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Fundamentals of Machine Learning — Gradient Descent

In this lecture, we focus on an essential building block for most learning algorithms,
the optimization algorithm.

General objective :
Describe the fundamental concepts of machine learning



Learning objectives
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In your own words, explain the role of the optimization algorithm for solving
a linear regression problem.
Describe the function of the (partial) derivative in the gradient descent
algorithm.
Clarify the role the learning rate, a hyper-parameter.
Compare the batch, stochastic and mini-batch gradient descent
algorithms.

Reading:
Largly based on Géron 2019, §4.
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Gradient Descent - Andrew Ng (1/4)
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https://youtu.be/F6GSRDoB-Cg

https://youtu.be/F6GSRDoB-Cg
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https://youtu.be/YovTqTY-PYY

https://youtu.be/YovTqTY-PYY


Gradient Descent - Andrew Ng (3/4)
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https://youtu.be/66rql7He62g

https://youtu.be/66rql7He62g


Normal Equation - Andrew Ng (4/4)
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https://youtu.be/B-Ks01zR4HY

https://youtu.be/B-Ks01zR4HY
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Essence of linear algebra
A series of 15 videos (10 to 15 minutes per video) providing “[a] geometric
understanding of matrices, determinants, eigen-stuffs and more.”

6,662,732 views as of September 30, 2019.
Essence of calculus

A series of 12 videos (15 to 20 minutes per video): “The goal here is to make
calculus feel like something that you yourself could have discovered.”

2,309,726 views as of September 30, 2019.

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
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Supervised learning - regression

Problem 13/52

The data set is a collection of labelled examples.
{(xi , yi)}N

i=1
Each xi is a feature vector with D dimensions.
x (j)

i is the value of the feature j of the example i ,
for j ∈ 1 . . . D and i ∈ 1 . . . N.

The label yi is a real number.
Problem: given the data set as input, create a “model” that can be used
to predict the value of y for an unseen x .



QSAR
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QSAR stands for Quantitative Structure-Activity Relationship
As a machine learning problem,

Each xi is a chemical compound
yi is the biological activity of the compound xi

Examples of biological activity include toxicology and biodegradability

0.615

-0.125

1.140
. . . . . .

0.941



HIV-1 reverse transcriptase inhibitors

Problem 15/52

Viira, B., García-Sosa, A. T. & Maran, U. Chemical structure and
correlation analysis of HIV-1 NNRT and NRT inhibitors and
database-curated, published inhibition constants with chemical
structure in diverse datasets. J Mol Graph Model 76:205223 (2017).
Each compound (example) in ChemDB has features such as the number
of atoms, area, solvation, coulombic, molecular weight, XLogP, etc.
A possible solution, a model, would look something like this:

ŷ = 44.418 − 35.133 × x (1) − 13.518 × x (2) + 0.766 × x (3)
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In general, a learning algorithm has the following building blocks.
A model, often consisting of a set of weights whose values will be
“learnt”.

An objective function.

In the case of a regression, this is often a loss function, a function that
quantifies misclassification. The Root Mean Square Error is a common loss
function for regression problems.√√√√ 1

N

N∑
1

[h(xi) − yi ]2

Optimization algorithm
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Optimization
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Until some termination criteria is met 1:
Evaluate the loss function, comparing h(xi) to yi .
Make small changes to the weights, in a way that reduces that the value
of the loss function.

⇒ Let’s derive a concrete algorithm called gradient descent.

1E.g. the value of the loss function no longer decreases or maximum number of iterations.
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The derivative of a real function describes how changes to the input
value(s) will affect the output value.

We focus on a single (input) variable function for now.
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When evaluated at a single point, the derivative of a single variable
function can be seen as a line tangent to the graph of the function.
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When the slope of the tangent line is positive (when the derivative is
positive), this means that increasing the value of the input variable will
increase the value of the output.
Furthermore, the magnitude of the derivative indicates how fast or slow
the output will change.
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When the slope of the tangent line is negative (when the derivative is
negative), this means that increasing the value of the input variable will
decrease the value of the output.
Furthermore, the magnitude of the derivative indicates how fast or slow
the output will change.
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A linear model assumes that the value of the label, ŷi , can be expressed as
a linear combination of the feature values, x (j)

i :

ŷi = h(xi) = θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The Root Mean Square Error (RMSE) is a common loss function for
regression problems. √√√√ 1

N

N∑
1

[h(xi) − yi ]2

In practice, minimizing the Mean Squared Error (MSE) is easier and gives
the same result.

1
N

N∑
1

[h(xi) − yi ]2



Recall

Building blocks 23/52

A linear model assumes that the value of the label, ŷi , can be expressed as
a linear combination of the feature values, x (j)

i :
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Gradient descent - single value
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Our model:
h(xi) = θ0 + θ1x (1)

i

Our loss function:

J(θ0, θ1) = 1
N

N∑
1

[h(xi) − yi ]2

Problem: find the values of θ0 and θ1 minimize J .
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Gradient descent:

Initialization: θ0 and θ1 - either with random values or zeros.
Loop:

repeat until convergence: {

θj :=θj − α
∂

∂θj
J(θ0, θ1), for j = 0 and j = 1

}

α is called the learning rate - this is the size of each step.
∂

∂θj
J(θ0, θ1) is the partial derivative with respect to θj .

For the algorithm to be mathematically sound, all the θj must be updated
simultaneously.
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Given

J(θ0, θ1) = 1
N

N∑
1

[h(xi) − yi ]2 = 1
N

N∑
1

[θ0 + θ1xi − yi ]2

We have

∂

∂θ0
J(θ0, θ1) = 2

N

N∑
i=1

(θ0 − θ1xi − yi)

and

∂

∂θ1
J(θ0, θ1) = 2

N

N∑
i=1

xi (θ0 + θ1xi − yi)



Multivariate linear regression
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h(xi) = θ0 + θ1x (1)
i + θ2x (2)

i + θ3x (3)
i + · · · + θDx (D)

i

x (j)
i = value of the feature j in the ith example
D = the number of features



Gradient descent - multivariate
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The new loss function is

J(θ0, θ1, . . . , θD) = 1
N

N∑
i=1

(h(xi) − yi)2

Its partial derivative:

∂

∂θj
J(θ) = 2

N

N∑
i=1

x (j)
i (θxi − yi)

where θ, xi and yi are vectors, and θxi is a vector operation!
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The vector containing the partial derivative of J (with respect to θj , for
j ∈ {0, 1 . . . D}) is called the gradient vector.

∇θJ(θ) =


∂

∂θ0
J(θ)

∂
∂θ1

J(θ)
...

∂
∂θD

J(θ)



This vector gives the direction of the steepest ascent.

It gives it name to the gradient descent algorithm:

θ′ = θ − α∇θJ(θ)
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Gradient descent - multivariate
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The gradient descent algorithm becomes:

repeat until convergence: {

θj :=θj − α
∂

∂θj
J(θ0, θ1, . . . , θD)

for j ∈ [0, . . . , D] (update simultaneously)
}



Gradient descent - multivariate
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The gradient descent algorithm becomes:

repeat until convergence: {

θ0 := θ0 − α
2
N

N∑
i=1

x0
i (h(xi) − yi)

θ1 := θ1 − α
2
N

N∑
i=1

x1
i (h(xi) − yi)

θ2 := θ2 − α
2
N

N∑
i=1

x2
i (h(xi) − yi)

· · ·
}



Assumptions
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What were our assumptions?
The (objective/loss) function is differentiable.



Local vs. global
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A function is convex if for any pair of points on the graph of the function,
the line connecting these two points lies above or on the graph 2

A convex function has a single minimum.

The loss function for the linear regression (MSE) is convex.

For functions that are not convex, the gradient descent algorithm converges
to a local minimum.
The loss function generally used with linear or logistic regressions, and
Support Vector Machines (SVM) are convex, but not the ones for artificial
neural networks.

2It would be convex downward or concave if those lines were below or on the graph of the function.

.
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Source: https://commons.wikimedia.org/wiki/File:Extrema_example.svg

https://commons.wikimedia.org/wiki/File:Extrema_example.svg
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Small steps, low values for α, will make the algorithm converge slowly.
Large steps, might cause the algorithm to diverge.
Notice how the algorithm slows down naturally when approaching a
minimum.



Batch gradient descent
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To be more precise, this algorithm is known as batch gradient descent
since for each iteration, it processes the “whole batch” of training examples.
Literature suggests that the algorithm might take more time to converge if
the features are on different scales.



Batch gradient descent - drawback
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The batch gradient descent algorithm becomes very slow as the number
of training examples increases.

This is because all the training data is seen at each iteration. The algorithm
is generally ran for a fixed number of iterations, say 1000.
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Stochastic Gradient Descent

Building blocks 38/52

The stochastic gradient descent algorithm randomly selects one training
instance to calculate its gradient.
epochs = 10
f o r epoch i n range ( epochs ) :

f o r i i n range (N) :
s e l e c t i o n = np . random . r a n d i n t (N)

# C a l c u l a t e the g r a d i e n t u s i n g s e l e c t i o n
# Update the we i gh t s

This allows it to work with large training sets.
Its trajectory is not as regular as the batch algorithm.

Because of its bumpy trajectory, it is often better at finding the global
minima, when compared to batch.
Its bumpy trajectory makes it bounce around the local minima.
A way around this is to decrease the learning rate as the number of epoch
increases - this is called a learning schedule.
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Stochastic Gradient Descent (SGD)
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It important that the examples are either selected randomly or shuffled
before running the algorithm to make sure that the algorithm converges
towards the global minima.



Mini-batch gradient descent
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At each step, rather than selecting one training example, as SGD does,
mini-batch gradient descent randomly selects a small number of
training examples to compute the gradients.

Its trajectory is more regular, compared to SGD.

As the size of the mini-batches increases, the algorithm is more and more
similar to bach gradient descent, which uses all the examples at each step.

It can take advantages of the hardware acceleration of matrix operations, in
particular GPUs.
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Batch, stochastic, and mini-batch
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Source: Géron 2019, Figure 4.11



Normal Equation
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Briefly. . .
For some loss functions, a closed-form solution exists, i.e. the problem can
be solved analytically.

This is the case for a quadratic function, such as the mean squared error
(MSE).
However, this involves computing an inverse matrix, which in turns involves
computing the singular value decomposition (SVD) of the matrix.

Such algorithms have a computational time complexity between O(D2.4) to
O(D3), where D is the number of features.
However, these algorithms are linear with respect to the number of examples,
N.
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Normal Equation is very slow when the number of features is large, say
100,000. However, the algorithm scales linearly with the number of examples.
Batch gradient descent is slow, cannot be run on large data sets where
out-of-core support is needed can work with a large number of features.
Stochastic gradient descent is fast, can handle a large number of
examples.
Mini-batch gradient descent is fast, can handle a large number of
examples. Takes advantage of hardware acceleration.

All three are implemented by SGDRegressor in Scikit-Learn.



Optimization and deep nets
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We will briefly revisit the subject when talking about deep artificial neural networks
for which specialized optimization algorithms exist.

Momentum Optimization
Nesterov Accelerated Gradient
AdaGrad
RMSProp
Adam and Nadam



Final word
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Optimization is a vast subject. Other algorithms exist and are used in other
contexts.
Including

Particle swarm optimization (PSO), genetic algorithms (GAs), and artificial
bee colony (ABC) algorithms.



Linear regression - summary
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A linear model assumes that the value of the label, ŷi , can be expressed as
a linear combination of the feature values, x (j)

i :

ŷi = h(xi) = θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The Mean Squared Error (MSE) is a

1
N

N∑
1

[h(xi) − yi ]2

Batch, stochastic, or mini-batch gradient descent can be used to find
“optimal” values for the weights, θj for j ∈ 0, 1 . . . D.
The result is a regressor. A function that can be used to predict the y value
(the label) for some unseen example x .
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Consider saying a few works about autodiff - See Géron §D.
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Summary
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An optimization algorithm is used to find “optimal” values for the
parameters of the linear model so as to minimize the value of the losss
function

The gradient of the loss function plays a central role in the gradient
descent algorithm. For each feature weight, it informs about the sign and
magnitude of the required change.
The learning rate controls how fast or slow the algorithm learns. The
algorithm might diverge is the learning rate is too high.
Batch gradient descent has a smooth trajectory, but becomes very slow
when the number of examples is large.
Stochastic and mini-batch gradient descent are good alternatives that can
handle large amounts of training examples.
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Next module
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Feature engineering, data imputation, dimensionality reduction.
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