
ITI 1121. Introduction to Computing II
Implementing a queue using a circular array

by

Marcel Turcotte

Version March 8, 2020

Preamble

Preamble

Overview

Overview

Implementing a queue using a circular array

We consider here the implementation of a queue using an array. As with stacks, we expect
the size of the array to grow dynamically, depending on the needs of the application.
However, we will discover that the implementation is not as simple as it seems.

General objective :
This week, you will be able to implement a queue using a circular array.

1 51

Preamble

Learning objectives

Learning objectives

Implement a queue using a circular array.
Compare implementations using arrays and linked elements of a queue.

Readings:
Pages 189-194 of E. Koffman and P. Wolfgang.

2 51

Preamble

Plan

Plan

1 Preamble

2 Reminder

3 Implementation

4 Prologue

3 51

Reminder

Definitions

A queue is a linear abstract data type such that adding information is done at one end,
the rear of the queue, and removing it at the other, the front.
These data structures are referred to as first-in-first-out (FIFO) structures.

enqueue() ⇒ Queue ⇒ dequeue()

The two basic operations are:
enqueue: adding an item to the rear of the queue,
dequeue: the removal of an item from the front of the queue.

⇒ The queues are therefore data structures similar to the queues at the supermarket,
bank, cinema, etc.

4 51

Interface Queue

pub l i c i n t e r f a c e Queue<E> {
boolean i sEmpty () ;
vo id enqueue (E o) ;
E dequeue () ;

}

5 51

Implementation

Implementation

Instance variables

Implementation using an array

pub l i c c l a s s ArrayQueue<E> implements Queue<E> {

p r i v a t e E [] e l ems ;

pub l i c boolean i sEmpty () { . . . }
pub l i c vo id enqueue (E o) { . . . }
pub l i c E dequeue () { . . . }

}

Any suggestions for the additional instance variable or instance variables?

6 51

Implementation

Implementation 1

Implementing a queue using an array

Implementation 1. The front of the queue is fixed, at position 0, for example, and we
use a variable that points to the rear of the queue.

elems
0 1 72 3 4 5 6

⇒ Unlike implementing stacks, implementing queues using arrays will cause some
problems.

7 51

Implementing a queue using an array

pub l i c c l a s s ArrayQueue<E> implements Queue<E> {

p r i v a t e E [] e l ems ;
p r i v a t e i n t r e a r ;

pub l i c boolean i sEmpty () { . . . }
pub l i c vo id enqueue (E o) { . . . }
pub l i c E dequeue () { . . . }

}

8 51

Remarks

Just like we did with the stacks, we could:
Make the value of rear point to the first free cell or the cell where the rear element
is;
When removing an element, put the value null in the array cell to avoid memory
leaks.
Use the dynamic array technique.

⇒ However, the conclusions to be drawn regarding the performance of the insertion and
removal algorithms would remain the same.

9 51

Insersion (enqueue)

Inserting a new element into a queue, when the front of the queue is fixed and the back
moves, is similar to adding an element to a stack.

elems
0 1 72 3 4 5 6

⇒ (i) The variable rear is increased by 1, then (ii) the value is put at the position rear of
the array.

10 51

Removal (dequeue)

What about the removal of an item?

elems
0 1 72 3 4 5 6

11 51

Removal (dequeue)

After removing the element, one must move all elements one position to the left so
that the front of the queue remains in a fixed position, 0.
1. Save in a temporary variable the value at the front of the queue;
2. From i equals 1 to rear move the value at position i to position i-1;
3. Initialize the rear cell of the array;
4. Decrement the variable rear by one;
5. Return the saved value.

12 51

Removal (dequeue)

This means that for each removal, one must move n-1 values, if there were n values
before the removal.
The more items in the queue, the more moves to be made. If we double the
number of elements in the queue, removing an element will require twice as many
moves.
This is not the case for insertions, an insertion is always made at the first free
position of the array. Inserting an element in a queue containing twice as much data
does not require more work (operations).

⇒ Can we do better?

13 51

Implementation

Implementation 2

Implémenter une file à l’aide d’un tableau
Implementation 2. The front and the rear of the queue are moving, so you have to use

a variable that points at the front element, and another that points to the
rear.

elems
0 1 72 3 4 5 6

14 51

Implementation using an array

pub l i c c l a s s ArrayQueue<E> implements Queue<E> {

p r i v a t e E [] e l ems ;
p r i v a t e i n t f r o n t ;
p r i v a t e i n t r e a r ;

pub l i c boolean i sEmpty () { . . . }
pub l i c vo id enqueue (E o) { . . . }
pub l i c E dequeue () { . . . }

}

15 51

enqueue

elems
0 1 72 3 4 5 6

16 51

dequeue

elems
0 1 72 3 4 5 6

17 51

Retrait (dequeue)

In order to remove an element, we now have to (i) save the value at the front in a
temporary variable, (ii) increment front and (iii) return the saved value.
The removal of an element is now always done in constant time, i.e. no matter how
many elements are present in the queue, there are only the three operations to do
(and possibly initialize the free cell to null, if dealing with reference values).
Mission accomplished?

18 51

Insertion (enqueue)

It’s just like before:
1. Increase the value of the variable rear;
2. Insert the new value at position rear.

19 51

Discussion

There’s a fundamental problem with the implementation.
What is it?

20 51

Discussion

This new implementation allows us to remove an element in a way that is efficient,
i.e. the time required no longer depends on the number of elements in the queue.
However, the price to pay is that when the value of rear reaches the limit of the
array (but front is not 0, i.e. the queue is not full, it has just moved to the right)
then it must be repositioned to the left of the array, i.e. all its elements must be
moved.

21 51

Discussion

The more elements the queue contains at the time of insertion, the more
elements there are to be shifted. If there are twice as many elements in the
queue, then twice as many elements will need to be moved.

22 51

Discussion

Under implementation 1, adding elements is effective, but removing them is slow.
Under implementation 2, the opposite is true, adding elements is expensive (when
the queue has moved to the right), but removing them is efficient.
Is it possible to have both an efficient removal and insertion?

23 51

Implementation

Implementation 3

Implementing a queue using an array

Implementation 3. In order to make the 2 basic operations, removal and insertion,
efficient, we will use a circular array. Both the front and the rear of the
queue will move, so we must use a variable that points at the front, front,
and another that points at the rear, rear.

0

1

2

34

5

6

7

24 51

0

1

2

34

5

6

7

Implementing a queue using an array

So, in order to insert a value, one has to: (i) increase the value rear, (ii) then insert
the new value at the position rear.
Similarly, in order to remove an element one must: save the value found at the
position front, re-initialize this position of the array, increase the value of front and
return the saved value.

26 51

Circular array

How do we implement a circular array?

elems
0 1 72 3 4 5 6

27 51

Circular array

The idea is the following, when the rear of the queue has reached the right end of
the array, and there are free cells in its left part, then we start again inserting
elements at the beginning of the array.

28 51

Memory diagram

elems

q

B

CA

front

rear

0 1 72 3 4 5 6

2

4

29 51

Memory diagram

elems

q

front

rear

0 1 72 3 4 5 6

30 51

Circular array

But then again, how do you write the method enqueue, for instance?
We could add a test like this:

r e a r = r e a r + 1 ;
i f (r e a r == MAX_QUEUE_SIZE) {

r e a r = 0 ;
}

31 51

Circular array

Alternative?
Instead, we use modulo arithmetic which simplifies the writing.
r e a r = (r e a r + 1) % MAX_QUEUE_SIZE ;

32 51

Insertion (enqueue)

1. rear = (rear+1) % MAX_QUEUE_SIZE;
2. Add the new element at the position rear.

33 51

Removal (dequeue)

1. Save the front value of the queue;
2. Save the value null at the front position of the array;
3. front = (front+1) % MAX_QUEUE_SIZE;
4. Return the saved value.

⇒ What happens when the queue is empty?

34 51

Discussion

So we can see that it’s impossible to tell an empty queue from a full queue based
on the variables rear and front.
What can we do about it?

36 51

How do you tell the empty queue from the
full queue?

There are several possible alternatives: destroy the array when the queue is
empty, use a boolean or sentinel (-1) as a value for rear or front.
Another solution is to use an instance variable in order to count the number of
elements in the queue and to choose wisely the values of rear and front: for
example 0 and 1 or MAX_QUEUE_SIZE and 0.

37 51

CircularQueue

We’ll use a sentinel value for the rear index to signify an empty queue.

pub l i c c l a s s Ci r cu l a rQueue <E> implements Queue<E> {

p r i v a t e s t a t i c f i n a l i n t MAX_QUEUE_SIZE = 100 ;

p r i v a t e E [] e l ems ;
p r i v a t e i n t f r o n t , r e a r ;

pub l i c C i r cu l a rQueue () {
e lems = (E []) new Object [MAX_QUEUE_SIZE] ;
f r o n t = 0 ; //
r e a r = −1; // i n d i c a t e s t ha t the queue i s empty

}

// . . .

38 51

isEmpty

pub l i c boolean i sEmpty () {
re tu rn (r e a r == −1) ;

}

39 51

isFull

pub l i c boolean i s F u l l () {

}

40 51

enqueue

Even works for the empty queue, why?

pub l i c vo id enqueue (E v a l u e) {
r e a r = (r e a r +1) % MAX_QUEUE_SIZE ;
e lems [r e a r] = v a l u e ;

}

41 51

peek

pub l i c E peek () {
re tu rn e lems [f r o n t] ;

}

42 51

dequeue

pub l i c E dequeue () {

}

43 51

Insertion (enqueue)

Another way to solve this problem would have been to use an instance variable to count
elements.
1. rear = (rear+1) % MAX_QUEUE_SIZE,
2. Add the new element at the position rear;
3. Increase the value of count.

44 51

Removal (dequeue)

1. Save the value at the front of the queue;
2. Save the value null at the front position of the array;
3. front = (front+1) % MAX_QUEUE_SIZE;
4. Decrement the value of count;
5. Return the saved value.

45 51

empty()

1. count == 0

46 51

isFull()

1. count == MAX_QUEUE_SIZE

47 51

Prologue

Summary

Implementing a queue using an array requires the use of a circular array.

48 51

Next module

Abstract Data Type (ADT) : lists

49 51

References I

E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

50 51

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

51 / 51

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Reminder
	Implementation
	Instance variables
	Implementation 1
	Implementation 2
	Implementation 3

	Prologue

