
ITI 1121. Introduction to Computing II
Java Memory Aid

by

Marcel Turcotte

Version January 9, 2020

!

Preambule

Preambule

Overview

Overview

Java Memory Aid

A concise overview the Java language focusing on types declarations, control structures
and method calls. Object oriented programming, interface, and generics will be presented
later.

General objective:
By the end of this module, you should be able to write Java programs with a level of
complexity similar to those from the course ITI1120.

1 43

Preambule

Learning objectives

Learning Objectives

Name Java primitive types
Use Java predefined types
Declare variables
Develop applications that are using arrays
Use control structures to solve problems
Decompose large problems into smaller ones to create structured applications

Lectures:
Koffman & Wolfgang Appendice A (pages 541-555)

2 43

Types

Primitive types

The table below lists the characteristics of the primitif types. These types are also
predefined. In class, we discuss the differences between primitive and reference types.

Type Size Maximum Examples
boolean 1 true,false
char 16 ’\uFFFF’ ’a’, ’A’, ’1’, ’*’
byte 8 127 -128, -1, 0, 1, 127
short 16 32767 -128, -1, 0, 1, 127
int 32 2147483647 -128, -1, 0, 1, 127
long 64 9223372036854775807 -128L, 0L, 127L
float 32 3.4028235E38 -1.0f, 0.0f, 1.0f
double 64 1.7976931348623157E308 -1.0, 0.0, 1.0

3 43

Reference types

Reference types are: classes, interfaces, enum types, or arrays.
Reference types will be presented in later modules.

4 43

Type declaration

type

int age ;
identifier

One must declare the type of each variable and parameter, as well as that of the
returned value. Above, we are declaring that the variable age is of type int.

5 43

Compile-time error: “cannot find symbol”

pub l i c c l a s s Test {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

age = 21 ;
}

}

In the above example, the variable age has not been declared.

Test.java:3: error: cannot find symbol
age = 21;
^

symbol: variable age
location: class Test

1 error

6 43

Solution

One must declare the type of the variable, here int (line 3), before using the
variable (line 4).

1 pub l i c c l a s s Test {
2 pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 i n t age ;
4 age = 21 ;
5 }
6 }

7 43

Type declaration: methods

type type type

public int sum(int a , int b) {
return a+b ;

}
One must declare the type of each parameter, as well as that of the returned value.

8 43

Compile-time error: returned value and
parameters

pub l i c c l a s s Test {
pub l i c sum(a , b) {

re tu rn a+b ;
}

}

Test.java:2: error: invalid method declaration; return type required
public sum(a, b) {

^
Test.java:2: error: <identifier> expected

public sum(a, b) {
^

Test.java:2: error: <identifier> expected
public sum(a, b) {

^
3 errors

9 43

Type of the returned value: void

Some methods do not return a result, this is the case for the method swap below,
the type must then be void (returns nothing).

pub l i c s t a t i c vo id swap (i n t [] x s) {
i n t tmp ;
tmp = xs [0] ;
x s [0] = xs [1] ;
x s [1] = tmp ;

}

10 43

Variables

Definition: scope

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name

The Java Language Specification,
Third Edition, Addison Wesley, p. 117.

11 43

Definition: scope of local variables en Java

The scope of a local variable declaration in a block is the rest of the block
in which the declaration appears, starting with its own initializer and including
any further declarators to the right in the local variable declaration statement

The Java Language Specification,
Third Edition, Addison Wesley, p. 118.

⇒ A.K.A. static or lexical scope

12 43

Definition: scope of a parameter Java

The scope of a parameter of a method or constructor is the entire body of
the method or constructor

The Java Language Specification,
Third Edition, Addison Wesley, p. 118.

⇒ A.K.A. static or lexical scope

13 43

Arrays

Reference to an array

type identifier

int [] xs ;
Declaring a reference variable pointing to an array.

The syntax [] is used to declare an array. The type that precedes the brackets is type
for each element of the array.
In the example above, xs is a reference to an array of integers.
Important. Declaring a reference to an array does not create the array. Only the
reference variable∗.

∗Consult the module on reference types
14 43

Creating an array

type

xs = new int [5] ;
size

Creating an array of integers of size 5.
Arrays are objects.
The keyword new is used to create an object
(which is created during the execution of the program).
The type of the object is array of integers.
The size of the array is 5.
The reference of the array is saved in the referencee variable named xs.

15 43

Accessing the content of an array

index

value = xs [0] ;
Accessing the content of an array.

One uses the name of the reference variable followed by index surrounded by square
brackets.

16 43

Declaring, creating, and accessing the
content of an array

The method main declares a local variable of type reference to an array of integers
(line 3), creates an array of integers of size 5 (line 4), and assigns the value 100 to
the position 0 of the array designed by xs (line 5).

1 pub l i c c l a s s Test {
2 pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 i n t [] x s ;
4 xs = new i n t [5] ;
5 xs [0] = 100 ;
6 }
7 }

17 43

Initializing an array

Line 4 shows how to create and initialize an array with values.

1 pub l i c c l a s s Test {
2 pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 i n t [] x s ;
4 xs = new i n t [] {0 , 1 , 2 , 3 , 4 , 5} ;
5 }
6 }

18 43

Declaring a reference variable for a
two-dimensional array (line 2).
Creating a two-dimensional array (line 3).
Assigning a value to one of the cells of a two-dimensional array
(lines 8 and 10).

1 i n t s i z e = 4 ;
2 double [] [] m;
3 m = new double [s i z e] [s i z e] ;
4
5 f o r (i n t i =0; i <s i z e ; i ++) {
6 f o r (i n t j =0; j<s i z e ; j++) {
7 i f (i == j) {
8 m[i] [j] = 1 . 0 ;
9 } e l s e {

10 m[i] [j] = 0 . 0 ;
11 }
12 }
13 }

Multidimensional arrays

A multidimensional array is a one dimensional array where each cell is a reference
to an other array (that could also be an array of references to other arrays) [line 5].

1 double [] [] m;
2 m = new double [4] [] ;
3
4 f o r (i n t i =0; i <m. l e n g t h ; i ++) {
5 m[i] = new double [4] ;
6 f o r (i n t j =0; j<m[i] . l e n g t h ; j++) {
7 i f (i == j) {
8 m[i] [j] = 1 . 0 ;
9 } e l s e {

10 m[i] [j] = 0 . 0 ;
11 }
12 }
13 }

20 43

Multidimensional arrays

Knowing that a multidimensional array is a one dimensional array such that each
cell contains a reference to an other array, we can create a triangular matrix and
thus
The example below shows a two dimensional array.

double [] [] m;
m = new double [] [] { { 1 . 0 } , { 0 . 0 , 1 . 0 } , { 0 . 0 , 0 . 0 , 1 . 0 } } ;

21 43

Expressions

Arithmetic operators

Priority Operator Description
2 ++, – Increment, decrement, post-fix
3 ++, – Increment, decrement, pre-fix †
3 +, - Sign unary
4 *, /, % Multiplication, division, modulo
5 +, - Addition, subtraction

† Associativity right-to-left for the pre-fix operators.

Exemples:
i n t i =0, sum , a=4, b=6, r e s t ;
i ++;
sum = a + b ;
r e s t = sum % 2 ;

22 43

Logical operators

Priority Operator Description
3 ! Negation †
12 && Logical And
13 || Logical Or

† Associativity right-to-left for the pre-fix operators.

Exemple:
i f (! h a s P r i z e && ! i s S e l e c t e d) {

isOpen = t rue ;
}

23 43

Relational operators

Priority Operator Description
7 <, <= Less than, less than or equal
7 >, >= Greater than, greater than or equal
8 ==, != Equal, not equal

Examples:
i f (age < 3) {

p r i c e = 0 . 0 ;
} e l s e i f (age <= 13 | | age >= 65) {

p r i c e = 1 1 . 9 9 ;
} e l s e {

p r i c e = 1 4 . 5 0 ;
}

24 43

Statements

Statements

Each statement is terminated by a semi-colon (;)
The empty statement comprises only the semi-colon (;)
Zero or more statements can be grouped to form a bloc using parentheses. Such
bloc can be used everywhere a statement can be used.

25 43

Statements: body of a method

public int sum(int a , int b) {
int value ;
va lue = a+b ;
return value ;

}

The body of a method is a bloc of statements

26 43

Statement: if

i f (age >= 18) {

vo t e r s = vot e r s + 1 ;
System . out . p r i n t l n (”Can vote ”) ;

}

If the true-branch of an if statement comprises more than one statement, a bloc of
statements must be used.
It is recommended to always use a bloc with the branches of the if statement.

27 43

Statement: if-else

i f (100 .0⇤ exams /65 .0 < 50 . 0) {

grade = 100.0⇤ exams /65 . 0 ;

} else {

grade = l a b o r a t o r i e s + ass ignments + exams ;

}

If the false-branch of an if-else statement comprises more than one statement, a
bloc of statements must be used.
In the above example, the parentheses are not needed, but it is recommended to
put them.

28 43

Statement: for

for (int i =0; i <10; i++) {
System . out . p r i n t l n (i) ;

}

initialization test increment

The for loop comprises three expressions: initialization, test, and increment.
It is recommended to declare the type of the variable controlling the loop within the
initialization of the loop to limit the scope of the variable to the body of the loop only.

29 43

Statement: while

i n t i ;
i = 0 ;

whi le (i <10) {
System . out . p r i n t l n (i) ;
i ++;

}

The while statement.
The body of the loop is executed as long as the condition is true, here, as long as i<10
is true.

The code produces the same result as the previous example (for statement).

30 43

Statement: return

1 pub l i c s t a t i c i n t i ndexOf (S t r i n g word , S t r i n g [] words) {
2 f o r (i n t i =0; i <words . l e n g t h ; i ++) {
3 i f (word . e q u a l s (words [i])) {
4 re tu rn i ;
5 }
6 }
7 re tu rn −1;
8 }

All the methods returning a value, i.e. all the methods, except those where the type
of the returned value is void, must have at least one return statement.
When executing the return, the method terminates immediately and it returns the
argument of the return statement.

31 43

Statement: return

1 pub l i c c l a s s A r r a y U t i l s {
2 pub l i c s t a t i c i n t i ndexOf (S t r i n g word , S t r i n g [] words) {
3 f o r (i n t i =0; i <words . l e n g t h ; i ++) {
4 i f (word . e q u a l s (words [i])) {
5 re tu rn i ;
6 }
7 }
8 re tu rn −1;
9 }

10 }

In the above example, if the given word is found in the array, then the statement on
line 5 will be executed. The method terminates immediately and returns the index of
the given word in the array. If the given word is not found, then, the statement on
line 8 is executed and the value -1 will be returned indicating that the given word was
not found in the array.

32 43

Calling a (class) method:
ArrayUtils.indexOf("charlie",words)
pub l i c c l a s s Test {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

i n t r e s u l t ;

S t r i n g [] words ;
words = new S t r i n g [] { " a lpha " , " bravo " , " tango " } ;

f o r (i n t i =0; i <words . l e n g t h ; i ++) {
r e s u l t = A r r a y U t i l s . i ndexOf (words [i] , words) ;
System . out . p r i n t l n (r e s u l t) ;

}

r e s u l t = A r r a y U t i l s . i ndexOf (" c h a r l i e " , words) ;
System . out . p r i n t l n (r e s u l t) ;

}

}
33 43

Main method: main

A Java program comprises one or many classes, but generally many classes (and
accordingly many files).
The example on previous slides comprises two classes: ArrayUtils and Test.
One of the two classes comprises a main method.

Its signatures is always as follows:
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

;
}

The main method is always the first method to be called (except for Applets and Web
Applications, but these are not seen in ITI1121).

34 43

Scanner

Reading data from the user

Reading data in Java often requires using several classes and knowing about exceptions.
For simple applications, one can use the class Scanner.

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

35 43

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

Reading data from the user

One needs to pass as an argument to the object Scanner the reference of an object
associated with the keyboard, System.in.
s c = new Scanner (System . i n) ;

The object Scanner has many methods, namely a method to read the next integer,
nextInt, the next floating point number, nextDouble, or the next line, nextLine.

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

36 43

https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html

import j a v a . u t i l . Scanner ;
import s t a t i c System . out ;

pub l i c c l a s s Test {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

Scanner sc ; i n t age ; S t r i n g answer ;

s c = new Scanner (System . i n) ;

out . p r i n t ("How o ld a r e you ? ") ;
age = sc . n e x t I n t () ;

s c . n e x t L i n e () ;

out . p r i n t l n ("What i s your f a v o r i t e c o l o r ? ") ;
answer = sc . n e x t L i n e () ;

out . p r i n t ("You a r e " + age + " y e a r s o l d ") ;
out . p r i n t l n (" and you l i k e the c o l o r " + answer) ;

}
}

Convention

Writing conventions

The name of the variables, attributes, and methods starts with a lower case letter:
door.
Whenever a symbol consists of many words, the first letter of each word is a capital
letter: pickOneDoor.
The name of the classes, interfaces, and enum types starts with an upper case
letter: Statistics. Camel case is used whenever the symbol consists of more than one
word: CamelCase.
The name of the constants (final) is made of all upper case letters, the words are
separated by the underscore symbol: MAX_VALUE.

38 43

package, qualified names and import

In Java, classes are grouped together to create packages.

In order to access to the elements of a package, the are two mechanisms:
Use the fully qualified name.
Use the import directive.

39 43

Fully qualified name

In the example below, one wishes to use the class Random from the package java.util. In
order to do so, we use the fully qualified name for the type and to create the object.
pub l i c c l a s s T e s t F u l l y Q u a l i f i e d N a m e {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

j a v a . u t i l . Random r ;
r = new j a v a . u t i l . Random () ;
System . out . p r i n t l n (r . n e x t I n t (1 0)) ;

}
}

40 43

import

In order to simplify the code, one can import a name and make it available for the
compilation unit using the directive import.
import j a v a . u t i l . Random ;

pub l i c c l a s s Test Impor t {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

Random r ;
r = new Random () ;
System . out . p r i n t l n (r . n e x t I n t (1 0)) ;

}
}

41 43

Prologue

Summary

In Java, one must declare the type of each variable. For the methods, the type of
each parameter and returned value must be declared.
We have seen the syntax to declare reference variable to an array, creating and
array, and accessing the values of an array.
Each statement ends with the semi-colon (;).
Statements are grouped together to form a bloc using parentheses.
The main operators and control structures have been presented.

42 43

We did not discuss the following concepts

Visibility modifiers: public and private.
The keyword static associated with class variables and methods.
The dot notation: words.length.

These concepts will be presented in the object oriented programming module.

43 / 43

Prerequisites

Appendix: Getting started with Java.

Getting Java

Where do I get Java to install it on my machine?
You can grab your copy of the Java Platform, Standard Edition (Java SE) from

http://www.oracle.com/technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Prerequisites

Source Code Editor

Editing your code

You will also need an editor, such as
Atom
(macOS, Windows, Linux, https://atom.io)
Notepad++
(Windows, http://notepad-plus-plus.org)
Sublime Text
(macOS, Windows, Linux, http://www.sublimetext.com)
TextWrangler
(macOS, http://www.barebones.com/products/textwrangler/)
TextMate
(macOS, http://macromates.com)

https://atom.io
http://notepad-plus-plus.org
http://www.sublimetext.com
http://www.barebones.com/products/textwrangler/
http://macromates.com

Prerequisites

Command prompt

Command/Shell

You need to navigate your file system.
In the labs: “Start”, then “All Programs”, then“Programming”, then “Java
Development Kit”, then “Java-Cmd-xxxx”
On Windows:

use the“Start" Menu, select “Run” and type “cmd”
Change directory: “cd DirectoryName”
List directory content: “dir”

Getting started

Getting started

Simplest Class

Simple compilable class
Here is a simple class:
pub l i c c l a s s Work {

}

Save it as “Work.java”. Move to the corresponding directory and compile:

> javac Work.java

It worked. But, we cannot run it:

> java Work
Error: Main method not found in class Work, please define
the main method as:

public static void main(String[] args)

Getting started

“main” method

Adding a main() method

We need to have a main method, a starting point.
pub l i c c l a s s Work {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

}
}

Now we can run it:

> javac Work.java
> java Work

It worked. But it does nothing . . .

Getting started

Printing something

Printing something

We can print something:
pub l i c c l a s s Work {

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

System . out . p r i n t l n (" ye s ! ") ;

}
}

> javac Work.java
> java Work
yes!

Variables and Methods

Variables and Methods

Primitive Data Types

Primitive data types

Primitive Range Size Wrapper
byte −128 . . . 127 8 Byte
short −32, 768 . . . 32, 767 16 Short
int −231 . . . 231 − 1 32 Integer
long −263 . . . 263 − 1 64 Long
float roughly ±10−38 . . .± 1038 32 Float
double roughly ±10−308 . . .± 10308 64 Double
boolean “true” and “false” 1 (8?) Boolean
char Unicode character set 16 Character

Variables and Methods

Primitive Variables

Primitive variables

Let’s add some (primitive) variables in our code
Declaring a variable:

long myLong ;

Declaring and initializing a variable:

byte i = 33 ;

Accessing, modifying variables:

i n t myInt = 5 ;
i n t myOther Int = myInt ;
myOther Int = myOther Int + 5 ;
myInt++;

Primitive variables

pub l i c c l a s s Work {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

i n t myInt = 0 ;
long myLong ;
boolean myBool = f a l s e ;
char myChar = ’ c ’ ;

myLong = 3L ;
System . out . p r i n t l n (" myInt : " + myInt + " myLong : " + myLong +

" myChar : " + myChar + " myBool : " + myBool) ;
}

}

> javac Work.java
> java Work
myInt: 0 myLong: 3 myChar:c myBool: false

Variables and Methods

Strings

Using Strings

pub l i c c l a s s Work {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s){

S t r i n g s = " t h i s i s a s t r i n g " ;
S t r i n g s2 = " t h i s i s ano the r s t r i n g . " ;
S t r i n g s3 = s+s2 ;
s=s . concat (" . ") ;
S t r i n g s4 = s2 . s u b s t r i n g (8 , 1 5) ;
System . out . p r i n t l n (s) ;
System . out . p r i n t l n (s2) ;
System . out . p r i n t l n (s3) ;
System . out . p r i n t l n (s4) ;
System . out . p r i n t l n (" s c o n t a i n s \" s t r i n g \ " : " +

s . c o n t a i n s (" s t r i n g ")) ;
System . out . p r i n t l n (" s c o n t a i n s \" s t r o n g \ " : " +

s . c o n t a i n s (" s t r o n g ")) ;
}

}

Using Strings

> javac Work.java
> java Work
this is a string.
this is another string.
this is a stringthis is another string.
another
s contains "string": true
s contains "strong": false
>

See https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Variables and Methods

Adding and Calling a Method

Methods
pub l i c c l a s s Work {

/∗ This i s a method ∗/

pub l i c s t a t i c vo id do () {
System . out . p r i n t l n ("Hey , l ook ! ") ;

}

pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

do () ; // c a l l i n g do

}
}

> javac Work.java
> java Work
Hey, look!

Syntax

Syntax

The “For” loop

Loop: for (;;) {}

pub l i c c l a s s U t i l s {

pub l i c s t a t i c vo id do () {
f o r (i n t i =0; i < 10 ; i ++) {

System . out . p r i n t l n (" I t e r a t i o n : " + (i +1)) ;
}

}
}

pub l i c c l a s s Work {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s){

U t i l s . do () ;
}

}

Loop: for (;;) {}

> javac Work.java
> java Work
Iteration : 1
Iteration : 2
Iteration : 3
Iteration : 4
Iteration : 5
Iteration : 6
Iteration : 7
Iteration : 8
Iteration : 9
Iteration : 10

Syntax

The “While” loop

Loop: while () {}

pub l i c c l a s s U t i l s {
pub l i c vo id do () {

i n t i = 0 ;
whi le (i <10) {

System . out . p r i n t l n (" I t e r a t i o n : " + (i +1)) ;
i ++;

}
}

}

pub l i c c l a s s Work {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) {

U t i l s . do () ;
}

}

Loop: while () {}

> javac Work.java
> java Work
Iteration : 1
Iteration : 2
Iteration : 3
Iteration : 4
Iteration : 5
Iteration : 6
Iteration : 7
Iteration : 8
Iteration : 9
Iteration : 10

Syntax

The “If.. Else” statement

Statement: if() {} else {}

pub l i c c l a s s U t i l s {
pub l i c vo id do (boolean f o rma lPa ramete r) {

i f (fo rma lParamete r) {
System . out . p r i n t l n (" I went through the \" i f \" c l a u s e ") ;

} e l s e {
System . out . p r i n t l n (" I went through the \" e l s e \" c l a u s e ") ;

}
}

}

pub l i c c l a s s Work {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s){

U t i l s . do (f a l s e) ;
}

}

Statement: if () {} else {}

> javac Work.java
> java Work
I went through the "if" clause
I went through the "else" clause

References I

E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

D. J. Barnes and M. Kölling.
Objects First with Java: A Practical Introduction Using BlueJ.
Prentice Hall, 4e edition, 2009.
P. Sestoft.
Java Precisely.
The MIT Press, second edition edition, August 2005.

Marcel Turcotte
(Marcel.Turcotte@uOttawa.ca)

Guy-Vincent Jourdan
(gjourdan@uOttawa.ca)

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca
gjourdan@uOttawa.ca

	Preambule
	Overview
	Learning objectives

	Types
	Variables
	Arrays
	Expressions
	Statements
	Scanner
	Convention
	Prologue
	Appendix
	Prerequisites
	Source Code Editor
	Command prompt

	Getting started
	Simplest Class
	``main'' method
	Printing something

	Variables and Methods
	Primitive Data Types
	Primitive Variables
	Strings
	Adding and Calling a Method

	Syntax
	The ``For'' loop
	The ``While'' loop
	The ``If.. Else'' statement

