ITI 1121. Introduction to Computing Il

Essential computer architecture concepts

by
Marcel Turcotte

Version January 6, 2020

Preambule

Preambule

Overview

Essential computer architecture concepts

We review the essential concepts of computer architecture: von Neumann’s model,
memory, and compilation. We simulate the execution of a machine language program
using a didactic model of a microprocessor.

General objective :

= This week you will be able to describe the execution of the machine program in your
own words.

Preambule

Learning objectives

Learning objectives

= Explain in your own words the concepts of memory, compilation, and variable.

= Simulate the execution of a simple machine program.

Readings:

Preambule

Plan

Preambule

Introduction

Introduction

You must master the following concepts:

= Predefined data types and arrays
= Control structures:
such as if, for, while...:

* Procedural abstraction :
i.e. how to decompose a problem into sub-problems.

Why so many programming languages?

Introduction

Computer architecture

The architecture of modern computers is based on a model proposed by (John) von

Neumann (1945).
contains the instructions and the data

memory:
alu:

cu:

arithmetic and logic unit

the control unit decodes the instructions

memory
0
(

Processing
Unit

Memory model

= Can be seen as a huge array,
each cell contains a zero or one
(binary digit — bits);

[o]1]1o

Memory model

= Each byte (group of 8 bits) has a unique (distinct) address;
= Bytes are grouped into words

* Some types of data require more than one byte.

0
4
8

CLIIIITTTTTITI T T I I I I IIITTIIITITI]T]
3 2 1 0

Memory model

= This type of memory is said to be direct access
(Random Access Memory)

= The access time to the memory cells is uniform and constant.,
On the order of 5 to 70 nanoseconds (nano = 107°)

oM O

CLI LTI I I I I T I TITT]
3 2 1 0

Computer architecture

Simplified model of a microprocessor (TC1101) and its assembly language.

Memory

Microprocessor

CLITITITITIITTTLT]

R/W

Mnemonics, opCodes, description

LDA | 91 | load x
STA | 39 | store x
CLA | 08 | clear (a=0, z=true, n=false)

INC | 10 | increment the accumulator (modifies z and n)
ADD | 99 | adds x to the accumulator (modifies z and n)
SUB | 61 | subtracts x from the accumulator (modifies z and n)
JMP | 15 | unconditional branching to x

JZ | 17 | branch to x if z==true

JN | 19 | branch to x if n==true
DSP | 01 | displays the stored at x
HLT | 64 | halt

TC1101 instructions

= This microprocessor supports 11 instructions.

= In the previous table, you'll find on the left side the instruction name, in the center the
machine code, and on the right side the instruction description.

« Instructions with an even code have no parameters, whereas instructions with an
odd have one.

= The term operand is used to name the parameter of an instruction.

« The operand is a memory address.

Registers are specialized memory units.

MAR
[]
MDR
]
OpCode| OpAddr A
S -
R/W

PC

H
z
N

Control unit

The control unit orchestrates the execution of the instructions.

Arithmetic and logic unit (ALU)

The Arithmetic and logic unit (ALU) performs the calculations.

Information is transferred from one unit to another on buses.

= lj\

Address bus

F———————

2}
=
o)
©
-
e
=
@)
O

Transfer to the memory

In order to transfer a value v from the microprocessor to the memory address x:

put v into the memory data register (MDR),

1.

2. put x into the memory address register (MAR),
3. put status bit RW to false,
4,

activate the control line «access_memory».

Memory Microprocessor
91
MAR
00| —
o8| I
10 MDR |
39 |= :'l = ¢ 2
00
OpCode| OpAddr AY
29
= —{] H L
|
10 RIW e 1 PC y
c21 S e IR L H |\ Y
| 1 ALV

Q

o

=1

i

=3

o
ZNXIT

Memory Microprocessor
91
MAR

00| —
o8| I
10 MDR 1
39 |= =|| 11 |= ¢ P
00

OpCode| OpAddr AY
29
®] H L

|

10 RIW e 1 PC \
I - L H |\ Y

Q

o

=1

i

=3

o
ZNXIT

ALU

Memory

Microprocessor

Q

o

=1

i

=3

o
ZNXIT

91
MAR
| 00 09 |«
o8| | Il
10 MDR
39 |= :ll 11 [¢ P
00
OpCode| OpAddr AY
29
= —{] H L
|

10 RIW e 1 PC y
e] L H Y

1 1 ALU

Memory

Microprocessor

A
|

ZNX

91
20 MAR
< 00 09 |«
08 L - |
10 MDR
39 |= :ll 11 [¢ P
00
OpCode| OpAddr AY
29
= —{] H L
|

10 RIW e 1 PC y
whed] [L H Y

1 1 ALU

Memory

Microprocessor

91
MAR
0 | 00 09 |«
o8| | Il
10 MDR
39 |= =|| 11 [¢ P
00 OpCod OpAdd A
pCode pAddr
Q9
@ . H L
|
10 RIW e 1 PC y
Y I [L |\
| 1 / ALU
| + |
H
Z
N
A
]

Transfer from the memory

In order to transfer a value from the (memory) address x to the microprocessor:

put the value x into the memory address register (MAR),

1.

2. put the status bt RW to true,

3. activate the control line «access_memory»

4. the memory data register (MDR) now contains a copy of the value found at
memory location x.

Memory Microprocessor
91
MAR
00| —
o8| I
10 MDR |
39 |= :'l = ¢ 2
00
OpCode| OpAddr AY
29
= —{] H L
|
10 RIW e 1 PC y
c21 S e IR L H |\ Y
| 1 ALV

Q

o

=1

i

=3

o
ZNXIT

Memory

Microprocessor

Q

o

=1

i

=3

o
ZNXIT

91
MAR
| 00 08 |«
o8| L " I
10 MDR
39 | :ll [¢ P
00
OpCode| OpAddr AY
29
= —{] H L
|

10 RIW e 1 PC y
e -dee] | L H |\ Y

1 1 ALU

Memory

Microprocessor

A
|

ZNX

91
MAR
| 00 08 |«
o8| L " I
10 MDR
39 | :ll [¢ P
00
OpCode| OpAddr AY
29
= —{] H L
|

10 RIW e 1 PC y
e {T] | L H |\ Y

1 1 ALU

Memory

Microprocessor

A
|

ZNX

91
MAR
| 00 08 |«
o8| L " I
10 MDR
39 | :ll 10 ¢ P
00
OpCode| OpAddr AY
29
= —{] H L
|

10 RIW e 1 PC y
whe-d 7] | L H |\ Y

1 1 ALU

Fetch-decode-execute cycle

1. transfer:
1.1 transfer the OPCODE,
1.2 increment PC,
2. based on OPCODE transfer the operand:
2.1 transfer the first byte,
2.2 increment PC,
2.3 transfer the second byte,
2.4 increment PC,

3. execute.

Compilation

The programs, sequences of statements from a high-level programming language, are
translated (compiled) into a low-level language (assembler, machine code), directly
interpretable by the hardware.

The expression y = x + 1 is translated to assembly :

LDA X
INC
STA Y
HLT

which is the translated to machine code:
[91 00 08][10][39 00 09][64][10][99]

The expression y = x + 1 is translated to assembly :

LDA X
INC
STA Y
HLT

which is then translated to machine code :

91 00 08][10][39 00 09][64][10][99]

Memory Microprocessor
[o1]
00 | B MAR -
[08 | - | S
110 | MDR J
39| (. g

OECode OpAddr

Yllo|e|le
||+ |Y|S

Functional Units of the TC-1101

PC (2 bytes): Program Counter, one 2 bytes register that contains the address of the
next instruction to be executed:

opCode (byte): instruction register (sometimes called IR), contains the OPCODE of the
current instruction;

opAddr (2 bytes): the operand of the current instruction. The operand is always an
address. Some instructions necessitate the value found at the address
designated by the operand — this value is not transferred by the basic cycle,
but needs to be transferred during the execution of the instruction (see step
3 of the cycle and the description of each instruction below);

Functional Units of the TC-1101

MDR (byte): Memory Data Register. A value transferred (read/written) from the
memory to the processor (or vice-versa) is always stored in this registered;

MAR (2 bytes) : Memory Address Register. This register contains the memory address
of a value to be read or to be written:

A (byte): Accumulator. All the arithmetic operations use this register as an operand
and also to store their result;

Functional Units of the TC-1101

H (bit):

N (bit):

Z (bit):

status bit “Halt”. This bit is set by the instruction halt (hlt). If the bit is
true the processor stops at the end of this cycle;

status bit “Negative”. Arithmetic operations set this bit to true whenever
they produce a negative result. Some operations are not affecting the value
of this bit, therefore its value does not always reflect the content of the
accumulator;

status bit “Zero”. Arithmetic operations set the value of this bit to true
whenever the result is zero. Some operations do not affect the content of
this bit, therefore, its value does not always reflect the content of the
accumulator;

Functional Units of the TC-1101

RW (bit): status bit “READ/WRITE". A value true means a value must be read
(fetched) from the memory and transferred to MDR. A value false signifies
that a value must be transferred from MDR to the memory.

Assembly language

Assembly language is not very expressive.

Each microprocessor has its own assembly language. Programs are thus not
portable from one computer to another.

High-level programming languages

= High-level programming languages are expressive.
L}
|}
u

Generally, a high-level programming language is also portable.

* Imperative or procedural

* Object-oriented
* Declarative

= Functional
= Logic
= Constraint

Why Java?

Why Java?

TIOBE Programming Community Index

Source: www.tiobe.com

30
25 p
. “\
- | | . == Java
. "\ -C
20 C++
. C#
3 === Python
% 15 == Visual I?asm .NET
.g JavaScript
& == Per|
== Assembly language
10 PHP
5
0

2002 2004 2006 2008 2010 2012 2014 2016

Why Java?

1| Java 17%
2| C 9%
3| C++ 6%
4 | C# 4%
5 | Python 4%
6 | Basic 3%
7 | JavaScript | 3%
8 | Perl 3%
9 | Assembly 3%
10 | PHP 3%

TIOBE Programming Community Index

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Why Java?

JavaScript
Java

PHP
Python

Ca#

C++

Ruby

CSS

C
Objective-C

O © o011~ WwN -

—

The RedMonk Programming Language Rankings: January 2016

http://redmonk.com/sogrady/2016/02/19/language-rankings-1-16/

Why Java?

Java is popular, but | don't know any application written in Java.

= The server side of many Web applications and services.

= Mobile applications (mobile phones)
2015 Top Trending Careers in Tech: Java Developer

- info.theladders.com/career-advice/top-market-trends-in-tech

http://info.theladders.com/career-advice/top-market-trends-in-tech

Why Java?

« According to a report from NetApplications, which has measured browser usage data
since 2004, Oracle’s Java Mobile Edition has surpassed Android as the #2 mobile OS
on the internet at 26.80%, with iOS at 46.57% and Android at 13.44%. And the trend
appears to be growing. Java ME powers hundreds of millions of low-end 'feature phones’
for budget buyers. In 2011, feature phones made up 60% of the install base in the

U.S.»

Slashdot
3 janvier 2012
http://bit.ly/xSk5pN

http://bit.ly/xSk5pN

Why Java?

= Writing programs using C requires discipline
(managing memory, manipulating pointers, etc.)

= Java is an excellent vehicle for teaching
(interface, single inheritance, generic types...)

= |f you master Java, learning other object-oriented or imperative programming
languages will be simple.

Why Java?

NETFLIX

Source: https://commons.wikimedia.org/wiki/File:Netflix_logo.svg

https://go.java/netflix.html

https://commons.wikimedia.org/wiki/File:Netflix_logo.svg
https://go.java/netflix.html

Next module

= Data types

49 / 49

Division by successive subtractions

[1]1 cLA

STA Quot
[2] LDA X
[3] sSuBY
[4] N [7]
[5] STA Temp

LDA Quot

INC

STA Quot

LDA Temp
(6] JMP [3]
[71 ADD Y
[8] STA Rem

[9] DSP Quot
[10] DSP Rem

[11] HLT
X BYTE 25
Y BYTE 07

Quot BYTE 00
Rem BYTE 00
Temp BYTE 00

Division: code

[1]

[2]
[3]
[4]
[5]

(6]
[71
[8]
[o]
[10]
[11]

Quot
Rem
Temp

CLA
STA
LDA
SUB
JN

STA
LDA
INC
STA
LDA
JMP
ADD
STA
DSP
DSP
HLT

machine

Quot
X

Y
[7]
Temp
Quot

Quot

Temp

3] =
Y

Rem

Quot

Rem

BYTE 25
BYTE 07
BYTE 00
BYTE 00
BYTE 00

00
00
00
00
00
00

00
00
00
00
00
00
00

44
46
o7
43
45
44
45

References |

[§ E.B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

ﬁ D. J. Barnes and M. Kalling.
Objects First with Java: A Practical Introduction Using BlueJ.
Prentice Hall, 4e edition, 2009.

ﬁ P. Sestoft.
Java Precisely.
The MIT Press, second edition edition, August 2005.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preambule
	Overview
	Learning objectives
	Plan

	Introduction
	Computer architecture

	Appendix

