
CSI5180. Machine Learning for
Bioinformatics Applications

Kernel methods in bioinformatics

by

Marcel Turcotte

Version November 6, 2019

Preamble 2/44

Preamble

Preamble

Preamble 3/44

Kernel methods in bioinformatics

In this lecture, we continue our exploration of kernel methods in bioinformatics. After
an informal presentation of support vector machines, we now more formally
investigate kernel methods. Still, the aim is to give you the intuition behind these
methods. Specifically, you should understand how the data is implicitly embedded into
a higher-dimensional space.

General objective :
Discuss applications of kernel methods in bioinformatics

Learning objectives

Preamble 4/44

Discuss applications of kernel methods in bioinformatics

Reading:
Berhhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert (eds.), Kernel
methods in computational biology, MIT Press, 2004. §2.

Kernel methods in computational biology

Preamble 5/44

Kernel methods in computational biology

Preamble 6/44

https://www.youtube.com/watch?v=svXc382Y3aw (Part 1 - 1 hour 23 minutes)
https://www.youtube.com/watch?v=9QRVG1wB-ds (Part 2 - 1 hour 31 minutes)
https://www.youtube.com/watch?v=KPpFc2OASIo (Part 3 - 1 hour 38 minutes)

https://www.youtube.com/watch?v=svXc382Y3aw
https://www.youtube.com/watch?v=9QRVG1wB-ds
https://www.youtube.com/watch?v=KPpFc2OASIo

Plan

Preamble 7/44

1. Preamble

2. Introduction

3. Support vector machines

4. Kernel representation

5. Prologue

Introduction 8/44

Introduction

Summary

Introduction 9/44

Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.

Support vector machines (SVM) are one of the most popular kernel
methods.
Excellent performance (accuracy).
Handling high dimensionality.
Kernels for strings, graphs, and more.
Combining kernels for data fusion.

Summary

Introduction 9/44

Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.
Support vector machines (SVM) are one of the most popular kernel
methods.

Excellent performance (accuracy).
Handling high dimensionality.
Kernels for strings, graphs, and more.
Combining kernels for data fusion.

Summary

Introduction 9/44

Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.
Support vector machines (SVM) are one of the most popular kernel
methods.
Excellent performance (accuracy).

Handling high dimensionality.
Kernels for strings, graphs, and more.
Combining kernels for data fusion.

Summary

Introduction 9/44

Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.
Support vector machines (SVM) are one of the most popular kernel
methods.
Excellent performance (accuracy).
Handling high dimensionality.

Kernels for strings, graphs, and more.
Combining kernels for data fusion.

Summary

Introduction 9/44

Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.
Support vector machines (SVM) are one of the most popular kernel
methods.
Excellent performance (accuracy).
Handling high dimensionality.
Kernels for strings, graphs, and more.

Combining kernels for data fusion.

Summary

Introduction 9/44

Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.
Support vector machines (SVM) are one of the most popular kernel
methods.
Excellent performance (accuracy).
Handling high dimensionality.
Kernels for strings, graphs, and more.
Combining kernels for data fusion.

Summary

Introduction 10/44

The support vectors are
the examples closest to the
separating hyperplane.

The margin is the distance
between the separating
hyperplane (decision
boundary) and the support
vectors.
Problem: of all possible
separating hyperplanes
find the one with the
largest margin.

Source: [19] Figure 5.1

Summary

Introduction 10/44

The support vectors are
the examples closest to the
separating hyperplane.
The margin is the distance
between the separating
hyperplane (decision
boundary) and the support
vectors.

Problem: of all possible
separating hyperplanes
find the one with the
largest margin.

Source: [19] Figure 5.1

Summary

Introduction 10/44

The support vectors are
the examples closest to the
separating hyperplane.
The margin is the distance
between the separating
hyperplane (decision
boundary) and the support
vectors.
Problem: of all possible
separating hyperplanes
find the one with the
largest margin. Source: [19] Figure 5.1

Summary

Introduction 11/44

Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two
classes.

However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.
In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.
Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.

Summary

Introduction 11/44

Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two
classes.
However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.

In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.
Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.

Summary

Introduction 11/44

Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two
classes.
However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.
In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.

Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.

Summary

Introduction 11/44

Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two
classes.
However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.
In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.
Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.

Summary

Introduction 12/44

Source: [20] Figure 1i

No single point can separate the two classes!

Summary

Introduction 13/44

Source: [20] Figure 1j

Adding a new dimension to our data.

Here, simply taking the square values of our feature.

Summary

Introduction 13/44

Source: [20] Figure 1j

Adding a new dimension to our data.
Here, simply taking the square values of our feature.

Support vector machines 14/44

Support vector machines

Support vector machines (SVM)

Support vector machines 15/44

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik, A training
algorithm for optimal margin classifiers, COLT, ACM, pp. 144152, 1992.

Notation

Support vector machines 16/44

Let X be a set of objects (the universe).

Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .
Let Y = {y1, y2, . . . , yN} be the labels associated with each object.

Notation

Support vector machines 16/44

Let X be a set of objects (the universe).
Gene expression profiles.

DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .
Let Y = {y1, y2, . . . , yN} be the labels associated with each object.

Notation

Support vector machines 16/44

Let X be a set of objects (the universe).
Gene expression profiles.
DNA, RNA or protein sequences.

Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .
Let Y = {y1, y2, . . . , yN} be the labels associated with each object.

Notation

Support vector machines 16/44

Let X be a set of objects (the universe).
Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .
Let Y = {y1, y2, . . . , yN} be the labels associated with each object.

Notation

Support vector machines 16/44

Let X be a set of objects (the universe).
Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .

Let Y = {y1, y2, . . . , yN} be the labels associated with each object.

Notation

Support vector machines 16/44

Let X be a set of objects (the universe).
Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .
Let Y = {y1, y2, . . . , yN} be the labels associated with each object.

Problem

Support vector machines 17/44

Learn some function f : X → Y from S.

To predict the label of an x ∈ X , evaluate f (x).

Problem

Support vector machines 17/44

Learn some function f : X → Y from S.
To predict the label of an x ∈ X , evaluate f (x).

Binary classification problem

Support vector machines 18/44

Herein, we consider the binary classification problem.

Let use the label 1 for positive examples and -1 for negative examples.
Consequently, each yi belongs to the set {−1, 1}.

Binary classification problem

Support vector machines 18/44

Herein, we consider the binary classification problem.
Let use the label 1 for positive examples and -1 for negative examples.

Consequently, each yi belongs to the set {−1, 1}.

Binary classification problem

Support vector machines 18/44

Herein, we consider the binary classification problem.
Let use the label 1 for positive examples and -1 for negative examples.
Consequently, each yi belongs to the set {−1, 1}.

Support Vector Machine (SVM)

Support vector machines 19/44

Assuming that X = RD (for now).

An SVM makes predictions using a function f of the following form:

f (x) = wT x + b

where w ∈ RD and b ∈ R.
We want to assign the label +1 to points x ∈ X such that f (x) ≥ 0, and -1
to points x ∈ X such that f (x) < 0.

Support Vector Machine (SVM)

Support vector machines 19/44

Assuming that X = RD (for now).
An SVM makes predictions using a function f of the following form:

f (x) = wT x + b

where w ∈ RD and b ∈ R.

We want to assign the label +1 to points x ∈ X such that f (x) ≥ 0, and -1
to points x ∈ X such that f (x) < 0.

Support Vector Machine (SVM)

Support vector machines 19/44

Assuming that X = RD (for now).
An SVM makes predictions using a function f of the following form:

f (x) = wT x + b

where w ∈ RD and b ∈ R.
We want to assign the label +1 to points x ∈ X such that f (x) ≥ 0, and -1
to points x ∈ X such that f (x) < 0.

Support Vector Machine (SVM)

Support vector machines 20/44

Assuming a candidate function f (x) (it is our best current estimate).

An example is correctly classified if

yi f (xi) ≥ 0

If yi = 1 and f (xi) = 1, then yi f (xi) ≥ 0
If yi = −1 and f (xi) = −1, then yi f (xi) ≥ 0
For the other two cases, the example is misclassified.

Support Vector Machine (SVM)

Support vector machines 20/44

Assuming a candidate function f (x) (it is our best current estimate).
An example is correctly classified if

yi f (xi) ≥ 0

If yi = 1 and f (xi) = 1, then yi f (xi) ≥ 0
If yi = −1 and f (xi) = −1, then yi f (xi) ≥ 0
For the other two cases, the example is misclassified.

Support Vector Machine (SVM)

Support vector machines 20/44

Assuming a candidate function f (x) (it is our best current estimate).
An example is correctly classified if

yi f (xi) ≥ 0

If yi = 1 and f (xi) = 1, then yi f (xi) ≥ 0

If yi = −1 and f (xi) = −1, then yi f (xi) ≥ 0
For the other two cases, the example is misclassified.

Support Vector Machine (SVM)

Support vector machines 20/44

Assuming a candidate function f (x) (it is our best current estimate).
An example is correctly classified if

yi f (xi) ≥ 0

If yi = 1 and f (xi) = 1, then yi f (xi) ≥ 0
If yi = −1 and f (xi) = −1, then yi f (xi) ≥ 0

For the other two cases, the example is misclassified.

Support Vector Machine (SVM)

Support vector machines 20/44

Assuming a candidate function f (x) (it is our best current estimate).
An example is correctly classified if

yi f (xi) ≥ 0

If yi = 1 and f (xi) = 1, then yi f (xi) ≥ 0
If yi = −1 and f (xi) = −1, then yi f (xi) ≥ 0
For the other two cases, the example is misclassified.

Support Vector Machine (SVM)

Support vector machines 21/44

A principled, termed empirical risk minimization suggests selecting the
function f (x) that makes the fewer number of classification errors on
the training set S.

As we have seen, when the data is linearly separable, there could be
infinitely many such hyperplanes (decision boundaries).

Support Vector Machine (SVM)

Support vector machines 21/44

A principled, termed empirical risk minimization suggests selecting the
function f (x) that makes the fewer number of classification errors on
the training set S.
As we have seen, when the data is linearly separable, there could be
infinitely many such hyperplanes (decision boundaries).

Support Vector Machine (SVM)

Support vector machines 22/44

Two half-spaces:

h+ = {x : f (x) ≥ 1}
h− = {x : f (x) ≤ −1}
The distance between the two
half-spaces is called the margin.
It can be shown that the margin
is exactly 2

||w ||

Source [1] Figure 2.9

Support Vector Machine (SVM)

Support vector machines 22/44

Two half-spaces:
h+ = {x : f (x) ≥ 1}

h− = {x : f (x) ≤ −1}
The distance between the two
half-spaces is called the margin.
It can be shown that the margin
is exactly 2

||w ||

Source [1] Figure 2.9

Support Vector Machine (SVM)

Support vector machines 22/44

Two half-spaces:
h+ = {x : f (x) ≥ 1}
h− = {x : f (x) ≤ −1}

The distance between the two
half-spaces is called the margin.
It can be shown that the margin
is exactly 2

||w ||

Source [1] Figure 2.9

Support Vector Machine (SVM)

Support vector machines 22/44

Two half-spaces:
h+ = {x : f (x) ≥ 1}
h− = {x : f (x) ≤ −1}
The distance between the two
half-spaces is called the margin.

It can be shown that the margin
is exactly 2

||w ||

Source [1] Figure 2.9

Support Vector Machine (SVM)

Support vector machines 22/44

Two half-spaces:
h+ = {x : f (x) ≥ 1}
h− = {x : f (x) ≤ −1}
The distance between the two
half-spaces is called the margin.
It can be shown that the margin
is exactly 2

||w ||

Source [1] Figure 2.9

Large margin

Support vector machines 23/44

Optimization: maximize 2
||w ||

subject to

yi(wT x + b) ≥ 1 for i = 1, . . . , N

There will be a solution only if the
data set is linearly separable.

Source [1] Figure 2.9

Large margin

Support vector machines 23/44

Optimization: maximize 2
||w ||

subject to

yi(wT x + b) ≥ 1 for i = 1, . . . , N

There will be a solution only if the
data set is linearly separable.

Source [1] Figure 2.9

Hinge loss function

Support vector machines 24/44

To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.
If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .
If y = −1, . . .

if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9

Hinge loss function

Support vector machines 24/44

To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.

If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .
If y = −1, . . .

if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9

Hinge loss function

Support vector machines 24/44

To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.
If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .
If y = −1, . . .

if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9

Hinge loss function

Support vector machines 24/44

To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.
If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .

If y = −1, . . .
if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9

Hinge loss function

Support vector machines 24/44

To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.
If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .
If y = −1, . . .

if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9

Hinge loss function

Support vector machines 24/44

To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.
If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .
If y = −1, . . .

if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9

Support Vector Machine

Support vector machines 25/44

Optimization

argminf (x)=wT x+b
1
2 ||w || + C

N∑
i=1

c(f , xi , yi)

where C is a user-defined parameter controlling the tradeoff between having
a large margin and classification errors.

Kernel representation 26/44

Kernel representation

Representation - the universe

Kernel representation 27/44

Let X be a set of objects (the universe).

Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Representation - the universe

Kernel representation 27/44

Let X be a set of objects (the universe).
Gene expression profiles.

DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Representation - the universe

Kernel representation 27/44

Let X be a set of objects (the universe).
Gene expression profiles.
DNA, RNA or protein sequences.

Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Representation - the universe

Kernel representation 27/44

Let X be a set of objects (the universe).
Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .

In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .

ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.

With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - traditional learners

Kernel representation 28/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F
Each object x ∈ X is represented by ϕ(x) ∈ F .

Representation - kernel methods

Kernel representation 29/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .

Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.
Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1

Representation - kernel methods

Kernel representation 29/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.
Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1

Representation - kernel methods

Kernel representation 29/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.

Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1

Representation - kernel methods

Kernel representation 29/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.
Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1

Representation - kernel methods

Kernel representation 29/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.
Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1

Representation - kernel methods

Kernel representation 29/44

Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .
Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.
Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1

Representation - kernel methods

Kernel representation 30/44

The data representation as a square matrix is independent of the nature
of the objects!

Algorithms are modular. The same algorithm can work strings or graphs, as
long as a function k is defined for those objects (DNA, RNA, or protein
sequences, graph connectivity, phylogenetic trees, RNA structures, molecular
pathways, . . .).

Representation - kernel methods

Kernel representation 30/44

The data representation as a square matrix is independent of the nature
of the objects!

Algorithms are modular. The same algorithm can work strings or graphs, as
long as a function k is defined for those objects (DNA, RNA, or protein
sequences, graph connectivity, phylogenetic trees, RNA structures, molecular
pathways, . . .).

Representation - kernel methods

Kernel representation 31/44

This size of the input matrix depends on the number of examples, n × n,
not the complexity of the objects.

An analysis involving 100 samples requires a 100 × 100 input matrix.
Even if each sample comprises thousands of gene expression levels.
This is computationally attractive.

Representation - kernel methods

Kernel representation 31/44

This size of the input matrix depends on the number of examples, n × n,
not the complexity of the objects.

An analysis involving 100 samples requires a 100 × 100 input matrix.

Even if each sample comprises thousands of gene expression levels.
This is computationally attractive.

Representation - kernel methods

Kernel representation 31/44

This size of the input matrix depends on the number of examples, n × n,
not the complexity of the objects.

An analysis involving 100 samples requires a 100 × 100 input matrix.
Even if each sample comprises thousands of gene expression levels.

This is computationally attractive.

Representation - kernel methods

Kernel representation 31/44

This size of the input matrix depends on the number of examples, n × n,
not the complexity of the objects.

An analysis involving 100 samples requires a 100 × 100 input matrix.
Even if each sample comprises thousands of gene expression levels.
This is computationally attractive.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.

Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.

Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.

Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.

Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.
Macromolecular sequences having different lengths.

Phylogenetic trees.
Pairwise comparison methods are often readily available.

Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.
Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.

Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.
Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.

Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.
Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.
Pairwise sequence comparison (alignment)

Pairwise tree comparison (Robinson-Foulds, RFL, etc.)
This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.
Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.
Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 32/44

Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.
Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.
Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.

Representation - kernel methods

Kernel representation 33/44

“Most kernel methods [. . .] can only process square matrices, which are
symmetric positive semidefinite. This means that if k it is a n × n
matrix of pairwise comparisons, it should satisfy ki ,j = kj,i for any
1 ≤ i , j ≤ n, and cT kc ≥ 0 for any c ∈ Rn." [1] page 38.

Representation - kernel methods

Kernel representation 34/44

For the case where X = RD, the inner product (aka dot product or scalar
product) can be used as a kernel function, it is known as the linear kernel.

For cases where the objects are not vectors, a kernel function can be
defined as follows:

k(xi , xj) = ϕ(xi)T ϕ(xj)
“Theorem For any kernel k on a space X , there exists a Hilbert space F
and mapping ϕ : X → F such that

k(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩, for any x , x ′ ∈ X

where ⟨u, v⟩ represents the dot product in the Hilbert space between any
two points u, v ∈ F .” [1] page 40.

Representation - kernel methods

Kernel representation 34/44

For the case where X = RD, the inner product (aka dot product or scalar
product) can be used as a kernel function, it is known as the linear kernel.
For cases where the objects are not vectors, a kernel function can be
defined as follows:

k(xi , xj) = ϕ(xi)T ϕ(xj)

“Theorem For any kernel k on a space X , there exists a Hilbert space F
and mapping ϕ : X → F such that

k(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩, for any x , x ′ ∈ X

where ⟨u, v⟩ represents the dot product in the Hilbert space between any
two points u, v ∈ F .” [1] page 40.

Representation - kernel methods

Kernel representation 34/44

For the case where X = RD, the inner product (aka dot product or scalar
product) can be used as a kernel function, it is known as the linear kernel.
For cases where the objects are not vectors, a kernel function can be
defined as follows:

k(xi , xj) = ϕ(xi)T ϕ(xj)
“Theorem For any kernel k on a space X , there exists a Hilbert space F
and mapping ϕ : X → F such that

k(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩, for any x , x ′ ∈ X

where ⟨u, v⟩ represents the dot product in the Hilbert space between any
two points u, v ∈ F .” [1] page 40.

Kernel trick

Kernel representation 35/44

Finding the optimal value of f (x) for a support vector machine requires
solving a quadratic programming problem.

After many mathematical transformations, buried into the equation to be
solved, there is a dot product of the transformed vectors.
Thanks to the previous theorem (Mercer’s theorem), the dot product can be
replaced by the value of the kernel in the original space.

Kernel trick

Kernel representation 35/44

Finding the optimal value of f (x) for a support vector machine requires
solving a quadratic programming problem.
After many mathematical transformations, buried into the equation to be
solved, there is a dot product of the transformed vectors.

Thanks to the previous theorem (Mercer’s theorem), the dot product can be
replaced by the value of the kernel in the original space.

Kernel trick

Kernel representation 35/44

Finding the optimal value of f (x) for a support vector machine requires
solving a quadratic programming problem.
After many mathematical transformations, buried into the equation to be
solved, there is a dot product of the transformed vectors.
Thanks to the previous theorem (Mercer’s theorem), the dot product can be
replaced by the value of the kernel in the original space.

Prologue 36/44

Prologue

Summary

Prologue 37/44

Kernel methods use as input a N × N matrix, representing all pairwise
comparisons between examples.

This allows kernel methods to handle a greater range of data types than
most learning algorithms.

Summary

Prologue 37/44

Kernel methods use as input a N × N matrix, representing all pairwise
comparisons between examples.
This allows kernel methods to handle a greater range of data types than
most learning algorithms.

Next module

Prologue 38/44

Fundamentals of deep learning

References

Prologue 39/44

Berhhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert, editors.
Kernel Methods in Computational Biology.
MIT Press, 2004.
Dennis Wylie, Hans A Hofmann, and Boris V Zemelman.
SArKS: de novo discovery of gene expression regulatory motif sites and domains by
suffix array kernel smoothing.
Bioinformatics, Mar 2019.
Dexiong Chen, Laurent Jacob, and Julien Mairal.
Biological sequence modeling with convolutional kernel networks.
Bioinformatics, 35(18):3294–3302, Sep 2019.

Asa Ben-Hur and William Stafford Noble.
Kernel methods for predicting protein-protein interactions.
Bioinformatics, 21 Suppl 1:i38–46, Jun 2005.

References

Prologue 40/44

Bin Liu, Deyuan Zhang, Ruifeng Xu, Jinghao Xu, Xiaolong Wang, Qingcai Chen,
Qiwen Dong, and Kuo-Chen Chou.
Combining evolutionary information extracted from frequency profiles with
sequence-based kernels for protein remote homology detection.
Bioinformatics, 30(4):472–9, Feb 2014.

Dawei Liu, Debashis Ghosh, and Xihong Lin.
Estimation and testing for the effect of a genetic pathway on a disease outcome
using logistic kernel machine regression via logistic mixed models.
BMC Bioinformatics, 9:292, Jun 2008.
Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and
Christina Leslie.
Profile-based string kernels for remote homology detection and motif extraction.
J Bioinform Comput Biol, 3(3):527–50, Jun 2005.

Sören Sonnenburg, Alexander Zien, and Gunnar Rätsch.
ARTS: accurate recognition of transcription starts in human.
Bioinformatics, 22(14):e472–80, Jul 2006.

References

Prologue 41/44

Xing Chen, Lei Wang, Jia Qu, Na-Na Guan, and Jian-Qiang Li.
Predicting miRNA-disease association based on inductive matrix completion.
Bioinformatics, 34(24):4256–4265, 12 2018.

Jesper Salomon and Darren R Flower.
Predicting Class II MHC-Peptide binding: a kernel based approach using similarity
scores.
BMC Bioinformatics, 7:501, Nov 2006.
George Karypis.
YASSPP: better kernels and coding schemes lead to improvements in protein
secondary structure prediction.
Proteins, 64(3):575–86, Aug 2006.

Jean-Philippe Vert, Jian Qiu, and William S Noble.
A new pairwise kernel for biological network inference with support vector
machines.
BMC Bioinformatics, 8 Suppl 10:S8, 2007.

References

Prologue 42/44

Seonho Kim, Juntae Yoon, Jihoon Yang, and Seog Park.
Walk-weighted subsequence kernels for protein-protein interaction extraction.
BMC Bioinformatics, 11:107, Feb 2010.
Mehmet Gönen and Adam A. Margolin.
Localized data fusion for kernel k-Means clustering with application to cancer
biology.
In NIPS, pages 1305–1313, 2014.

Peter Meinicke, Maike Tech, Burkhard Morgenstern, and Rainer Merkl.
Oligo kernels for datamining on biological sequences: a case study on prokaryotic
translation initiation sites.
BMC Bioinformatics, 5:169, Oct 2004.
Yingiun Ma, Limin Yu, Tingting He, Xiaohua Hu, and Xingpeng Jiang.
Prediction of long non-coding RNA-protein interaction through kernel
soft-neighborhood similarity.
In BIBM, pages 193–196. IEEE Computer Society, 2018.

References

Prologue 43/44

Han Zhang, Xueting Huo, Xia Guo, Xin Su, Xiongwen Quan, and Chen Jin.
A disease-related gene mining method based on weakly supervised learning model.
In BIBM, pages 169–174. IEEE Computer Society, 2018.

Dan Liu, Xiaohua Hu, Tingting He, and Xingpeng Jiang.
Virus-host association prediction by using kernelized logistic matrix factorization
on heterogeneous networks.
In BIBM, pages 108–113. IEEE Computer Society, 2018.

Aurélien Géron.
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition, 2019.

William S Noble.
What is a support vector machine?
Nat Biotechnol, 24(12):1565–7, Dec 2006.

Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik.
A training algorithm for optimal margin classifiers.
In COLT, pages 144–152. ACM, 1992.

Prologue 44/44

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preamble
	Objectives
	Learning objectives
	Plan

	Introduction
	Support vector machines
	Kernel representation
	Prologue

