance variables!

One controls recursivity using the parameter.
Each call has its own working memory (activation block) and therefore its own copies
of the local variables and parameters.

int size(Node<E> current) {

if (current == null) {
return 0;
}

return 1 + size(current.next);

= The base case is checked out first.

Calling the method size

= How do we use this method to calculate the size of the list starting with the node
designated by head?

int size(Node<E> current) {
if (current == null) {
return 0;
}

return 1 + size(current.next);

}

int size() {
return size (head);
}

The recursive method is a helper

= The first call is initiated by a method of visibility public. The value of head is passed
as a parameter.

public int size() {
return size (head);
}

= The recursive method must be of visibility private since its parameter is of type
Node.

private int size(Node<E> current) {
if (current == null) {
return 0;
}

return 1 + size(current.next);

head

public int size() {
return size(head);

¥
private int size(Node<E> current) {
if (current == null) {
return 0;

return 1 4+ size(current.next);

In practice

= Each call has its own activation block (working memory) on the call stack, so the
size of the system stack will be proportional to the size of the list.

Implementation

Summary

type result;

if (current ...) {
calculating the
} else {

}

return result;

type method(Node<E> current) {

result

//
//
//
//

s = method(current.next); //

//

base case

no recursive call
general case
pre—processing
recursion
post—processing

“head & tail’

Steps:

= What does method(current.next) mean?
The solution to a problem, smaller by an element.

= How are we going to use this result to construct a solution for a list beginning with
the element designated by current?

= What are the base cases?

= What's the shortest valid list?
= What's the result?

Implementation

findMax

LinkedList

Let's now use a list whose elements have a method compareTo.

public class LinkedList<E extends Comparable<E>> {

private static class Node<T> {
private T value;
private Node<T> next;
private Node(T value, Node<T> next) {

this.value = value;
this.next = next;
}
}
private Node<E> head;
//

Let’s apply the strategy as suggested.

result = findMax(current.next);

What's the value of result? What does result mean?
= The largest value for the list beginning with the element designated current.next

What do we do if result is greater than current.value?

if (result.compareTo(current.value) > 0) {
return result;

} else {

return current.value;

= This process builds smaller and smaller problems. What's the shortest valid list?

= No, not the empty list, but the list containing only one element.

« What's the returned value going to be?

if (current.next == null) {
return current.value;
}

public E findMax () {
if (head == null) {
throw new NoSuchElementException ();
}

return findMax(head);

}

private E findMax(Node<E> current) {

if (current.next == null) {
return current.value;
}

E result = findMax(current.next);

if (result.compareTo(current.value) > 0) {
return result;

} else {

return current.value;

private E findMax(Node<E> p) {
if (p.next == null) {
return p.value;

E r = findMax(p.next);
if (r.compareTo(p.value) > 0) {
La] [8] [e]

return r; '

} else {
head /I\ /I\ /I\) return p.value;

Each of the following examples
introduces a new problematic.

Implementation

E get(int index)

E get(int index)

= The method E get(int index) returns the element at the specified value (index) of
the list.

= What was the strategy adopted for the non-recursive method?
* It was necessary to count the number of visited nodes and to stop the execution of the
loop while after having visited index nodes.
« For a recursive method, how do we determine the number of nodes visited?

= We could add a parameter to count the number of nodes visited. Initially 0, then 1, 2,
etc.

Study the following partial implementation:

public E get(int index) {
return get(head, index);
}

private E get(Node<E> current, int index) {

}

If index represents the position of the element in relation to the list starting at
position current, what is the position of the element in relation to the list starting at
position current.next?

= That's right, index-1.
What will the method do if the value of the index is 07

= It must return current.value.

= No recursive call is made.

= That's the base case.

E get(int index)

private E get(Node<E> current, int index) {

if (index == 0) {
return current.value;
}
return get(current.next, index —1);

= What would happen if the initial value of the index was greater than the total
number of items on the list?

= index > 0 and current == null

E get(int index)

private E get(Node<E> current, int index) {

if (current == null) {

throw new IndexOutOfBoundsException ();
}
if (index == 0) {

return current.value;

}

return get(current.next, index —1);

public E get(int index) {
if (index < 0) {
throw new IndexOutOfBoundsException ();
}

return get(head, index);

}
private E get(Node<E> current, int index) {

if (current == null) {
throw new IndexOutOfBoundsException ();
}

if (index == 0) {
return current.value;
}

return get(current.next, index —1);

private E get(Node<E> p, int index) {

[Al la] [cl if (index == 0) {

return p.value;

| DN DN D : -
E__, return get(p.next, index —1);

N N !

Implementation

int indexOf(E element)

int indexOf(E element)

= The method indexOf returns the position of the leftmost occurrence of the element
in this list, and —1 if the value is not found there.

= The numbering of the elements starts at zero.

int indexOf(E element)

According to the “head & tail” strategy, the general case will involve a recursive call
such as this:

s = indexOf(current.next, element);

What does the value of s represent?

= It's the position of the element in the list designated by current.next.

Compared to the current list, the one designated by current, what is the position of
element?

= s+1

int indexOf(E element)

= If the value of s is greater or equal to zero, s is the position of the element in
the rest of list.
« What does s == -1 mean?
= The element was absent from the rest of the list.
= Which case hasn’t been dealt with?

* current.value.equals(element)
» What value should we return then?

=0

int indexOf(E element)

s = indexOf(current.next, element);

if (current.value.equals(element)) {

result = 0;

} else if (s == —1) {
result = s;

} else {

result =1 + s;

}

int indexOf(E element)

= What's the base case?

The shortest list is the empty list, it doesn’t contain the element you're looking for,
just return the special value -1.

if (current == null) {
return -1,
}

int indexOf(E element)

private int indexOf(Node<E> current, E element) {

if (current == null) {
return —1;
int result = indexOf(current.next, element);

if (current.value.equals(element)) {
return 0;
}

if (result == —1) {
return result;
}

return result + 1;

int indexOf(E element)

= s it working?
= Yes.

= There's still a problem with that implementation.
* What is it?

head

int indexOf(Node<E> p, E

if (p == null) return
int r = indexOf(p.next,
if (p.value.equals(e))
if (r == —1) return r;

return r + 1;

e) {
—1;
e);

return 0;

int indexOf(E element)

= How do we stop recursive calls as soon as the value we're looking for is found?

private int indexOf(Node<E> current, E element) {
if (current == null) {
return —1;

}
int result = indexOf(current.next, element);
if (current.value.equals(element)) {
return 0;
}
if (result == —-1) {
return result;
}

return result + 1;

int indexOf(E element)

private int indexOf(Node<E> current, E element) {

if (current == null) {
return —1;
}
if (current.value.equals(element)) {
return 0;
}
int result = indexOf(current.next, element);
if (result == —1) {

return result;

}

return result + 1;

Implementation

E indexOfLast(E element)

E indexOfLast(E element)

= The method indexOfLast returns the position of the last (rightmost) occurrence of
the element, and -1 otherwise.

* What are the changes to be made?

= Can current.value.equals(element) be part of the base case?
= No, recursion must go through the entire list.

= How to process the result indexOfLast(current.next, element)?

public int indexOfLast(E element) {
return indexOfLast(head, element);
}
private int indexOfLast(Node<E> current, E element) {
if (current == null) {
return —1;
}
int result = indexOfLast(current.next, element);
if (result > —1) {
return result + 1;

} else if (element.equals(current.value)) {
return 0;
}

return —1;

Implementation

boolean contains(E element)

Exercise

* boolean contains(E element)

Implementation

boolean isIncreasing()

boolean isIncreasing()

The methods size, indexOf and contains only deal with one element at a time.
Let's consider a recursive implementation of the method islncreasing.

Examine each consecutive pair and return the value false as soon as a pair is not
increasing.

If the method attains the end of the list then the list is ascending!

boolean isIncreasing()

public boolean islncreasing () {
return islncreasing (head);
}

boolean isIncreasing()

= What's the base case?
* What's the shortest valid list?
= The empty list and the singleton are growing.

if ((current == null) || (current.next == null)) {
return true;
}

boolean isIncreasing()

General case.
= Which approach is preferable?

1. Do a recursive call, then process the result.
2. Process the current position, then do a recursive recursive call.

if (current.value.compareTo(current.next.value) > 0) {
return false;

1 else {

return islncreasing(current.next);

boolean isIncreasing()

private boolean islncreasing(Node<E> current) {

if ((current == null) || (current.next == null)) {
return true;
¥

if (current.value.compareTo(current.next.value) > 0) {
return false;
}

return islncreasing(current.next);

Implementation

Exercises

Exercices

= void addLast(E element)
* boolean equals(LinkedList<E> other)

Implementation

void remove(E element)

void remove(E element)

We're now considering methods that transform the structure of the list.

For the methods indexOf and contains, the main consequence of additional
recursive calls is the inefficiency of the method.

= On the other hand, recursive methods that transform lists can lead to more serious
problems.

= Consider the example of the method remove, which removes the first occurrence of
an object in the list.

void remove(E element)

= Give the the high-level strategy.
= Traverse the list.
Find the element.
Remove the element.

public void remove(E element)

- What will be the difficulties?

We'll remember that when traversing a singly linked list using a while loop, we had to
stop one position before the element to be removed, since it's the variable next of the
preceding element that has to be modified.

= To remove the first element, we must modify the variable head of the header, and not
the variable next of the preceding node.

public void remove(E element)

= What are the preconditions?

= element !'= null
The list is not empty.

= What are the special cases?
The element being sought is in first position.

public void remove(E element)

public void remove(E element) {

if (element == null) {
throw new NullPointerException("Illegal argument");
}

if (head == null) {
throw new NoSuchElementException ();
}

if (head.value.equals(element)) {
head = head. next;

} else {

remove (head , element);
}

= For the first call to the method remove(Node<E> current, E element), we know
that current.value.equals(element) is false. Why?
= It's the first call, current == head.
If head.value.equals(element) were true at the time of the call to the public method,

then there would have been no call to the private method.

= The recursive method will preserve this property, it checks if the sought element,
element, is at the position that follows, current.next, and if yes, removes this node
and finishes, otherwise it continues its search.

remove(Node<E> current, E element)

General case: Which scenario seems the most appropriate:

1. Do a recursive call, followed by a post-processing?
2. Do a pre-processing, followed by a recursive call (if necessary)?

Since we have to remove the leftmost element, should we do a pre-processing followed
by a recursive call (if necessary)? (Strategy 2)

remove(Node<E> current, E element)

= What's the necessary pre-processing?

If current.next.value.equals(element), remove the next element.
= Otherwise, process the rest of the list (recursive call).

remove(Node<E> current, E element)

= What's the base case?
» Singleton.
= What do we do now?

= Throw the exception NoSuchElementException.

remove(Node<E> current, E element)

private void remove(Node<E> current, E element) {

if (current.next == null) {
throw new NoSuchElementException ();
}

if (current.next.value.equals(element)) {

current.next = current.next.next; // base case
} else {
remove(current.next, element); // general case

}

public void remove(E element) {

if (element == null) {

throw new NullPointerException("Illlegal argument");
}
if (head == null) {

throw new NoSuchElementException ();

if (head.value.equals(element)) {
head = head.next; // special case

} else {

remove (head , element);
}

}

private void remove(Node<E> current, E element) {

if (current.next == null) {
throw new NoSuchElementException ();

if (current.next.value.equals(element)) {

current.next = current.next.next; // base case
} else {
remove(current.next, element); // general case

}

Exercises

void removelast()

void removelLast(E element)

void removeAll(E element)

void remove(int pos)

Implementation

LinkedList<E> subList(int fromlIndex, int tolndex)

LinkedList<E> sublList(int fromindex, int

tolndex)

= The method will return a new list containing the elements located between the
positions fromIndex and tolndex of the original list, without changing it.

Discussion

Propose a strategy to build the resulting list.
1. Post-processing

= Traverse the list to the highest index;

= Return a list containing only the value at that position;

= Add the current element to the start of the list, if its position is within the range.
2. Pre-processing

= An empty list is passed as a parameter to the first call;

= Add the current element to the end of the list, if the current position is part of the
interval;

= Recusive call.

Strategy 1

= Recursive calls traverse the list from left to right, recursion stops when the index
tolndex is reached.

= Base Case:

LinkedList<E> result;

if (index == tolndex) {
result = new LinkedList<E>();
result.addFirst(current.value);

Strategy 1

= General case:

result = subList(current.next, index+1, fromlndex, tolndex);

= What does result contain?
= What's the next step?

if (index > fromlndex) {
result.addFirst(current.value);
}

int tolndex) {

public LinkedList<E> subList(int fromlndex
return sublist(head, 0, fromlndex, tolndex);
}
private LinkedList<E> subList(Node<E> current, int index, int fromlndex, int tolndex) {
LinkedList<E> result;
if (index == tolndex) {
result = new LinkedList<E>();
result.addFirst(current.value);
} else {
index+1, fromlndex, tolndex);

result = sublist(current.next,

if (index >= fromlndex) {
result.addFirst(current.value);

}
}

return result;

}
= The handling of the preconditions (range of illegal values) is left as exercise.

Strategy 2

= For the second strategy, the list of results is created at the outset and elements
are inserted while traversing the list.

public LinkedList<E> sublist(int fromlndex, int tolndex) {
LinkedList result = new LinkedList<E>()
subList(head, 0, result, fromlndex, tolndex);

return result;

Strategy 2

= Base Case:

}

if (index == tolndex) {

result.addLast(current.value);

result.addLast(current.value) ou result.addFirst(current.value)?

Strategy 2

= General case:

if (index >= fromlndex) {
result.addlLast(current.value);
}

subList(current.next, index+1, result,

fromlndex , tolndex);

result.addLast(current.value) ou result.addFirst(current.value)?

public LinkedList<E> subList(int fromlndex, int tolndex) {
LinkedList result = new LinkedList<E>();
subList(head, 0, result, fromindex, tolndex);

return result;

}
private void sublist(Node<E> current, int index, LinkedList<E> result,
int fromlndex, int tolndex) {
if (index == tolndex) {
result.addLast(current.value);
} else {
if (index >= fromlndex) {
result.addLast(current.value);
}
subList(current.next, index+1, result, fromlndex, tolndex);

Principles

Principles

Parameters play an essential role when writing recursive methods.

= A parameter of type Node, current, plays a key role in controlling the execution
of the method.
= Sample tests for the base case:

* current == null
= current.next == null
current.value.equals(element)

= current.next.value.equals(element)

= General case:

= The value of current.next is passed as a parameter for the recursive call in order to
process the rest of the list.

Principles

There are two mechanisms for passing information between calls.

1. Parameters:
= A counter: If each call must know its position in the list, the value of a counter is
passed as a parameter, and each call passes to the value plus one.
= We could also decrement the value with each call.
2. Return value:

= The method size returns the size of the list from the element designated by its
parameter current.

= For the caller, the size of the list is one more than the returned value.

type method(Node<E> current) {
type result;
if (current ...) {
calculating the result

} else {

s = method(current.next);

}

return result;

// base case

// no recursive call
// general case

// pre—processing
// recursion

// post—processing

«head & taily

Steps:

= What does method(current.next) mean?
The solution to a problem, smaller by an element.

= How are we going to use this result to construct a solution for a list beginning with
the current element?

= What are the base cases?

= What's the shortest valid list?
= What's the result?

Prologue

= We proposed the “head & tail" strategy

Base case: usually a test involving the value of current.
General case: recursive call passing the value of current.next as a parameter.

= We control recursivity using the parameters.

Next module

= Binary Research Trees: concept

References |

ﬁ E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

88 / 88

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Theory
	Pattern
	Factorial

	Implementation
	size
	Summary
	findMax
	E get(int index)
	int indexOf(E element)
	E indexOfLast(E element)
	boolean contains(E element)
	boolean isIncreasing()
	Exercises
	void remove(E element)
	LinkedList<E> subList(int fromIndex, int toIndex)

	Principles
	Prologue

