
ITI 1121. Introduction to Computing II
Stack: concept

by

Marcel Turcotte

Version February 3, 2020

Preamble

Preamble

Overview

Overview

Stack: concept

We’re interested in all aspects of stacks in programming. A stack is an abstract data
type similar to physical stacks. It’s a linear data structure such that the access to the
data is only from one end, called the top of the stack, and textbfone element at a time.

General objective :
This week you’ll be able to describe a stack.

1 60

Preamble

Learning objectives

Learning objectives

Describe the stack concept in computer science.
Justify the role of a stack in solving a computer problem.
Implement a stack using an array.

Readings:
Pages 147-150 of E. Koffman and P. Wolfgang.

2 60

Preamble

Plan

Plan

1 Pr[Pleaseinsertintopreamble]ambule

2 Théorie

3 Implémentation à l’aide d’un tableau

4 Prologue

3 60

Theory

Theory

Discussion

Discussion

Discuss the implementation of mechanisms to undo and redo operations in a text
editor?

What information do you need to save?
In what order is this information saved and accessed?

What do these mechanisms have in common with those of a browser software
allowing the return to a previous or already visited URL address?

4 60

Theory

Definition

Theory

A stack is an abstract data type similar to physical stacks.
Books
Plates
Trays
PEZ

The analogy with the plate dispenser found in a cafeteria is particularly interesting,
because access is limited to the top item and you have to remove the top plates
one by one in order to access the bottom ones.

5 60

Definition

A stack is a linear data structure such that the data is accessed from only one end, called
the top of the stack, and one element at a time.

This structure is often called LIFO, from “ last-in first-out ”.

"alpha" "alpha"

"bravo"

"alpha"

s = new StackImpl() s.push("alpha") s.push("bravo") s.pop()

6 60

Theory

Applications

Applications

Stacks are the data structures behind the following applications :
the development of compilers, and the analysis of formal languages in general;
the implementation of backtracking algorithms used by automatic theorem proving
systems, game algorithms and artificial intelligence;
memory management during program execution;
support “ undo ” operations in word processing programs or the “ back ” button on
your Internet browser.

7 60

Theory

Operations

Operations

The basic operations are :
push: add an item on the stack
pop: remove and return the top element

isEmpty: check that the stack is empty.

8 60

Abstract data type (ADT)

pub l i c i n t e r f a c e Stack<E> {
E push (E elem) ;
E pop () ;
E peek () ;
boolean i sEmpty () ;

}

As we saw in the last lesson, the interface can receive a parameter of type!

9 60

c l a s s Mystery {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

Stack<St r i ng > s t a c k ;
s t a c k = new Stack Imp lementa t ion <St r i ng >() ;

f o r (i n t i =0; i <a r g s . l e n g t h () ; i ++) {
s t a c k . push (a r g s [i]) ;

}

whi le (! s t a c k . empty ()) {
System . out . p r i n t (s t a c k . pop ()) ;

}
}

}

What does it produce “java Mystery a b c d e”?

Remarks

Removed items appear in reverse order.
The following construction is common when using stacks:
whi le (! s t a c k . empty ()) {

e l ement = s t a c k . pop () ;
. . .

}

You have to be careful not to loop ad infinitum, for example by omitting the pop()..

11 60

Operations (continued)

peek: returns the value of the element on top without removing it;

12 60

Implementation using an array

Implementation of a stack using an
array

Implementation using an array

Learning objectives :
Implementing a stack using an array.

Readings:
Pages 70–75 of E. Koffman and P. Wolfgang.

14 60

Implementations

Think about a possible implementation?

There are two major families of implementations :
based on arrays
based on linked elements

Stack<I n t e g e r > s ;

s = new ArrayStack <I n t e g e r >() ;
s = new DynamicArrayStack<I n t e g e r >() ;
s = new LinkedStack <I n t e g e r >() ;

15 60

Discussion

One of the proposed implementations uses an array, why don’t we just use an
array to design algorithms? What are the advantages?

16 60

Implementation using an array

Instance variables

Implementation using an array :
ArrayStack

What are the instance variables?

A reference to an array

What are the types of elements in this array?

A type parameter («generics»)

17 60

Implementation using an array

Strategy

Implementation using an array :
strategy

What will be the strategy for saving items in the stack?
In what order will you save the items?
Where to add a new element (push) and which element to remove (pop)?

Take a few moments to strategize.

18 60

Implementation using an array :
order of elements

In what order should the elements be added?
Is that important?

"alpha"

"bravo"

"charlie"

elems

"charlie"

"bravo"

"alpha"

0 1 2 3 4 5 6 7 elems

"alpha"

"bravo"

"charlie"

0 1 2 3 4 5 6 7

19 60

Implementation using an array :
bottom on the right

What do you think about it?

elems

"charlie"

"bravo"

"alpha"

0 1 2 3 4 5 6 7 elems

"charlie"

"bravo"

"alpha"

"delta"

0 1 2 3 4 5 6 7

20 60

Implementation using an array :
finding an empty cell

Proposal. How do you feel about that?
The method push visits each cell of the array, from left to right, and inserts the new
element in the first cell whose value is null.
The method pop visits each cell of the table, from right to left, and removes the
element in the first cell whose value is not null.

21 60

Implementation using an array :
ArrayStack

Ideally, the stack should memorize the index of the rightmost occupied cell.
In object-oriented programming, how does an object, in this case a stack, remember
a value?

22 60

Summary

We use an array to save the stack elements.
The order of the elements is important.

The top element will be the one on the more right.
We need two instance variables.

One of them is a reference to an array
The other variable allows us to determine the location of the top element.

23 60

Implementation using an array:
top

Does the variable top designate the top element or the empty cell following the top
element?
What’s the type for this variable?

elems

top

"alpha"

"bravo"

"charlie"

2

0 1 2 3 4 5 6 7
elems

top

3

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

24 60

Adding an element when top designates top
element

What are the steps for adding an element?

elems

top

"alpha"

"bravo"

"charlie"

2

0 1 2 3 4 5 6 7

25 60

The variable top contains the index to top
element.

What is the value of top if the stack is empty?
elems

top

"alpha"

"bravo"

"charlie"

2

0 1 2 3 4 5 6 7

26 60

Adding an element when top designates the
empty cell that follows the element on top

What are the steps for adding an element?
elems

top

3

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

27 60

The variable top designates the empty cell
that follows the top element

What is the value of top if the stack is empty?
elems

top

3

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

28 60

Remove an element when top designates the
number of elements

What are the steps for removing an item?
elems

top

3

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

29 60

What do you think?

elems

top

3

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

elems

top

2

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

elems

top

1

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

elems

top

0

0 1 2 3 4 5 6 7

"alpha"

"bravo"

"charlie"

30 60

Implementation using an array

Memory leaks

Memory leak

Steps for removing an element :
Decrementing the value of top
Save in a local (temporary) variable the element of the array located at the position
designated by top.

Set the value null to the position of the array designated by top.

Returning the saved value

The proposed approach leads to memory leaks!

Indeed, the garbage collector cannot reclaim the memory space associated with the
accessible objects.

What solution do you propose?

31 60

Implementation using an array

Java implementation

Designing a generic type :
ArrayStack<E>

Examples of stack usage:
Stack<St r i ng > s1 ;
name = new ArrayStack <St r i ng >(100);

Stack<Time> s2 ;
name = new ArrayStack <Time >(1024);

s1 . push (" a lpha ") ;
s2 . push (new Time (23 ,0 ,0)) ;

S t r i n g a ;
a = s1 . pop () ;

32 60

Implementation using an array :
ArrayStack

Java implementation of a stack using an array.
Here, top refers to the empty cell that follows the top element.
The implementation where top designates the top element is left as an exercise.

33 60

Implementation using an array :
ArrayStack

34 60

Implementation using an array :
ArrayStack

35 60

Give the implementation of the constructor that will produce the memory diagram below:

elems

top

0

0 1 2 3 4 5 6 7

Give the memory diagram corresponding to the execution of the constructor below:
pub l i c c l a s s ArrayStack implements Stack {

p r i v a t e E [] e l ement s ;
p r i v a t e i n t top ;

pub l i c ArrayStack (i n t c a p a c i t y) {
top = 0 ;

}
}

Arrays and generics

38 60

Arrays and generics

In order for programs to run on virtual machines of previous generations (before
1.5), we cannot create arrays with generic element types.
We still have a problem to solve.

39 60

Arrays and generics

Solution :
pub l i c c l a s s ArrayStack <E> implements Stack<E> {

p r i v a t e E [] e l ems ;
p r i v a t e i n t top ;

pub l i c ArrayStack (i n t c a p a c i t y) {
e lems = (E []) new Object [c a p a c i t y] ;
top = 0 ;

}
// . . .

Alas, this solution will produce a warning when compiling.

Note: ArrayStack.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

40 60

Arrays and generics

Local directives to remove a warning at compile time :
pub l i c c l a s s ArrayStack <E> implements Stack<E> {

p r i v a t e E [] e l ems ;
p r i v a t e i n t top ;

@SuppressWarnings (" unchecked ")
pub l i c ArrayStack (i n t c a p a c i t y) {

e lems = (E []) new Object [c a p a c i t y] ;
top = 0 ;

}
// . . .

Which is preferable to global warning suppression!

> javac -Xlint:unchecked ArrayStack.java

41 60

ArrayStack<E> : isEmpty()

42 60

ArrayStack<E> : E peek()

43 60

ArrayStack<E> : void push(E element)

44 60

ArrayStack<E> : E pop()

45 60

ArrayStack : isEmpty()

46 60

ArrayStack : isEmpty() (take 2)

47 60

ArrayStack : E peek()

48 60

Implementation using an array

Dynamic arrays

Weakness of our implementation

Our implementation has a major weakness, what is it?

Its size is fixed!

Create a very large array so that it is of sufficient size for a large number of
applications.

Memory’s being wasted!
Doesn’t work for some applications!

49 60

Dynamics arrays

Some programming languages allow us to change the size of the arrays when running
programs. These languages use the technique below.

When the array is full.

Create a new, larger array
Copy the elements from the original array to the new one.
Make the reference the variable elements designate the new array

A multitude of strategies exist to determine the size of the new array, including
these:

n′ = n + c, where n′ is the size of the new array and n is the size of the old one, c is a
constant
n′ = n × c

Of course, you can also reduce the size of the array dynamically according to the
needs of the application.

50 60

Implementation using an array

Pitfall

Pitfall!

pub l i c c l a s s ArrayStack <E> implements Stack<E> {

// I n s t a n c e v a r i a b l e s
p r i v a t e E [] e l ems ;
p r i v a t e i n t top ;

// C o n s t r u c t o r
pub l i c ArrayStack (i n t c a p a c i t y) {

E [] e l ems = (E []) new Object [c a p a c i t y] ;
top = 0 ;

}
// Retu rns t r u e i f t h i s Ar rayStack i s empty
pub l i c boolean i sEmpty () {

re tu rn top == 0 ;
}
// . . .

}

51 60

Pitfall

52 60

100capacity
elems

this

0

elems

top

Working memory
for ArrayStack

ArrayStack
object

formal parameter(s)
local variable(s)

100capacity

elems
this

0

elems

top

Activation Frame
for ArrayStack

ArrayStack
object

formal parameter(s)
local variable(s)

Pitfall

55 60

100capacity

elems
this

0

elems

top

Activation Frame
for ArrayStack

ArrayStack
object

formal parameter(s)
local variable(s)

Prologue

Summary

A stack is used when you want to process the elements in reverse order.
There are two main implementations : using an array and using linked elements.

57 60

Next module

Stack : applications

58 60

References I

E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

59 60

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

École de science informatique et de génie électrique (SIGE)
Université d’Ottawa

60 / 60

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Theory
	Discussion
	Definition
	Applications
	Operations

	Implementation using an array
	Instance variables
	Strategy
	Memory leaks
	Java implementation
	Dynamic arrays
	Pitfall

	Prologue

