ITI 1121. Introduction to Computing Il

List: iterative list processing

by
Marcel Turcotte

Version March 20, 2020

Preamble

Preamble

Overview

List: iterative list processing

We compare the computational time required to traverse a linked list when statements have
access to the nodes of the list against the implementation using the methods of the
interface of the list. We explore an efficient implementation without accessing the nodes of
the list directly.

General objective :

= This week you will be able to explain and use an iterator.

Foreword

= The topics covered in this module will reinforce the notions of encapsulation and
object-oriented programming, including the notion of the state of the object, as
well as the interfaces.

= It is also an opportunity to informally introduce the complexity of computation
(asymptotic analysis) that will be presented to you in the data structure course.

Preamble

Learning objectives

Learning objectives

* Compare the time required to traverse a linked list, discuss the case where statements
have access to nodes in the list compared to the implementation having access only to
the methods of its interface.

* Compare nested static and non-static Java classes.

* Modify the implementation of an iterator in order to add a method to it.
Lectures:
= Pages 89-96, 103-112 of E. Koffman and P. Wolfgang.

Preamble

Plan

Preamble
Motivation
Concept
Implementation 1.0
Implementation 2.0
[@ Implementation 3.0

Prologue

Motivation

Motivation

Problem

= You must devise a method to traverse a linked list.

Motivation

Details

= We're working with an singly linked implementation of the interface List.

public interface List<E> {
boolean add(E element);
E get(int index);
boolean remove(E element);
int size();

}

* The difficulties would be the same if the list was doubly linked.

= We'll call this implementation LinkedList.

An example of a list

colors
colors
colors
colors
colors
colors

List<String> colors;
colors = new LinkedList<String >();

.add("bleu");
.add("blanc");
.add("rouge");
.add("jaune");
.add("vert");
.add("orange");

Motivation

Internal implementation

Implementation A : inside the class

= Inside the class LinkedList, we have access to the implementation details. In
particular, we have access to the nodes.

= Give an implementation:

Motivation

External implementation

Implementation B : out of the class

= Outside the class LinkedList, we don't have access to the implementation details. In
particular, we don’t have access to the nodes.

= Give an implementation:

= From outside the class LinkedList, we need to use E get(int pos) to access the
elements of the list.

Motivation

Computation time

Discussion

= Compare the runtime of the two implementations (internal and external).
= Is the implementation of the inside the class faster or slower?

= Are the differences minor or major?

Computation time

These are the execution times in nanoseconds for lists of increasing size.

nodes A B
20,000 73,214 523,248,106
40,000 138,208 2,054,870,866
80,000 277,909 8,430,799,795

160,000 671,434 36,546,381,116
320,000 1,461,222 157,744,738,581
640,000 3,428,519 655,822,468,389

1,280,000 5,922,119 45 minutes!

For 1,280,000 elements, it takes about 45 minutes to go through the list with calls to
get(pos), whereas it only takes 5.92 milliseconds for the approach A.

Motivation

Discussion

Discussion

How do you explain that difference?
For each implementation, what mathematical relationship is there between the
number of elements in the list, n, and the computation time?

Complete the sentence: every time the number of elements n doubles, the
computation time . ..

= Give the implementation of the method E get(int pos).

* Therefore, the implementation of B

for (int i=0; i < colors.size(); i++) {
System.out. println(colors.get(i));
}

= |s equivalent to this:

Number of nodes visited

Call

of nodes visited
get(0) 1
2
3
4

get(1)
get(2)
get(3)

get(n-1) n

Motivation

Conclusion

Discussion

Implementation A visits n nodes.

Implementation B visits n®> nodes!

Concept

Concept

Objective

Objective: Devise an approach to traverse the list one and only once.

= The user of the list will not have access to the implementation (p.next and others)!

* The proposed solution will be applicable in a very specific context, when all nodes of
the list are visited sequentially.

= This is not a general solution to speed up get(i).

* The iterator is a uniform and general mechanism for traversing a variety of data
structures, such as lists, but also trees and others (see CSI2110);

Provides access to the elements one element at a time;

Part of the Java collections.

Concept

Interface

Interface lterator

public interface Iterator<E> {
E next();
boolean hasNext ();

Discussion : implementation

* Which class will implement Iterator?

= How do you create and initialize an iterator?
= How do you move the iterator?

* How do | detect the end of the iteration?

Implementation 1.0

= Let's develop an initial implementation that will be quite different from the final
implementation.

It will be a good intermediate step, though.

The class LinkedList implements the interface Iterator.

Implementation 1.0

Implementation 1.0

public class LinkedList<E> implements List<E>, Iterator<E> {
private static class Node<E> { ... }

private Node<E> head;

//
public E next() { ... }
public boolean hasNext() { ... }

Implementation 1.0

Example

D00EE DOEDE®

IOPE6 ODEE®
IOPEE OODE®

= Conceptually, the iterator is to the left of the first element at the beginning of the
iteration.
= When a call is made to the method next:
1. The iterator is moving forward;
2. Returns the value of the element visited.

“ when the list is empty or at the end of iteration (when

List<Integer> |;
| = new LinkedList<Integer >();

for (int i=0; i<5; i++) {
| .add(new Integer(i));
}

int sum = 0;

while (1.hasNext()) {
Integer v = l.next();
sum += v.intValue ();

}

System.out. println("sum = " + sum);

0206 ODEE®

IOPE6 ODEE®
IOPEE OODE®

Implementation 1.0

Discussion

What are the necessary instance variables?
What's the type of the variable current?

What will be the initial value of current?

On the first call,

For each subsequent call,

La] [e] [c¢]

current
E’%

Before iteration

LA] [8] [c¢]

head

current

K=

after the call to next()

La] [&]

Le |

| AN AN D
O

head

current

[+

>

N

after the call to next()

LAl [8]

Le |

head

current

>

K=

after the call to next()

Implementation 1.0

Instance variable

Implementation 1.0

public class LinkedList<E> implements List<E>, Iterator<E> {
private static class Node<E> { ... }

private Node<E> head;
private Node<E> current;

//
public E next() { ... }
public boolean hasNext() { ... }

Implementation 1.0

next

Implementation 1.0

public class LinkedList<E> implements List<E>, Iterator<E> {
private static class Node<E> { ... }

private Node<E> head;
private Node<E> current;

public E next() {

Implementation 1.0

Implementation 1.0

hasNext

Implementation 1.0

public class LinkedList<E> implements List<E>, Iterator<E> {
private static class Node<E> { ... }

private Node<E> head;
private Node<E> current;

public boolean hasNext() {

Implementation 1.0

Is it fast?

These are the execution times in nanoseconds for lists of increasing size.

nodes Inside Iterator
20,000 73,214 113,817
40,000 138,208 167,639
80,000 277,909 324,540

160,000 671,434 758,642
320,000 1,461,222 1,760,357
640,000 3,428,519 3,717,519

1,280,000 5,922,119 7,239,676

For 1,280,000 elements, the computation time is 7.2 milliseconds, barely 13% slower
than the implementation having access to the elements!

Implementation 1.0

Discussion

Discussion

= What's the biggest restriction of our implementation?

« What does it take to overcome that limitation?

Implementation 2.0

Implementation 2.0

Memory diagram

Memory diagram

= Discuss this memory diagram.

a) (e] [e] [0o]

ERNG e

current current

Discussion

LinkedList does not implement the interface Iterator.

The iterator is an object that has an instance variable, current, of type Node<E>.

As many iterators as it takes.

The iterator must have access to the elements of the list.

A first level class wouldn’t have access to the elements.

Suggestions?

That's right, the iterator is a nested class.

head

= An itrator must belong to a given list.
= An itrator must access the variable head from its list.

public E next() {

if (current == null) {
current = head;
1 else {
current = current.next;
}
if (current == null) {

throw new NoSuchElementException ();

}

return current.value;

Memory diagram

= Discuss this memory diagram.

) [[[
e A
N G
mylist
=
current
myList [
e]
current i
%

[—T—

Implementation 2.0

Instance variables and constructor

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private static class Listlterator <E> implements

}

private Node<E> current;
private LinkedList<E> mylList;

private Listlterator(LinkedList<E> myList) {
this.myList = mylList;

current = null;
}
public boolean hasNext() { ... }
public E next() { ... }

private Node<E> head;

Iterator <E> {

Implementation 2.0

next

public class LinkedList<E> implements List<E> {

private static class Node<E> { ... }

private static class Listlterator <E> implements

}

private Node<E> current;
private LinkedList<E> mylList;

public E next() {

if (current == null) {
current = ;
} else {
current = current.next;
}
if (current == null) {
throw new NoSuchElementException ();
}
return current.value;
}
public boolean hasNext() { ... }

private Node<E> head;

Iterator <E> {

Implementation 2.0

hasNext

public class LinkedList<E> implements List<E> {
private static class Node<E> { ... }
private static class Listlterator <E> implements Iterator <E> {

private Node<E> current;
private LinkedList<E> mylList;

public E next() { ... }
public boolean hasNext() {
if (current == null && I= null) {
return true;
} else if (current != null && current.next != null) {
return true;
} else {

return false;

}
}

private Node<E> head;

Implementation 2.0

iterator

public class LinkedList<E> implements List<E> {
private static class Node<E> { ... }
private static class Listlterator <E> implements Iterator <E> {

private Node<E> current;
private LinkedList<E> mylList;

private LinkedListlterator(LinkedList<E> myList) {
this.myList = mylList;

current = null;
public E next() { ... }
public boolean hasNext() { ... }

}

public Iterator<E> iterator () {

}

private Node<E> head;

Implementation 2.0

Example

LinkedList<Integer> |;
| = new LinkedList<Integer >();

//

Iterator<Integer> i;
i = l.iterator ();

while (i.hasNext()) {
Integer vl = i.next();

Iterator<Integer> j;
j = l.iterator ();

while (j.hasNext()) {
Integer v2 = j.next();

System.out. println (" ("+v14+", "+v2+")");

Implementation 2.0

Computation time

Is it fast?

These are the execution times in nanoseconds for lists of increasing size.

nodes Inside Iterator
20,000 73,214 113,817
40,000 138,208 167,639
80,000 277,909 324,540

160,000 671,434 758,642
320,000 1,461,222 1,760,357
640,000 3,428,519 3,717,519

1,280,000 5,922,119 7,239,676

For 1,280,000 elements, the computation time is 7.2 milliseconds, barely 13% slower
than the implementation having access to the elements!

Implementation 3.0

Implementation 3.0

Inner class

WGetting in Touch with your Inner Class»

= www.javaranch.com/campfire/Storylnner.jsp

attractive object seeks
that special someone...
for sharing private 'rhnughts
walks on the beach,

drinking wine from a glass,
subclasses and pets Ok

NO STATICS!

%.O O o &)

uhﬂ:‘ Id,.“ inh

http://www.javaranch.com/campfire/StoryInner.jsp

An inner class is a non-static nested class.

= An object of an inner (non-static) class has access to the variables and methods of
the object of the outer class from which it was created.

Implementation 3.0

next

Implementation 3.0

hasNext

Implementation 3.0

iterator

Implementation 3.0

Memory diagram

Inner class

Classe interne

head

current

[

current

current

current

current

=y =

head
508,

Implementation 3.0

Example

nmnm_&%)

E RE

{

)

String o = j.next();

if (j.hasNext()

(j.hasNext()) {
String o = j.next();

while
}

) A
String o = i.next(

(i.hasNext ()

if
}

);

{

)
Integer o = k.next

(k.hasNext ()

if

()

{

)

Integer o = k.next

(k.hasNext (

while
}

()

Computation time

These are the computation times in nanoseconds for lists of increasing size.

nodes Inside Iterator Get
10,000 43,508 66,849 1.118841e+08
20,000 49,233 66,986 4.619370e-+08
40,000 99,714 108,464 1.873445e+09

80,000 240,057 252,130 8.404544e+09
160,000 592,818 615,779 2.892314e-+10
320,000 1,039,555 1,142,309 1.401875e+11
640,000 2,328,335 2,448,321 6.258633e+11

1,280,000 5,124,979 4,896,708 2.753671e+12
2,560,000 11,500,576 11,700,579 1.476815e+13

= For 2,560,000 elements, get(pos) is 1 million times slower than the iterator!
1.48e+13 ns = 4.1 hours.

Prologue

The iterator is a mechanism for traversing a list one element at a time.
The method hasNext returns true if a call to the method next is possible.
The method next returns the next element in the iteration.

An inner class is a nested non-static class.

Objects of inner classes have access to the variables and methods of the outer class.

Next module

= List : recursive processing

References |

ﬁ E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

Ecole de science informatique et de génie électrique (SIGE)
Université d’Ottawa

65 / 65

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Motivation
	Problem
	Details
	Internal implementation
	External implementation
	Computation time
	Discussion
	Conclusion

	Concept
	Objective
	Interface

	Implementation 1.0
	Example
	Discussion
	Instance variable
	next
	hasNext
	Discussion

	Implementation 2.0
	Memory diagram
	Instance variables and constructor
	next
	hasNext
	iterator
	Example
	Computation time

	Implementation 3.0
	Inner class
	next
	hasNext
	iterator
	Memory diagram
	Example

	Prologue

