
ITI 1121. Introduction to Computing II
Winter 2020

Assignment 2
(Last modified on February 9, 2020)

Deadline: February 23, 2020, 11:30 pm

Learning objectives

• Using Interfaces
• Polymorphism
• Experiment with Deep-Copy
• Experiment with lists and enumerations

Introduction

In this assignment, we are continuing our work on the Tic-Tac-Toe game. In the previous assignment, we came
up with a basic implementation of the game, that can be played by two humans. This time, we will first create a
“computer player”, which isn’t very smart at all but can at least play the game according to the rules. We will thus
be able to play human against computer. We will then put this aside and work on enumerating all the possible
games. That enumeration will be used later when we create a computer player which can play well.

Human vs (Dumb) Machine

A very simple way to have a program play Tic-Tac-Toe is to simply have the program pick randomly an empty cell
to play at each turn. Of course, such an implementation should be easy to beat, but at least it can be played against.

In order to design this solution, we want to introduce the concept of a Player. For now, we will have two kinds
of players: the human player, and the dumb computer player. Later, we can introduce more types of players, e.g. a
smart computer player, a perfect player etc. All of these are Players.

+play(TicTacToeGame game) : void

<<Interface>>
Player

HumanPlayer ComputerRandomPlayer

Figure 1: The interface Player and the two classes implementing it.

What we gain from this Players abstraction is that it is possible to organize a match between two players, and
have these two players play a series of games, keeping score for the match etc., without having to worry about the
type of players involved. We can have human vs human, human vs dumb computer, smart vs dumb computer
players, or any combination of players, this does not impact the way the game is played: we have two players, and
they alternate playing a move on the game until the game is over. The requirement to be able to do this is that all
Player implement the same method, say play(), which can be called when it is that player’s turn to play.

1

In our current implementation, we always play a human against a computer. Human is player 1, computer is
player 2. The player who plays first initially is chosen randomly. In subsequent games, the players alternate as
first player. As usual, the first player plays X and the second player plays O so each player will alternate between
playing playing X and playing O.

The following printout shows a typical game.

$ java TicTacToe

**

* *

* *

* *

* *

**

Player 2’s turn.

Player 1’s turn.

| |

X | |

| |

O to play:

Here, player 2 (the computer) was selected to start for the first game. As can be seen, the computer player doesn’t
print out anything when it plays, it just makes its move silently. Then, it is player 1’s turn (human). Following what
we did in assignment 1, the HumanPlayer object first prints the game (here, we can see that the computer played
cell 4) and then prompts the actual human (us, the user) for a move. Below, we see that the human has selected cell
1. The computer will then play (silently) and the human will be prompt again. It continues until the game finishes:

O to play: 1

Player 2’s turn.

Player 1’s turn.

O | | X

X | |

| |

O to play: 5

Player 2’s turn.

Player 1’s turn.

O | | X

X | O |

| | X

O to play: 6

Player 2’s turn.

Player 1’s turn.

O | X | X

X | O | O

| | X

O to play: 7

2

Player 2’s turn.

Game over

O | X | X

X | O | O

O | X | X

Result: DRAW

Play again (Y)?:

This game finishes with a DRAW. The sentence “Game over” is printed after the last move (made by the com-
puter in this case), then the final board is printed, and the outcome of the game ("Result: DRAW").

The user is then asked if they want to play again.
Here, we want to play another game. This time, the human will make the first move. Below, you can see the

entire game, which is a human win. Then a third game is played, also a human win, and we stop playing after this.

Play again (Y)?:y

Player 1’s turn.

| |

| |

| |

X to play: 5

Player 2’s turn.

Player 1’s turn.

| |

| X |

O | |

X to play: 1

Player 2’s turn.

Player 1’s turn.

X | |

| X | O

O | |

X to play: 9

Game over

X | |

| X | O

O | | X

Result: XWIN

Play again (Y)?:y

Player 2’s turn.

Player 1’s turn.

| |

| |

3

X | |

O to play: 1

Player 2’s turn.

Player 1’s turn.

O | |

| |

X | X |

O to play: 9

Player 2’s turn.

Player 1’s turn.

O | |

| | X

X | X | O

O to play: 5

Game over

O | |

| O | X

X | X | O

Result: OWIN

Play again (Y)?:n

$

We are now ready to program our solution. We will reuse the implementation of the class TicTacToeGame from
assignment 1. A class Utils has been provided to get a simple access to a few constants and global variables.

Player

Player is an interface. It defines only one method, the method play. Play is void and has one input parameter, a
reference to a TicTacToeGame.

HumanPlayer

HumanPlayer is a class which implements the interface Player. In its implementation of the method play, it first
checks that the game is indeed playable (and prints out an error message is that is not the case), and then queries
the user for a valid input, reusing the code that was in the main of the class TicTacToe of assignment 1. Once such
an input has been provided, it plays in on the game and returns.

ComputerRandomPlayer

ComputerRandomPlayer is a class which also implements the interface Player. In its implementation of the method
play, it first checks that the game is indeed playable (and prints out an error message is that is not the case), and
then chose randomly the next move and plays it on the game and returns. All the possible next moves have an
equal chance of being played.

4

TicTacToe

This class implements playing the game. You are provided with the initial part very similar to the one from as-
signment 1. The entire game is played in the main method. A local variable players, a reference to an array of
two players, is used to store the human and the computer player. You must use that array to store your Player
references.

You need to finish the implementation of the main to obtain the specified behaviour. You need to ensure that
the first player is initially chosen randomly, and that the first move alternate between both players in subsequent
games.

Below is another sample run, this time on a 4x4 grid with a win length of 2. The human players makes a series
of input mistakes along the way.

$ java TicTacToe 4 4 2

**

* *

* *

* *

* *

**

Player 1’s turn.

| | |

| | |

| | |

| | |

X to play: 2

Player 2’s turn.

Player 1’s turn.

| X | |

| | O |

| | |

| | |

X to play: 2

This cell has already been played

| X | |

| | O |

| | |

| | |

X to play: -1

The value should be between 1 and 16

| X | |

| | O |

| | |

5

| | |

X to play: 3

Game over

| X | X |

| | O |

| | |

| | |

Result: XWIN

Play again (Y)?:y

Player 2’s turn.

Player 1’s turn.

| | |

| | |

| | X |

| | |

O to play: 11

This cell has already been played

| | |

| | |

| | X |

| | |

O to play: 12

Player 2’s turn.

Player 1’s turn.

| | X |

| | |

| | X | O

| | |

O to play: 13

Player 2’s turn.

Game over

| | X |

| | |

| | X | O

O | X | |

Result: XWIN

6

Play again (Y)?:n

$

Games enumeration

We are now looking at something else: game enumerations. We would like to generate all the possible games for a
given size of grid and win size.

For example, if we take the default, 3x3 grid, there is 1 grid at level 0, namely:

| |

| |

| |

There are then 9 grids at level 1, namely:

X | |

| |

| |

| X |

| |

| |

| | X

| |

| |

| |

X | |

| |

| |

| X |

| |

| |

| | X

| |

7

| |

| |

X | |

| |

| |

| X |

| |

| |

| | X

There are then 72 grids at level 2, too many to print here. In Appendix A, we provide the complete list of games
for a 2x2 grid, with a win size of 2. Note that no game of level 4 appears on that list: it is simply impossible to reach
level 3 and not win on a 2x2 grid with a win size of 2. In our enumeration, we do not list the same game twice, and
we do not continue after a game has been won.

Our Implementation

For this implementation, we are going to add a couple of new methods to our class TicTacToeGame and we
will create a new class, ListOfGamesGenerator, to generate our games. We will store our games in a list of
lists. We will have our own implementation of the abstract data type List very soon, but we do not have it yet.
Therefore, exceptionally for ITI1(1/5)21, we are going to use a ready-to-use solution. In this case, we will use
java.util.LinkedList. The documentation is available at https://docs.oracle.com/javase/9/docs/api/java/
util/LinkedList.html.

The goal is to create a list of lists: each list will have all the different games for a given level. Consider again the
default, 3x3 grid. Our list will have 10 elements.

• The first element is the list of 3x3 grid at level 0. There is 1 such grid, so this list has 1 element.

• The second element is the list of 3x3 grid at level 1. There are 9 such grids, so this list has 9 elements.

• The third element is the list of 3x3 grid at level 2. There are 72 such grids, so this list has 72 elements.

• The fourth element is the list of 3x3 grid at level 3. There are 252 such grids, so this list has 252 elements.

• The fifth element is the list of 3x3 grid at level 4. There are 756 such grids, so this list has 756 elements.

etc.

• The ninth element is the list of 3x3 grid at level 8. There are 390 such grids, so this list has 390 elements.

• The tenth element is the list of 3x3 grid at level 9. There are 78 such grids, so this list has 78 elements.

The class TicTacToe.java is provided to you. It calls the generation of the list and prints out some information
about it. Here are a few typical runs:

$ java TicTacToe

**

* *

* *

8

https://docs.oracle.com/javase/9/docs/api/java/util/LinkedList.html
https://docs.oracle.com/javase/9/docs/api/java/util/LinkedList.html

* *

* *

**

======= level 0 =======: 1 element(s) (1 still playing)

======= level 1 =======: 9 element(s) (9 still playing)

======= level 2 =======: 72 element(s) (72 still playing)

======= level 3 =======: 252 element(s) (252 still playing)

======= level 4 =======: 756 element(s) (756 still playing)

======= level 5 =======: 1260 element(s) (1140 still playing)

======= level 6 =======: 1520 element(s) (1372 still playing)

======= level 7 =======: 1140 element(s) (696 still playing)

======= level 8 =======: 390 element(s) (222 still playing)

======= level 9 =======: 78 element(s) (0 still playing)

that’s 5478 games

626 won by X

316 won by O

16 draw

$ java TicTacToe 3 3 2

**

* *

* *

* *

* *

**

======= level 0 =======: 1 element(s) (1 still playing)

======= level 1 =======: 9 element(s) (9 still playing)

======= level 2 =======: 72 element(s) (72 still playing)

======= level 3 =======: 252 element(s) (112 still playing)

======= level 4 =======: 336 element(s) (136 still playing)

======= level 5 =======: 436 element(s) (40 still playing)

======= level 6 =======: 116 element(s) (4 still playing)

======= level 7 =======: 12 element(s) (0 still playing)

that’s 1234 games

548 won by X

312 won by O

0 draw

$ java TicTacToe 2 2 2

**

* *

* *

* *

* *

**

======= level 0 =======: 1 element(s) (1 still playing)

======= level 1 =======: 4 element(s) (4 still playing)

======= level 2 =======: 12 element(s) (12 still playing)

======= level 3 =======: 12 element(s) (0 still playing)

that’s 29 games

12 won by X

0 won by O

0 draw

$ java TicTacToe 2 2 3

**

* *

9

* *

* *

* *

**

======= level 0 =======: 1 element(s) (1 still playing)

======= level 1 =======: 4 element(s) (4 still playing)

======= level 2 =======: 12 element(s) (12 still playing)

======= level 3 =======: 12 element(s) (12 still playing)

======= level 4 =======: 6 element(s) (0 still playing)

that’s 35 games

0 won by X

0 won by O

6 draw

$ java TicTacToe 5 2 3

**

* *

* *

* *

* *

**

======= level 0 =======: 1 element(s) (1 still playing)

======= level 1 =======: 10 element(s) (10 still playing)

======= level 2 =======: 90 element(s) (90 still playing)

======= level 3 =======: 360 element(s) (360 still playing)

======= level 4 =======: 1260 element(s) (1260 still playing)

======= level 5 =======: 2520 element(s) (2394 still playing)

======= level 6 =======: 3990 element(s) (3798 still playing)

======= level 7 =======: 3990 element(s) (3290 still playing)

======= level 8 =======: 2580 element(s) (2162 still playing)

======= level 9 =======: 1032 element(s) (646 still playing)

======= level 10 =======: 150 element(s) (0 still playing)

that’s 15983 games

1212 won by X

660 won by O

100 draw

$ java TicTacToe 2 5 3

**

* *

* *

* *

* *

**

======= level 0 =======: 1 element(s) (1 still playing)

======= level 1 =======: 10 element(s) (10 still playing)

======= level 2 =======: 90 element(s) (90 still playing)

======= level 3 =======: 360 element(s) (360 still playing)

======= level 4 =======: 1260 element(s) (1260 still playing)

======= level 5 =======: 2520 element(s) (2394 still playing)

======= level 6 =======: 3990 element(s) (3798 still playing)

======= level 7 =======: 3990 element(s) (3290 still playing)

======= level 8 =======: 2580 element(s) (2162 still playing)

======= level 9 =======: 1032 element(s) (646 still playing)

======= level 10 =======: 150 element(s) (0 still playing)

that’s 15983 games

10

1212 won by X

660 won by O

100 draw

$

TicTacToeGame

We need to add two new public methods to the class TicTacToeGame:

• public TicTacToeGame(TicTacToeGame base, int next): this new constructor is used to create a new instance
of the class TicTacToeGame, based on an existing instance base. The next instance will be a game in the state
of the game referenced by base, in which the position next has been played. For example, imagine that base is
a reference to the following game:

O | | X

X | |

| |

A call to

new TicTacToeGame(base,7)

returns a reference to the following game:

O | | X

X | |

| O |

One important consideration in implementing this constructor is that the game referenced by base should not
be modified by the call. Have a look at Appendix B to better understand what is required to achieve this.

• public boolean equals(TicTacToeGame other) compares the current game with the game referenced by other.
This method returns true if and only if both games are considered the same: they have the same characteris-
tics, and their board is in the same state.

ListOfGamesGenerator

This new class has a single method, which computes the list of lists that we are interested in.

• public static LinkedList<LinkedList<TicTacToeGame> > generateAllGames(int lines, int columns, int
winLength): this method returns the (Linked) list of (Linked) lists of TicTacToeGame references that we are
looking for, for the games on a grid linesxcolumns with a win size of winLength. As explained, each of the
(secondary) lists contains the lists of references to the game of the same level. There are three important
factors to take into account when building the list:

– We only build games up to their winning point (or until they reach a draw). We never extend a game
that is already won.

– We do not duplicate games. There are several ways to reach the same state, so make sure that the same
game is not listed several times.

– We do not include empty lists. As can be seen in A, we stop our enumeration once all the games are
finished. In the 2x2 case with a win size of 2, since all the games are finished after 3 moves, the list of
lists has only 4 elements: games after 0 move, games after 1 move, games after 2 moves and games after
3 moves.

11

Symmetry

Our implementation does not duplicate games that are identical, but it still lists many games that are equivalent.
For example, consider the first move on a 3x3 grid. There are 9 such first move:

X | |

| |

| |

| X |

| |

| |

| | X

| |

| |

| |

X | |

| |

| |

| X |

| |

| |

| | X

| |

| |

| |

X | |

| |

| |

12

| X |

| |

| |

| | X

However, playing any corner (cells 1, 3, 7 and 9) is equivalent, so the four initial grids playing into one of the
four corners are the same: that is basically the same opening move. Similarly, playing any of the four “middles”
(cells 2, 4, 6 and 8) is also equivalent. So in reality, up to symmetry, we only have 3 possible first move:

X | |

| |

| |

| X |

| |

| |

| |

| X |

| |

Every other opening move is equivalent to one of these three ones. So in essence, we do have a lot of logical
repetition in the list of games that we have generated previously.

In the next assignment, we are going to work only on 3x3 games, and our first step is going to remove these
symmetrical, equivalent games from our list. We encourage you to think about this, and try to come up with your
own way of addressing this problem. We will give a 10% bonus mark to you if you include in Q3 your own (correct)
solution for generating all the 3x3 games up to symmetry. (please note that you will still be asked to implement
our own solution for the next assignment!)

Academic Integrity

This part of the assignment is meant to raise awareness concerning plagiarism and academic integrity. Please read
the following documents.

• https://www.uottawa.ca/administration-and-governance/academic-regulation-14-other-important-information

• https://www.uottawa.ca/vice-president-academic/academic-integrity

Cases of plagiarism will be dealt with according to the university regulations. By submitting this assignment, you
acknowledge:

1. I have read the academic regulations regarding academic fraud.

2. I understand the consequences of plagiarism.

3. With the exception of the source code provided by the instructors for this course, all the source code is mine.

4. I did not collaborate with any other person, with the exception of my partner in the case of team work.

13

https://www.uottawa.ca/administration-and-governance/academic-regulation-14-other-important-information
https://www.uottawa.ca/vice-president-academic/academic-integrity

• If you did collaborate with others or obtained source code from the Web, then please list the names of
your collaborators or the source of the information, as well as the nature of the collaboration. Put this
information in the submitted README.txt file. Marks will be deducted proportional to the level of help
provided (from 0 to 100%).

Rules and regulation

• Follow all the directives available on the assignment directives web page.

• Submit your assignment through the on-line submission system virtual campus.

• You must preferably do the assignment in teams of two, but you can also do the assignment individually.
However, if you do the assignment in teams, your assignment must only be submitted once to brightspace. If
both partners submit the assignment, a penalty of 20% for assignment 2, of 30% for assignment 3 and of 40%
for assignment 4 will be given.

• You must use the provided template classes below.

• If you do not follow the instructions, your program will make the automated tests fail and consequently your
assignment will not be graded.

• We will be using an automated tool to compare all the assignments against each other (this includes both, the
French and English sections). Submissions that are flagged by this tool will receive the grade of 0.

• It is your responsibility to make sure that BrightSpace has received your assignment. Late submissions will
not be graded.

Files1

You must hand in a zip file (no other file format will be accepted. The name of the top directory has to have the
following form: a2_3000000_3000001, where 3000000 and 3000001 are the student numbers of the team members
submitting the assignment (simply repeat the same number if your team has one member). The name of the
folder starts with the letter “a” (lowercase), followed by the number of the assignment, here 2. The parts are
separated by the underscore (not the hyphen). There are no spaces in the name of the directory. The archive
a2_3000000_3000001.zip contains the files that you can use as a starting point. Your submission must contain the
following files.

• README.txt

– A text file that contains the names of the two partners for the assignments, their student ids, section, and
a short description of the assignment (one or two lines).

• A subdirectory Q1 which contains the following files:

– CellValue.java

– ComputerRandomPlayer.java

– GameState.java

– HumanPlayer.java

– Player.java

– StudentInfo.java

– TicTacToe.java

– TicTacToeGame.java

– Utils.java

• A subdirectory Q2 which contains the following files:

– CellValue.java

1A penalty of 20% for assignment 2, of 30% for assignment 3 and of 40% for assignment 4 will be given if you do not strictly follow the
instructions.

14

http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/directives.html
http://uottawa.brightspace.com
http://www.eecs.uottawa.ca/~gvj/Courses/ITI1121/assignments/02/a2_3000000_3000001.zip

– GameState.java

– ListOfGamesGenerator.java

– StudentInfo.java

– TicTacToe.java

– TicTacToeGame.java

– Utils.java

• If you have a solution for the symmetry question, put your files in a subdirectory Q3.

Questions

For all your questions, please visit the Piazza Web site for this course:

• https://piazza.com/uottawa.ca/winter2020/iti1121/home

15

https://piazza.com/uottawa.ca/winter2020/iti1121/home

A Enumerating all games of a 2x2 grid

======= level 0 =======: 1 element(s)

|

|

======= level 1 =======: 4 element(s)

X |

|

| X

|

|

X |

|

| X

======= level 2 =======: 12 element(s)

X | O

|

X |

O |

X |

| O

O | X

|

| X

O |

| X

16

| O

O |

X |

| O

X |

|

X | O

O |

| X

| O

| X

|

O | X

======= level 3 =======: 12 element(s)

X | O

X |

X | O

| X

X | X

O |

X |

O | X

X | X

| O

17

X |

X | O

O | X

X |

O | X

| X

| X

O | X

| X

X | O

O |

X | X

| O

X | X

B Shallow copy versus Deep copy

As you know, objects have variables which are either a primitive type, or a reference type. Primitive variables hold
a value from one of the language primitive type, while reference variables hold a reference (the address) of another
object (including arrays, which are objects in Java).

If you are copying the current state of an object, in order to obtain a duplicate object, you will create a copy of
each of the variables. By doing so, the value of each instance primitive variable will be duplicated (thus, modifying
one of these values in one of the copy will not modify the value on the other copy). However, with reference
variables, what will be copied is the actual reference, the address of the object that this variable is pointing at.
Consequently, the reference variables in both the original object and the duplicated object will point at the same
address, and the reference variables will refer to the same objects. This is known as a shallow copy: you indeed have
two objects, but they share all the objects pointed at by their instance reference variables. The Figure B provides an
example: the object referenced by variable b is a shallow copy of the object referenced by variable a: it has its own
copies of the instances variables, but the references variables title and time are referencing the same objects.

Often, a shallow copy is not adequate: what is required is a so-called deep copy. A deep copy differs from a
shallow copy in that objects referenced by reference variable must also be recursively duplicated, in such a way
that when the initial object is (deep) copied, the copy does not share any reference with the initial object. The
Figure B provides an example: this time, the object referenced by variable b is a deep copy of the object referenced

18

by variable a: now, the references variables title and time are referencing different objects. Note that, in turn, the
objects referenced by the variable time have also been deep-copied. The entire set of objects reachable from a have
been duplicated.

11

hours

30

minutes

13

hours

00

minutes

11

hours

30

minutes

11

hours

30

minutes
11

hours

30

minutes

start

end

11

hours

30

minutes

title

time

15

reminder

“ITI1121 Lecture 2”

a

11

hours

30

minutes

title

time

15

reminder

b

Figure 2: A example of a shallow copy of objects.

11

hours

30

minutes

13

hours

00

minutes

11

hours

30

minutes

11

hours

30

minutes
11

hours

30

minutes

start

end

11

hours

30

minutes

title

time

15

reminder

“ITI1121 Lecture 2”

a

11

hours

30

minutes

13

hours

00

minutes

11

hours

30

minutes

11

hours

30

minutes
11

hours

30

minutes

start

end

11

hours

30

minutes

title

time

15

reminder

“ITI1121 Lecture 2”

b

Figure 3: A example of a deep copy of objects.

You can read more about shallow versus deep copy on Wikipedia:

• Object copying

Last modified: February 9, 2020

19

https://en.wikipedia.org/wiki/Object_copying

	Enumerating all games of a 2x2 grid
	Shallow copy versus Deep copy

