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Kernel methods in bioinformatics

In this lecture, we continue our exploration of kernel methods in bioinformatics. After
an informal presentation of support vector machines, we now more formally
investigate kernel methods. Still, the aim is to give you the intuition behind these
methods. Specifically, you should understand how the data is implicitly embedded into
a higher-dimensional space.

General objective :
Discuss applications of kernel methods in bioinformatics
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Discuss applications of kernel methods in bioinformatics

Reading:
Berhhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert (eds.), Kernel
methods in computational biology, MIT Press, 2004. §2.
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https://www.youtube.com/watch?v=svXc382Y3aw (Part 1 - 1 hour 23 minutes)
https://www.youtube.com/watch?v=9QRVG1wB-ds (Part 2 - 1 hour 31 minutes)
https://www.youtube.com/watch?v=KPpFc2OASIo (Part 3 - 1 hour 38 minutes)

https://www.youtube.com/watch?v=svXc382Y3aw
https://www.youtube.com/watch?v=9QRVG1wB-ds
https://www.youtube.com/watch?v=KPpFc2OASIo
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Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation. Kernel methods are
grounded into statistical learning theory.

Support vector machines (SVM) are one of the most popular kernel
methods.
Excellent performance (accuracy).
Handling high dimensionality.
Kernels for strings, graphs, and more.
Combining kernels for data fusion.
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The support vectors are
the examples closest to the
separating hyperplane.

The margin is the distance
between the separating
hyperplane (decision
boundary) and the support
vectors.
Problem: of all possible
separating hyperplanes
find the one with the
largest margin.

Source: [19] Figure 5.1
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Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two
classes.

However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.
In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.
Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.
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Source: [20] Figure 1i

No single point can separate the two classes!



Summary

Introduction 13/44

Source: [20] Figure 1j

Adding a new dimension to our data.

Here, simply taking the square values of our feature.
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Support vector machines



Support vector machines (SVM)
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Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik, A training
algorithm for optimal margin classifiers, COLT, ACM, pp. 144152, 1992.
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Let X be a set of objects (the universe).

Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.

Let S = {x1, x2, . . . , xN} be a data set, each xi ∈ X .
Let Y = {y1, y2, . . . , yN} be the labels associated with each object.
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Learn some function f : X → Y from S.

To predict the label of an x ∈ X , evaluate f (x).
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Herein, we consider the binary classification problem.

Let use the label 1 for positive examples and -1 for negative examples.
Consequently, each yi belongs to the set {−1, 1}.
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Assuming that X = RD (for now).

An SVM makes predictions using a function f of the following form:

f (x) = wT x + b

where w ∈ RD and b ∈ R.
We want to assign the label +1 to points x ∈ X such that f (x) ≥ 0, and -1
to points x ∈ X such that f (x) < 0.
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Assuming a candidate function f (x) (it is our best current estimate).

An example is correctly classified if

yi f (xi) ≥ 0

If yi = 1 and f (xi) = 1, then yi f (xi) ≥ 0
If yi = −1 and f (xi) = −1, then yi f (xi) ≥ 0
For the other two cases, the example is misclassified.
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A principled, termed empirical risk minimization suggests selecting the
function f (x) that makes the fewer number of classification errors on
the training set S.

As we have seen, when the data is linearly separable, there could be
infinitely many such hyperplanes (decision boundaries).
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Two half-spaces:

h+ = {x : f (x) ≥ 1}
h− = {x : f (x) ≤ −1}
The distance between the two
half-spaces is called the margin.
It can be shown that the margin
is exactly 2

||w ||

Source [1] Figure 2.9
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Optimization: maximize 2
||w ||

subject to

yi(wT x + b) ≥ 1 for i = 1, . . . , N

There will be a solution only if the
data set is linearly separable.

Source [1] Figure 2.9
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To accommodate for some
examples to be misclassified a
continuous hinge loss function
is used.

c(f , x , y) = max(0, 1 − yf (x))

If yf (x) ≥ 1, then c(f , x , y) = 0.
If 0 ≤ yf (x) ≤ 1, correctly
classified, low confidence ([0,1]),

If y = 1, . . .
If y = −1, . . .

if yf (x) ≤ 0, the example is
misclassified and the cost is
1 − yf (x).

Source [1] Figure 2.9
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Optimization

argminf (x)=wT x+b
1
2 ||w || + C

N∑
i=1

c(f , xi , yi)

where C is a user-defined parameter controlling the tradeoff between having
a large margin and classification errors.
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Kernel representation
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Let X be a set of objects (the universe).

Gene expression profiles.
DNA, RNA or protein sequences.
Connectivity of molecules, phylogenetic trees, RNA structure, molecular
pathways, etc.
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Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .

In order to apply a machine learning algorithm, we need a representation
for each object, ϕ(x) ∈ F , ∀x ∈ X .
ϕ(S) = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}.
With a traditional learning algorithm, such as logistic regression, the
examples are represented as real-valued vectors.

Vectors. For a given application, each object xi ∈ X could represent the
level of expression of D genes for the i th sample , in this case F = RD.

ϕ : X → F

Each object x ∈ X is represented by ϕ(x) ∈ F .
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Let S = {x1, x2, . . . , xn} be a data set, the objects to be analyzed, each
xi ∈ X .

Kernel methods represent the data as set of pairwise comparisons.

k : X × X → R.
Consequently, the data set, S, is represented by a n × n matrix of pairwise
comparisons ki ,j = k(xi , xj).

Source: [1] Figure 2.1
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The data representation as a square matrix is independent of the nature
of the objects!

Algorithms are modular. The same algorithm can work strings or graphs, as
long as a function k is defined for those objects (DNA, RNA, or protein
sequences, graph connectivity, phylogenetic trees, RNA structures, molecular
pathways, . . . ).
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This size of the input matrix depends on the number of examples, n × n,
not the complexity of the objects.

An analysis involving 100 samples requires a 100 × 100 input matrix.
Even if each sample comprises thousands of gene expression levels.
This is computationally attractive.
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Many algorithms, including logistic regression and deep learning, require
a real-valued representation:

ϕ : X → RD

This is not always practical.

Macromolecular sequences having different lengths.
Phylogenetic trees.

Pairwise comparison methods are often readily available.

Pairwise sequence comparison (alignment)
Pairwise tree comparison (Robinson-Foulds, RFL, etc.)

This enables data fusion/integration.
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“Most kernel methods [. . . ] can only process square matrices, which are
symmetric positive semidefinite. This means that if k it is a n × n
matrix of pairwise comparisons, it should satisfy ki ,j = kj,i for any
1 ≤ i , j ≤ n, and cT kc ≥ 0 for any c ∈ Rn." [1] page 38.
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For the case where X = RD, the inner product (aka dot product or scalar
product) can be used as a kernel function, it is known as the linear kernel.

For cases where the objects are not vectors, a kernel function can be
defined as follows:

k(xi , xj) = ϕ(xi)T ϕ(xj)
“Theorem For any kernel k on a space X , there exists a Hilbert space F
and mapping ϕ : X → F such that

k(x , x ′) = ⟨ϕ(x), ϕ(x ′)⟩, for any x , x ′ ∈ X

where ⟨u, v⟩ represents the dot product in the Hilbert space between any
two points u, v ∈ F .” [1] page 40.
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Finding the optimal value of f (x) for a support vector machine requires
solving a quadratic programming problem.

After many mathematical transformations, buried into the equation to be
solved, there is a dot product of the transformed vectors.
Thanks to the previous theorem (Mercer’s theorem), the dot product can be
replaced by the value of the kernel in the original space.
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Kernel methods use as input a N × N matrix, representing all pairwise
comparisons between examples.

This allows kernel methods to handle a greater range of data types than
most learning algorithms.
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Fundamentals of deep learning
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