ITI 1121. Introduction to Computing Il

Stack: applications

by
Marcel Turcotte

Version February 12, 2020

Preamble

Preamble

Overview

Stack: applications

We look at several examples of the use of stacks, including evaluating arithmetic
expressions, saving command history, and running Java programs.

General objective :

= This week you will be able to apply the stacks for algorithm design.

Preamble

Learning objectives

Learning objectives

= Justify the role of a stack in solving a computer problem.
= Design a computer program requiring the use of a stack.
Readings:

= Pages 159-176 of E. Koffman and P. Wolfgang.

Preamble

Plan

Preamble
Applications

Prologue

Applications

Applications

Evaluating an arithmetic expression

Application : Evaluating an arithmetic
expression

Architecture of our application

= Clear separation of concerns: lexical analysis and Arithwmetic expression
syntactic analysis
= Lexical analysis takes a string of characters as *
input and cuts it into chunks called tokens.
Input: 1-+--2x33---—4 [Lexical analysis]
* Output: [1,+,2, x,33,—,4]

= Our syntax analysis takes a sequence of tokens as . !
input and returns the value of the expression. List of tokens

Input: [1,+,2, x,33, —, 4]
» Qutput: 63
|> Syntax analysis

Value

String Tokenizer

Java has a lexical analyzer!

StringTokenizer st;

while (st.hasMoreTokens()) {
System.out. println(st.nextToken());

st = new StringTokenizer(" 1 + 2 x 33 —

4"y,

StreamTokenizer is more versatile!

Scan

Please take a few minutes to analyze this example. What do you think?

public static int scan(String expression) {
StringTokenizer st; String op; int |, r;
st = new StringTokenizer(expression);
| = Integer.parselnt(st.nextToken());
while (st.hasMoreTokens()) {
op = st.nextToken();
r = Integer.parselnt(st.nextToken());

| = eval(l,op,r);

}

return |;

private static
int

int
result;

switch (op) {

}

return

case "+":
result
break;
case "-":
result
break;
case "/"
result
break;
case "x":
result
break;
default:

System .

result;

eval (int 1,

exit(—1)

String op,

int

r) {

Exercises

= What does scan("'3 * 12 4 4") return?
= What does scan("'3 + 12 * 4") return?
= What do you think?

Discussion

= The scan algorithm evaluates operations from left to right, regardless of the priority
of the operations. Scan doesn't process the parentheses.
There are two solutions:
= Use a new representation for the expressions

* Use a more complex algorithm

= Both of these solutions require the use, implicit or explicit, of a stack!

Representations. There are three ways to represent an expression: [¢ r, where ¢ is an
operator.

infix: The infix notation corresponds to the usual notation, the operator is
sandwiched between its operands: /o r.

post-fixed: In post-fixed notation, the operands are placed in front of the operator,

| r o. This notation is also called Reverse Polish Notation or RPN, it is
the notation used by some scientific calculators (such as HP-35 from
Hewlett-Packard or Texas Instruments TI-89 using RPN Interface by Lars
Frederiksen*) and the languages PostScript and PDF.

s 7-3-2)—>732 — —

- (7-3)-2—>73 — 2—

pre-fixed The third notation is to place the operator first followed by its operands,

o | r. The programming language Lisp uses a combination of parentheses
and prefix notation, (- 7 (x 3 2)).

*www.calculator.org/rpn.html

http://http://www.calculator.org/rpn.html

From infix to postfix

= Successively transform, one by one, each subexpression following the normal order
of evaluation of an infixed expression.

= An infixed subexpression | ¢ r becomes | r o,
where | and r are themselves subexpressions and < is an operator.

Evaluating a postfixed expression

(mentally)

Until the end of the expression is reached:

1. Read from left to right up to the first operator;

2. Apply the operator to the (2) operands preceding it.;

3. Replace the operator and its (2) operands by the result.
When the end of the expression is reached, we have the result.

Evaluating a postfix expression

(mentally)

A few exercises:
=03 /10 2 3 x — +
=90 2 4 x 5 — /

93 /10 2 3 % — +

9 2 4

*

5

The order of the operands is the same for the two notations, postfix and infix, however
the places where the operators are inserted differ.

= 2+ (3%x4)—>2 3 4 x +
= (2+43)x4—2 3 + 4 x

To evaluate an infixed expression, the operator priority as well as the parentheses must
be taken into account.

= In the case of postfix notation, these concepts are represented within the
notation.

93 /10 2 3 % — +

9 2 4

*

5

Exercises

= Give the content of the stack for each iteration of the algorithm. :
=9 3 /10 2 3 x — +
=9 24 x 5 — /

= Modify the algorithm so that it constructs an expression infix from an expression
postfix given as input.

Applications

Discussion on the usefulness of abstract data types

Discussion

= Now please answer the question asked earlier: “One of the proposed implementations
uses an array, why don’t we just use an array for algorithm design? What are the
advantages? "

Applications

Memory management

Application : Memory management
during program execution

Memory representation and

program interpretation

heap
(instances)

free

Stack for
method calls

Variables
static

program
(byte code)

Java Virtual
Machine

D

Method n
activation record

Method 2
activation record

Method 1 (main)
activation record

Program counter

basePtr

Local variables
Parameters
Return address

Previous
basePtr

Return value

When a method is called

The Java Virtual Machine (JVM) must:

1. Create a new activation frame [working memory]| (the return value, previous basePtr
value and the return address have a fixed size, the size of local variables and
parameters depends on the method);

2. Save the current value of basePtr, in the space “previous value of basePtr”, point
basePtr to the base of the current block;

3. Save the value of locationCounter in the space designated by “return address”, make
locationCounter point to the first instruction of the called method,;

4. Copy the actual parameter values in the region designated by “parameter”;
5. Initialize the textbflocal variables;

6. Start execution at the instruction pointed to by locationCounter.

When the execution of a method ends

1. The method saves the return value at the location indicated by “return value”,;

2. Returns control to the calling method, i.e., resets the locationCounter and basePtr
values;

3. Removes the current activation block;

4. Resumes execution at the location designated by locationCounter.

public static
int n;
n=v+ 1;
return n;
}
public static
int mn;
m=v + 1;
n=c(m);
return n;
}
public static
int mn;
m=v + 1;
n=b(m);
return n;

}

public static

int m= 1,

n=a(m);

int c(int v) {

int b(int v) {

int a(int v) {

void main(String[]
n;

System.out. println(n);

p) {

public static int c(int v) {

int n;
n=v+ 1;
return n;
}
public static int b(int v) {
int mn;
m=v + 1;
n = c(m);
return n;
}
public static int a(int v) {
int mn;
m=v + 1;
n = b(m);
return n;
}
public static void main(String|[]
int m=1,n;
n=a(m);

System.out. println(n);

p) {

main:

args

public static int c(int v) {

int n;
n=v+ 1;
return n;
}
public static int b(int v) {
int mn;
m=v + 1;
n = c(m);
return n;
}
public static int a(int v) {
int mn;
m=v + 1;
n = b(m);
return n;
}
public static void main(String|[]
int m=1,n;
n=a(m);

System.out. println(n);

p) {

main:

args

>b(2)

public static int c(int v) {

int n;
n=v+ 1;
return n;
}
public static int b(int v) {
int mn;
m=v + 1;
n = c(m);
return n;
}
public static int a(int v) {
int mn;
m=v + 1;
n = b(m);
return n;
}
public static void main(String|[]
int m=1,n;
n=a(m);

System.out. println(n);

p) {

main: args

c(3)

>b(2)

public static int c(int v) {

int n;
n=v+ 1;
return n;
}
public static int b(int v) {
int mn;
m=v + 1;
n = c(m);
return n;
}
public static int a(int v) {
int mn;
m=v + 1;
n = b(m);
return n;
}
public static void main(String|[]
int m=1,n;
n=a(m);

System.out. println(n);

p) {

main:

c(3)

\V

>b(2)

o | = |Awl\3

args

public static int c(int v) {

int n;
n=v+ 1;
return n;
}
public static int b(int v) {
int mn;
m=v + 1;
n = c(m);
return n;
}
public static int a(int v) {
int mn;
m=v + 1;
n = b(m);
return n;
}
public static void main(String|[]
int m=1,n;
n=a(m);

System.out. println(n);

p) {

main:

“Q

>b(2)

v 1
2
n 4
args
m 1
n

public static int c(int v) {
int n;
n=v+ 1;
return n;
}
public static int b(int v) {
int mn;
m=v + 1;
n = c(m);
return n;
}
public static int a(int v) {
int mn;
m=v + 1;
n = b(m);
return n;
) 4 Crn)
public static void main(String[] p) { >
int m=1,n; main: args
n = a(m); m 1
System.out. println(n); n y
}

public static int c(int v) {
int n;
n=v+ 1;
return n;
} c: v 3
public static int b(int v) { n 4
int m,n; 4 < C(3)
m=v + 1;
n=c(m); b: v 2
return n; m 3
} n 4
public static int a(int v) { 4 < b(2)
int mn; >
m=v + 1; a: v 1
n = b(m); m 2
return n;
) i 2N all)
public static void main(String[] p) { >
int m= l,n; main: Gl'gS
n = a(m); m 1
. System.out. println(n); n y

Prologue

= A a stack is used when one wishes to process the elements in reverse order.

Next module

= Stack : linked elements

References |

ﬁ E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

39 /39

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Applications
	Evaluating an arithmetic expression
	Discussion on the usefulness of abstract data types
	Memory management

	Prologue

