
ITI 1121. Introduction to Computing II
Winter 2015

Assignment 2 [ PDF ]
(Last modified on September 6, 2015)

Deadline: Thursday February 27, 2014, 18:00 (extended deadline)

Learning objectives
Writing graphical user interfaces in Java involves inheritance and interface. Accordingly, the learning objectives for this as-
signment are:

• Writing a software application using inheritance, interfaces, and object-oriented programming concepts;
• Designing an application utilizing event-driven programming.

Game
For this assignment, you must implement the graphical user interface (GUI) for the game 8-Puzzle, the smaller version of the
game 15-Puzzle. The game board consists of 3×3 tiles with one tile missing. The user can move an adjacent tile into the empty
space. To win the game, the user must restore the order of the tiles by repeatedly moving tiles.

Background information
Instead of starting de novo (from scratch), I am asking you to study a similar game, Puzzler, for which I am providing you the
code and description. Your solution must clearly be an adaptation of the game Puzzler

The game Puzzler consists of a 7× 7 board. Initially, all the cells are filled with marbles from one the five available colors.
When the user clicks on a cell for the first time, the cell and all the adjacent cells of the same color are selected. The marbles
are gray to indicate this state of the game. When the user clicks a second time on a selected cell, all the selected cells vanish.
Marbles fall from top to bottom, and left to right, in order to fill the empty spaces. To win the game, the user must make all the
marbles vanish.

1

http://www.site.uottawa.ca/~turcotte/teaching/iti-1121/assignments/02-2014/index.pdf
http://en.wikipedia.org/wiki/15_puzzle


The implementation consists of three classes: Puzzler, Board, and Cell.

JFrame

actionPerformed(e : ActionEvent) : void
ActionListener

JButtonJPanel

49111Puzzler Board Cell

You can clearly see the important role of inheritance and interface for this assignment. Each of the three classes is derived from
an existing class. The application needs a main window, which is called here Puzzler, and this is a subclass of JFrame. We
need an object to model the grid onto which all the marbles will be placed. Since the object has access to all the marbles, it will
also be responsible for implementing the logic of the game. The class JPanel will provide the means to display the marbles,
this will be the class Board. Finally, the tiles of the Board game are implemented using objects of the class Cell, a subclass of
JButton.

The key idea for this implementation is as follows. When a cell vanishes, it simply displays a white square. In order to
simulate marbles falling from top to bottom, and left to right, we simply change the type of the source and destination cell.
For instance, if a blue marble at position (i, j) moves to position (i′, j′). We simply set the type of the cell at position (i, j) to
represent the empty cell, whereas the type of the cell at position (i′, j′) becomes that of a blue marble.

The UML sequence diagram on the page illustrates some of the important sequences of method calls. When the constructor
of the class Puzzler is called, it will create an object of the class Board. The constructor of the class Board will itself create
Cell objects. The diagram shows one such object creation. The constructor of the class Cell receives a reference to the Board
object, which will serve as an action listener for this Cell (call to addActionListener(b)).

The second part of the diagram illustrates a possible sequence of method calls resulting from a mouse click. When the user
clicks the button, an object is created to represent this action, the method processEvent of the button is called. The button will
then call the method actionPerformed of its action listener (the object that was registered using the method addActionListener,
as above). The board will determine the source of the event. The method actionPerformed interacts with the cell to determine
its type, row, and column. If the cell was not selected, all the cells are deselected, and all the adjacent cells are selected, this will
include a class to the method setSelected of the selected cell, which changes the image to that of a gray marble. Eventually, the
control returns to the caller.

2



 b : Board : Cell

processEvent(e)actionPerformed(e)

getType()

r = getRow()

c = getColumn()

: Puzzler

new Board() new Cell(this,0,0)

addActionListener(b)

create more cells...

new Puzzler()

selected()

deselectAllCells()

selectCellAndContiguousCells(r,c)
setSelected(true)

1 Rules and regulation (15 marks)
Follow all the directives available on the assignment directives web page, and submit your assignment through the on-line
submission system uottawa.blackboard.com. You must preferably do the assignment in teams of two, but you can also do the
assignment individually. Pay attention to the directives and answer all the following questions.

2 EightPuzzle (20 marks)
An object of the class EightPuzzle represents the main window of the game. It is displayed from the beginning to the end of the
game. The top part of the window displays the grid holding the board, whilst the lower part comprises a button, labeled “Start
a new game”, which is used to reinitialize the game and put tiles in random order. Here are the characteristics of the class.

• It is a subclass of the class JFrame.

• It implements the interface ActionListener. Consequently, it must implement the method actionPerformed(ActionEvent e).
Make sure that whenever the user clicks on the “Start a new game” button, this method is called.

• An object of the class EightPuzzle has a reference to an object of the class Board.

• Finally, the class has a main method that starts the execution of the game.

3 Board (35 marks)
Board is a specialized JPanel that represents the grid of 3 × 3 cells (objects of the class Cell). The class Board implements
the game logic. An object of the class Board is the handler for the events generated by the objects of the class Cell. Here are
the characteristics of the class:

• It is a sub-class of the class JPanel.
• The class Board implements the interface ActionListener.
• A Board object must create all the necessary Cell objects to fill the grid. It must save references to these Cell objects.
• A Board object must keep track of the total number of attempts since the last reset of the game.

Here are the mandatory methods.

• A method init that resets the game and places all the tiles in random order, with the empty cell in the lower right corner.

3

http://www.site.uottawa.ca/~turcotte/teaching/iti-1121/assignments/directives.html
http://uottawa.blackboard.com


• actionPerformed(ActionEvent e), as required per the contract of the interface ActionListener. An object of the class
Board is the action listener for all the events generated by the Cells.

• String toString() returns a String representation of the board. Each cell shows the id of the cell.

[2][8][7]
[5][3][4]
[6][1][0]
Number of moves is 0

Other requirements

• When the user has solved the puzzle, i.e. the tiles are in order, and the empty cell is on the lower right side of the
board, display a message to user indicating the total number of attempt, and reset the game. Suggestion, use JOption-
Pane.showMessageDialog to display a dialog.

4 RandomPermutation (10 marks)
An instance of the class RandomPermutation is used to create a randomly generated permutation. The permutation consists
of the numbers 0 to (row × columns− 1) in random order, with the property that the 0 must always be the last element of the
permutation. In this application, 0 is the type of the empty cell, at the start of a new game the empty cell is always at the lower
right corner.

We would like the newly created permutation to be the identity permutation, with the zero in last position. This might be
useful for debugging your application. Executing the following statements:

RandomPermutation p;
p = new RandomPermutation(3,3);
System.out.println(p);
p.shuffle();
System.out.println(p);

produces the following output.

[1][2][3]
[4][5][6]
[7][8][0]

[2][1][3]
[5][6][4]
[8][7][0]

The are two allowed implementations, worth a maximum of 5 and 10 marks, respectively. The first implementation generates
solutions that might be unsolvable, whereas the second one always generates solvable solutions. Suggestion: implement the
first solution, then come back to this question and consider the second implementation if time allows.

Implementation 1 (maximum 5 marks)
For this implementation, a call to the method shuffle simply generates a randomly generated permutation of the numbers 1 to
(row × columns− 1), followed by zero. This permutation may or may not be solvable.

• Has a constructor RandomPermutation(int row, int column), where row and column specify the size of the board.

• int[] toArray(): returns this permutation in an array, where the elements of the first row comes first, followed by the
elements of the second row, etc.

• shuffle(): simply generates a new permutation. The permutation is not guaranteed to be solvable.

• String toString(): returns a String representation of the permutation (see above for examples).

4



Implementation 2 (maximum 10 marks)
For this implementation, a call to the method shuffle must guarantee that the solution is solvable. Johnson an colleagues
proposed a mathematical framework for generating such permutations. Herein, we explore a computational approach.

• Has a constructor RandomPermutation(int row, int column), where row and column specify the size of the board.

• int[] toArray(): returns this permutation in an array, where the elements of the first row comes first, followed by the
elements of the second row, etc.

• shuffle(): returns a permutation that is guaranteed to be solvable. The approach is simple. Starting from the identity
permutation, generate a large number of randomly generated moves. Imagine that instead of moving a tile, you are
moving the empty space. In my implementation, I am applying 1000 random moves.

• String toString(): returns a String representation of the permutation (see above for examples).

References
• Johnson, Wm. Woolsey; Story, William E. (1879), ”Notes on the 15-Puzzle”, American Journal of Mathematics. 2 (4):

397404.

5 Cell (20 marks)
The class Cell is derived from the class JButton. An object of this class represents a Cell on the grid. A Cell has an id. This
id represents the image that should be used to represent the button. A button memorizes its coordinates on the board.

• A constructor having three parameters, one of type Board and the others to represent the row and column of this object.
The object of the class Board will be the event listener of this specialized JButton.

• getId(): returns the id of the cell.
• setId(int id): sets the id of the cell and updates the image accordingly.
• getRow(): returns the value of the attribute row.
• getColumn(): returns the value of the attribute column.
• String toString(): returns the id of the cell, represented as a String.

Bonus (10 marks)
• Make the game more general by allowing the user to select the number of rows and columns. (5 marks)

• Load an image from a file, break the image in m× n tiles, which you will then use in place of the tiles provided with the
assignment. (5 marks)

Advanced topic
Consider adding a method that finds the minimum number of moves for solving the game.

Files
The directory data contains images representing the tiles for the 8-Puzzle game: data (data.jar). You must hand in a working
application, make sure to include the image directory, and all the other required files. You must hand in the following files:

• README.txt
• StudentInfo.java
• EightPuzzle.java
• Board.java
• Cell.java
• RandomPermutation.java
• data

5

http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/02-2014/data
http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/02-2014/data.jar
http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/02-2014/data


Here are two versions of an application called Puzzler. Do not hand in Puzzler when submitting your solution.

• puzzler-src.jar (Basic)

• Puzzler.jar (Advanced)

These two archives contain the source code, the byte-code, as well as the images. The first implementation does not declare
a package. In order to execute the application, you must execute the main method of the class Puzzler from the directory
where the sub-directory data is found. The second implementation declares a package and contains a manifest file. The file
manifest.mf specifies the name of the class that contains the method method. Because of that, you can double-click the .jar file
to start the application.

WARNING: Puzzler.jar contains some advanced features to make it executable. Consider using puzzler-src.jar first.

A Frequently Asked Questions (FAQ)
1. “Are we allowed to introduce new methods in existing classes and possibly introducing new classes?”

• If you are not answering the bonus question, then you cannot introduce new public methods. Board, and Cell.
• If you are answering the bonus question, then you can introduce new public methods.

2. “The tiles are not showing, can you help?”
What did you do to locate the source of the problem? For instance, did you write a test just for cell.

import javax.swing.JFrame;
import javax.swing.JButton;
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class CellTest extends JFrame implements ActionListener {

public CellTest() {
super("Cell Test");
Cell c;
c = new Cell(null, 0, 0);
c.setId(4); // how we control the color
add(c,BorderLayout.CENTER);
JButton button;
button = new JButton("Zzz");
button.addActionListener(this); // registering this CellTest object with the button (meaning, I am the listener)
add(button,BorderLayout.SOUTH);
pack();
setVisible(true);

}

public void actionPerformed(ActionEvent e) {
System.out.print("Howdy!");

}

public static void main(String[] args) {
new CellTest();

}
}

6

http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/02-2014/puzzler-src.jar
http://www.eecs.uottawa.ca/~turcotte/teaching/iti-1121/assignments/02-2014/Puzzler.jar


Did you notice that the file names for the images contain an extra 0?

Last Modified: September 6, 2015

7


	Rules and regulation (15 marks)
	EightPuzzle (20 marks)
	Board (35 marks)
	RandomPermutation (10 marks)
	Cell (20 marks)
	Frequently Asked Questions (FAQ)

