
ITI 1121. Introduction to Computing II
Inheritance: reusability

by

Marcel Turcotte

Version January 30, 2020

Preamble

Preamble

Overview

Overview

Inheritance: reusability

The concept of inheritance in Java promotes code reuse. Inheritance expresses a
parent-child relationship between two classes. The subclass has the attributes and
methods of the superclass. The subclass can also introduce new attributes and methods.
Finally, the subclass can redefine certain methods of the superclass.

General objective :
This week you will be able to structure a collection of classes hierarchically using
inheritance.

1 31

Preamble

Learning objectives

Learning objectives

Describe the functioning of a simple application using inheritance concepts.
Build a simple application from its specification and UML diagrams.
Criticize the use of the visibility modifier “protected”.

Lectures:
Pages 7–31, 39–45 of E. Koffman and P. Wolfgang.

2 31

Preamble

Plan

Plan

1 Preamble

2 Generalization/specialization

3 Example

4 Prologue

3 31

Generalization/specialization

Introduction

Object-oriented languages offer several mechanisms to structure programs.
Inheritance is one of these mechanisms and it favours the organization of classes in
a hierarchical way (in the form of a tree structure).
When we say that object-oriented programming favours code reuse we are referring
to the notion of inheritance.

4 31

Definitions: superclass and subclass

The class above in the inheritance tree is called the superclass (or parent), while the
class below is called subclass (also called derived class).

Bird

Pigeon

is a

In this example, Bird is the superclass of Pigeon, that is, Pigeon is a subclass of Bird.

5 31

Java: extends

In Java, the relationship “is a” is expressed using the reserved keyword extends.
pub l i c c l a s s Pigeon extends Bi rd {

. . .
}

Bird

Pigeon

is a

6 31

UML

In UML, the relationship “is a” is expressed using a full line connecting the child to the
parent and such that an open triangle points in the direction of the parent.

Bird

Pigeon

is a

7 31

Example: JComponent
A graphic element is called a graphic component. Consequently, there is a class
named JComponent, which defines the common characteristics of the components.
The subclasses of JComponent include: JLabel, JList, JMenuBar, JPanel,
JScrollBar, JTextComponent, etc.

JComponent

JLabel JList JPanel JTextComponent

JEditorPane JTextArea JTextField

8 31

javax.swing.JComponent

JLabel JList JPanel JTextComponent

JEditorPane JTextArea JTextField

java.awt.Container

java.awt.Component

Object

AWT and Swing make heavy use of inheritance. The class Component defines the
set of methods common to graphic objects, such as setBackground(Color c)and
getX().
The Container class defines the behavior of graphical objects that can contain other
graphical objects, the class defines the methods add(Component component) and
setLayout(LayoutManager mgr), among others.

What’s it for?

A class inherits the characteristics (variables and methods) of its superclass.
1. A subclass inherits the methods and variables of its superclass;
2. A subclass can introduce/add new methods and variables;
3. A subclass can redefine the methods of the superclass.

Since we can only add new elements, or redefine them, a superclass is more general than
its subclasses, and conversely, and conversely, a subclass is more specialized than its
superclass.

10 31

Example

Exemple: Shape

Problem: We need to create a set of classes to represent geometric shapes, such as
circles and rectangles.
All the objects must have two instance variables, x and y, which represent the
position of the object.

11 31

Example: Shape

Circle Rectangle

-x: double
-y: double

Shape

12 31

pub l i c c l a s s Shape {

p r i v a t e double x ;
p r i v a t e double y ;

pub l i c Shape () {
x = 0 . 0 ;
y = 0 . 0 ;

}
}

13 31

pub l i c c l a s s Shape {

p r i v a t e double x ;
p r i v a t e double y ;

pub l i c Shape () {
x = 0 . 0 ;
y = 0 . 0 ;

}
pub l i c Shape (double x , double y) {

t h i s . x = x ;
t h i s . y = y ;

}
}

Yes, yes, yes, yes, yes! Several methods (or constructors) may have the same name,
provided that the signatures of the methods (constructors) differ.
It’s called overloading.

Acces methods

pub l i c c l a s s Shape {

p r i v a t e double x ;
p r i v a t e double y ;

// . . .

pub l i c double getX () {
re tu rn x ;

}
pub l i c double getY () {

re tu rn y ;
}

}

15 31

Method toString

pub l i c c l a s s Shape {

p r i v a t e double x ;
p r i v a t e double y ;

// . . .

pub l i c double getX () { re tu rn x ; }
pub l i c double getY () { re tu rn y ; }

pub l i c S t r i n g t o S t r i n g () {
re tu rn " Located at : (" + x + " , " + y + ") " ;

}

}

16 31

Example: Circle

pub l i c c l a s s C i r c l e extends Shape {

}

The above statement implies that the class Circle is a subclass of the class Shape.
All the objects of the class Circle will have two instance variables, x and y, as well as
the following methods, getX() and getY().

17 31

Example: Circle

pub l i c c l a s s C i r c l e extends Shape {

// I n s t a n c e v a r i a b l e
p r i v a t e double r a d i u s ;

}

18 31

Private versus protected

pub l i c c l a s s C i r c l e extends Shape {

p r i v a t e double r a d i u s ;

pub l i c C i r c l e (double x , double y , double r a d i u s) {
t h i s . x = x ;
t h i s . y = y ;
t h i s . r a d i u s = r a d i u s ;

}

}

Compiling the above will produce the following error “x has private access in Shape”
(similarly for y).

19 31

Protected

The compile time error message can be eliminated by declaring the variables protected in
the superclass Shape.
pub l i c c l a s s Shape {

protected double x ;
protected double y ;

// . . .
}

20 31

Private

I prefer to keep visibility of the variables private.
Forcing us to use the superclass’s access methods.

21 31

super

pub l i c c l a s s C i r c l e extends Shape {

p r i v a t e double r a d i u s ;

// C o n s t r u c t o r s

pub l i c C i r c l e () {
super () ;
r a d i u s = 0 ;

}

pub l i c C i r c l e (double x , double y , double r a d i u s) {
super (x , y) ;
t h i s . r a d i u s = r a d i u s ;

}

}

22 31

Super

The statement super(. . .) is an explicit call to the constructor of the immediate
superclass.

This construct, super(. . .), only appears in a constructor.
That call must be the first statement of the constructor.
A call of the form super() is automatically inserted unless you add a call super(. . .)
yourself?

23 31

pub l i c c l a s s C i r c l e extends Shape {

p r i v a t e double r a d i u s ;

pub l i c C i r c l e () {
super () ;
r a d i u s = 0 ;

}

pub l i c C i r c l e (double x , double y , double r a d i u s) {
super (x , y) ;
t h i s . r a d i u s = r a d i u s ;

}

pub l i c double ge tRad iu s () {
re tu rn r a d i u s ;

}

}

Example: Rectangle

pub l i c c l a s s Rec tang l e extends Shape {

p r i v a t e double width ;
p r i v a t e double h e i g h t ;

pub l i c Rec tang l e () {
super () ;
w idth = 0 ;
h e i g h t = 0 ;

}

pub l i c Rec tang l e (double x , double y , double width , double h e i g h t) {
super (x , y) ;
t h i s . w idth = width ;
t h i s . h e i g h t = h e i g h t ;

}
}

25 31

Example: Rectangle

pub l i c c l a s s Rec tang l e extends Shape {

p r i v a t e double width ;
p r i v a t e double h e i g h t ;

// . . .

pub l i c double getWidth () {
re tu rn width ;

}

pub l i c double ge tHe i gh t () {
re tu rn h e i g h t ;

}
}

26 31

Usage

C i r c l e c , d ;

d = new C i r c l e (1 0 0 . 0 , 200 .0 , 1 0 . 0) ;
System . out . p r i n t l n (d . ge tRad iu s ()) ;

c = new C i r c l e () ;
System . out . p r i n t l n (c . getX ()) ;

Rec tang l e r , s ;

r = new Rec tang l e () ;
System . out . p r i n t l n (r . getWidth ()) ;

s = new Rec tang l e (5 0 . 0 , 50 . 0 , 10 . 0 , 1 5 . 0) ;
System . out . p r i n t l n (s . getY ()) ;

27 31

Prologue

Summary

Inheritance allows us to organize classes hierarchically.
The keyword extends in the signature of a class indicates its parent.

28 31

Next module

Polymorphism

29 31

References I

E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

30 31

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

31 / 31

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Generalization/specialization
	Example
	Prologue

