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Learning Graphs

A graph is a fundamental data structure with a great number of applications, both in
computer science and the life sciences. In this lecture, we consider machine learning
algorithms where graphs are playing a central role.

General objective :
Discuss the applications of frequent subgraph mining in bioinformatics



Learning objectives
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Discuss the various search strategies from frequent subgraph mining
Explain the two main paradigms, single graph vs multiple graphs

Reading:
Aida Mrzic, Pieter Meysman, Wout Bittremieux, Pieter Moris, Boris Cule,
Bart Goethals, and Kris Laukens. Grasping frequent subgraph mining for
bioinformatics applications. BioData Min 11:20, 2018.
Peng Zhang and Yuval Itan. Biological network approaches and applications
in rare disease studies. Genes 10: 2019.
Hiroshi Mamitsuka. Textbook of Machine Learning and Data Mining: with
Bioinformatics Applications. Global Data Science Publishing, 2018.

§ 6, 7 and 8.
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https://youtu.be/cWIeTMklzNg

https://youtu.be/cWIeTMklzNg
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Gene Regulatory Networks (GRN)
Biological Pathways
Protein-Protein Interactions (PPI)
RNA-RNA Interaction (RRI)
RNA secondary structure (tree, dual graph)
Molecular graph (connectivity of molecules)

PubChem from NIH has 90 million entries
Genome assembly
Ontologies



Yeast proteome
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H. Jeong, S. P. Mason, A.-L. Barabási & Z. N. Oltvai. Lethality and centrality in
protein networks Nature 411:4142 (2001)



Metabolic network
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Source: https://en.wikipedia.org/wiki/File:Metabolic_Metro_Map.svg

https://en.wikipedia.org/wiki/File:Metabolic_Metro_Map.svg


Molecular graph
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Source: [Samatova et al., 2013]



Biological networks and rare disease
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Source: [Zhang and Itan, 2019] Figure 1
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A graph, G = (V , E ), consists of a
set of vertices (V ) and a set of
edges (E ) where each edge
connects two nodes.

A graph can be labelled or
unlabelled. Both, edges and nodes
can be labelled.
An edge can be directed or not.
There can be weights on edges. If
so, the result is a weighted graph.
Otherwise, the graph is
unweighted.
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Nodes are biological entities, such
atoms, molecules, or genes.

An edge represents an
“association”. For instance, a
chemical bond, an interaction,
or a relationship (e.g. regulates
the activity of).
Weights can be used describe a
degree of certainty
(e.g. experimental error) or
strength of an association.
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A graph Gs is a subgraph of G if
all the edges and nodes of Gs are
subsets of the edges and nodes
of G .

A graph Gs is an induced
subgraph of G , if the nodes of Gs
are a subset of the nodes of G , and
the nodes in Gs are connected
if and only if they are connected
in G .
Herein, we focus on connected
subgraphs where all the nodes are
connected.
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Two graphs are isomorphic if there
exists a mapping (bijection)
between the nodes of the two
graphs, such that if two nodes are
connected in one graph, then
they are connected in the other.

In other words, the graphs can be
seen as “equal”.

1

2 3

45

a

b

c

d

e

See also: https://www.youtube.com/watch?v=Xq8o-z1DsUA

https://www.youtube.com/watch?v=Xq8o-z1DsUA
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Adjacency matrix and adjacency list
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Source: [Mrzic et al., 2018] Figure 3
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Two (2) isomorphic graphs do not necessarily have the same adjacency
matrix or adjacency list!

Yikes!
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The canonical labelling of a graph is a representation such that if two
graphs are isomorphic, then their canonical labelling is the same.

Here are two such encodings:

Canonical adjacency matrix (CAM)
Depth-first search (DFS) code
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Two paradigms:
Single graph:

For these applications, the input consists of a single graph, let’s a
Protein-Protein-Interaction network.
The output is a list of frequently occurring subgraphs.

Multiple graphs:

For this class of problems, the input is a collection of graphs, for examples
the connectivity of small compounds, all having a similar activity (e.g. HIV
reverse-transcriptase inhibitors).
The output would be one or several sugraphs, each occurring in a large
proportion (good support) of the input graphs.

The overarching theme is searching for frequently occurring interesting
subgraphs.
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Input: a graph (G) or set of graphs (G).
Output: subgraphs with good support.

F = {g |g is a subgraph of G or G; support(g) ≥ minimum support}

Where support is a problem specific measure:
Count is larger than some threshold s.
Statistical enrichment compared to some background distribution.
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Frequent subgraph mining (high level)
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1. Enumerate candidates
2. Filter the list
3. Count the number of occurrences
4. Repeat

Counting the number of occurrences is computationally demanding!



Join node- or edge-based enumeration
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Source: [Mrzic et al., 2018] Figure 4



Pruning
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The candidate enumeration algorithms are joining subgraphs are are
frequent 1.

The a priori principle says that a graph cannot be more frequent than
any of its subgraphs.

1Count is higher than some threshold.



Search strategies
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Breadth-first search (BFS) strategy

Candidates are enumerated in order of size.

Where size is either the number of nodes or number of edges.

Cons: large memory usage.
Depth-first search (DFS) strategy

The algorithm keeps extending a candidate until the resulting subgraph is no
longer frequent.
Cons: pruning is less effective (thus large execution time).

Use all inducible subgraphs (graphlets) up to a given size.

For instance, there are 30 undirected unlabelled connected inducible
subgraphs of size 2 to 5.
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p

Source: [Mrzic et al., 2018] Figure 5



Strategies
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Source: [Mrzic et al., 2018] Figure 6



Support (multiple graphs)
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Source: [Mrzic et al., 2018] Figure 7

When the input consists of multiple graphs, the support generally ignores
the number of times a subgraph occurs in a given graph.



Support (single graph)
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Counting the number of occurrences in a single graph brings an added level
of complexity.

Counting only the non-overlapping occurrences.
Counting all the occurrences, including the overlapping ones.

The a priori principle no longer applies as it is possible for larger subgraphs to
occur more frequently than their subgraphs.

Source: [Mrzic et al., 2018] Figure 8
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Existing approaches
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Source: [Mrzic et al., 2018] Figure 9



Sampling
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In many cases, particularly in the case of a single large graph, an
exhaustive search is not feasible.

Sampling approaches are then used.
See: Alex R Gawronski and Marcel Turcotte, RiboFSM: Frequent subgraph
mining for the discovery of RNA structures and interactions, BMC
bioinformatics (2014).
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There are two paradigms, single graph and multiple graphs.

Frequent subgraph mining returns all subgraphs with minimum support.
Algorithms often proceed from small to large subgraphs, either using
breadth-first-search or depth-first-search.
Depending on the application, the support can be the count or some
statistical test.
When the graphs are large, sampling methods are used.
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Graph Theory FAQs: 03. Isomorphism Using Adjacency Matrix by
Sarada Herke

https://youtu.be/UCle3Smvh1s
Graph Theory: 10. Isomorphic and Non-Isomorphic Graphs by
Sarada Herke

https://www.youtube.com/watch?v=z-GfKbzvtBA&feature=youtu.be

https://youtu.be/UCle3Smvh1s
https://www.youtube.com/watch?v=z-GfKbzvtBA&feature=youtu.be
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Ensemble Learning
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