
Exploring the Space of Consensus RNA Secondary
Structure Motifs Using Suffix Arrays

Truong Nguyen and Marcel Turcotte
School of Information Technology and Engineering

 University of Ottawa, 800 King Edward, Ottawa, Ontario K1N 6N5, Canada

Abstract
In the last few years, we have seen a rapid increase of
the number of known RNA families. For a significant
fraction of them, the mechanisms of action remain
unclear. Their signature combines structure and
sequence information. In most cases, they are difficult
to identify from sequence alone. Traditional
approaches to identify RNA motifs seek to find a
conserved structure with minimum free energy in an
ensemble of aligned sequences.

We present a novel approach for discovering
consensus secondary structure motifs in a set of
unaligned RNA sequences. The secondary structure
motifs combine sequence and structure information.
State-of-the-art data structures, suffix arrays in
particular, are used to enumerate exhaustively the
space of possible motifs. Suffix arrays (SAs) are used
for two purposes. First, to enumerate efficiently stem
structures, including internal loops. Second, SAs are
used to match secondary structure expressions. The
algorithms have been implemented in a software
system called Seed.

Applications of the approach on test cases shows
that i) complex search spaces can be exhaustively
explored and that ii) the search spaces contains
biologically relevant candidates.

Keywords: nucleic acids, structure, motifs discovery.

1. Background
The history of molecular biology is punctuated by a
series of discoveries demonstrating the surprising
breath of biological roles of RNAs. The identification
of novel non-protein coding RNAs (ncRNAs) requires
extensive human examination. This paper presents a
new software system that allows searching
exhaustively the space of RNA sequence and structure
motifs, therefore assisting the identification and
characterisation of new motifs.

The repertoire of known ncRNAs has grown
rapidly[1]. The housekeeping roles of RNAs, such as
those of tRNA, rRNA, RNAseP, snRNA and snoRNA,

were discovered early. While in the recent years, it
became clear that RNAs also have important
regulatory functions. Examples include microRNAs,
which regulate the expression of protein genes by
targeting a complementary region of their mRNAs.
MicroRNAs constitute one of the most abundant
classes of regulatory molecules, and are key to many
developmental processes[2]. Several discoveries
collectively demonstrate that untranslated messenger
RNAs can sense the level of metabolites, and
modulate the expression of certain genes accordingly.
Those RNAs are referred to as RNA sensors and
riboswitches, and have been reviewed[3, 4]. Post-
transcriptional regulation of gene expression often
involves secondary structure elements located in the
untranslated regions of mRNAs[5]. Through all those
discoveries, a new understanding of gene expression
regulation is emerging.

Lately, several resources have been established to
help understanding the RNA universe. Sequence and
functional elements of the 5’ and 3’ untranslated
regions of eukaryotic mRNAs are collected in the
UTRdb and UTRsite databases[6]. Sequence
information is available from the Noncoding RNAs
database[7]. Finally, Rfam compiles a large collection
of multiple sequence alignments and covariance
models for many common non-coding RNA
families[8].

Knowledge about RNA secondary structure
motifs serves two important purposes. First, an RNA
secondary structure motif presents the
essential/conserved features of an RNA family. It
directs the research efforts by restricting the set of
hypotheses to be tested. Ultimately, a motif may help
formulating a mechanism of action. Second, an RNA
motif helps finding new members of an RNA family.
Once identified, the candidate must be validated
experimentally.

Regular languages have been successfully used to
characterise DNA and protein sequence patterns.
Algorithms have been developed to automatically
infer sequence motifs, either from aligned or
unaligned sequences. With RNAs, the sequence
information alone is generally not enough. Members

1291

of an RNA gene family cannot be found using only the
sequence information of other known members.

Several database searching techniques have been
developed that combine sequence and structure
information. Approximate matching and stochastic
models are two approaches to accommodate for the
fact that biological data are often incomplete, and may
contain errors. BIOSMatch is an example of a
software system for the approximate matching of
secondary structure expressions[9]. While covariance
models are examples of the later[10, 11]. Approaches
that are general, are also extremely time/memory
consuming. Consequently, specialised programs are
often developed to recognise members of a given
family.

However, there are few algorithms that directly
address the problem of finding those motifs. Much
work has been done on predicting RNA structure
through energy minimization. Simply, the free energy
of an RNA molecule is modeled as the sum of the
contributions of independent cycles/loops (so called
nearest neighbour model[12]). Melting experiments
are performed to determine the free energy parameters
for small structures. Since the free energy can be
decomposed into a sum of independent loop
contributions, it can be solved exactly and efficiently
when formulated as a dynamic programming
problem[13]. Steady progress has been made, mainly
through the determination of more complete and
accurate sets of free energy parameters[14]. The
computer programs mfold[13] and RNAfold[15] are
two widely used implementations. The performance of
mfold, versions 2.3 and 3.1, has been evaluated on a
large dataset[16]. However, there are several reasons
why free energy minimization can fail.
• The lowest free energy conformation may not

coincide with the native conformation. This can
be due to experimental errors in determining the
free energy parameters, errors due to the
extrapolation of the parameters, or simply because
there are numerous lowest free energy
conformations, and it can be difficult to
distinguish the native conformation from the
others;

• Certain classes of RNA have more than one active
structure. This is the case for several RNA
regulatory elements termed riboswitches[3, 4, 17];

• The nearest neighbour model does not take into
account the contributions of the cellular
environment: proteins, other RNAs, metabolites
and solvent. Such contributions may be
particularly important for modeling regulatory
elements present the untranslated regions of
mRNAs. Similarly, RNAs are often modified after

their transcription, the modifications can play an
important role while folding;

• Pseudo-knot structures are often not considered.
For some RNAs, neglecting the contributions of
pseudo-knots may entail that the native
conformation and the lowest free energy
conformation are quite different. However, taking
into account pseudo-knots severely increases the
time/space complexity of the algorithms. There is
also a lack of experimental data that can be used
to deduce the free energy parameters.
The accuracy of the predictions can be increased

significantly if a multiple sequence alignment is used
as input. These sequences are assumed to share a
common secondary structure. Hofacker et al.
incorporated a new term into the total energy function
for taking into account covariations[18]. This
approach has been implemented in the program
RNAalifold. The number of required input sequences
is less than that of traditional covariations analyses,
yet the results are superior to the implementations
based on a single input sequence. Tahi, Gouy and
Régnier have taken a different approach deciding not
to include thermodynamics constraints into their
program, DCFold[19]. This software system handles
large sequences, and was reported to effectively
recover the common secondary structure of rRNAs.
The relative performance of comparative RNA
structure prediction approaches has been evaluated
recently[20].

Stochastic context-free grammars are a powerful
paradigm allowing for both the inference and the
database searching of secondary structure motifs[10,
11, 21]. However, the secondary structure inference
works best when the input consists of a set of aligned
sequences, and the heavy time/space complexity limits
their application to small sequences.

Often, an alignment is not readily available. It
could be that the similarity of the sequences is too low
to construct a multiple sequence alignment;
consequently, knowledge about the secondary
structure would be required to construct a reliable
alignment. Or, alternatively, the common motif
perhaps represents a small portion of each sequence;
and it can be discontinuous.

David Sankoff has developed recurrence
equations to simultaneously fold and align k sequences
([22], to be more precise, the work also proposes the
reconstruction of the ancestral sequence on a
phylogenetic tree, a real “tour de force”). Dynalign is
an implementation for 2 sequences[23]. It differs from
the original proposal in that there are no substitution
costs present in the recurrence equation. Prohibitive
time/space complexity limits its application to
sequences that are a few hundreds nucleotides long,

1292

and approximately the same size. Indeed, the
maximum distance between the aligned nucleotides is
restricted by a factor m, when m ~ n, where n is the
size of the input sequences, the complexity of the
algorithm is O(n6). In order to reduce the complexity
of the problem, Gorodkin et al. are focusing on hairpin
structures only[24, 25].

When a high quality alignment is available,
comparative analysis has proven to be an effective
approach[26]. Following the experimental
determination of the structure of two ribosomal RNAs,
30S and 50S, [27] reported that over 97% of the base
pairs predicted by comparative analysis were correct.
It is accepted that homologous sequences, sequences
that are related by common ancestry, adopt a similar
structure. The similarity of the sequences can be low,
yet the majority of the base pairs will be preserved.
Consequently, in a multiple sequence alignment that
reflects this structural homology, pairs of columns that
correspond to nucleotides involved in base pairs show
a high degree of covariations (simultaneous
coordinated changes). Secondary structure elements
(stems) are seen as pairs of segments i:j, i+1:j-1 …
with correlated changes. The degree of association is
often quantified using the mutual information
content[28, 29]. The analysis is powerful enough to
detect reliably tertiary interactions as well. The
application of this approach is limited by 1) the
availability of related yet divergent sequences and 2)
more importantly, by the difficulty to build a reliable
alignment without prior information about the
structure. Accordingly, comparative analyses are
mostly done by hand, iteratively, starting with the
most conserved sequences[16].

The methods presented thus far are designed to
find complete secondary structures. In fact, most
approaches predict the secondary structure for the
individual sequences then seek to find common
secondary structure elements. Sometimes, the
application requires focusing a restricted subset of the
secondary structure. We present a method that focuses
on finding secondary structure motifs.

2. Algorithms

2.1. Overview and design issues
Seed is a data exploration tool specifically designed to
search a space of conserved RNA secondary structure
motifs. We list here the main issues that influenced its
design. The space of valid RNA secondary structures
is extremely large, even when restricted to a given
input sequence; exponential w.r.t. the length of the
input sequence[30]. In order to make this search space

more tractable, we adopt a data-driven approach. A
seed sequence serves to induce a search space that is
exhaustively explored for finding motifs that also
match a significant fraction of the k input sequences.
The search space is traversed from the most general to
the most specific motif. Whenever a motif is found
that is not supported (does not match enough input
sequences) the motif and its descendant are pruned
from the search space.

The assumption that the input sequences share
some common features may not be true. Accordingly,
the motif discovery algorithm performs a “sequential
covering” of the input sequences. This means the
algorithm repeatedly selects a sequence, searches the
space of motifs induced by that sequence, selects the
“best” motif and removes all the input sequences that
match the “best” motif. The process stops when all the
input sequences have been processed. The top level
organisation of Seed is as follows.
1. Select a seed sequence;
2. Construct the most specific motif;
3. General-to-specific search of the motif space;
4. Select the “best” motif;
5. Remove all the input sequences containing the

selected motif;
6. If there are no more sequences then stop,

otherwise goto 1.
No heuristics are used, the algorithm exhaustively

explores the space of RNA secondary structure motifs
for a given input and set of parameters. Execution
times, although large, are small compared to the whole
process of identify, proving and characterising RNA
motifs experimentally.

2.2. Suffix trees and suffix-arrays
Suffix trees are a prominent data structure in
computational biology, powering efficient sequence
comparison and repeat finding algorithms that can be
applied to genomic scale data[31, 32]. A related data
structure, suffix arrays[33], offers some advantages
over suffix trees, namely reducing the memory
requirements and easier to implement algorithms[34].
Important and recent achievements now allow use of
suffix arrays every where suffix trees were used[34].
Those achievements are: a direct approach for the
linear-time construction of the suffix array[35-37], an
algorithm for finding the longest-common-prefix in
linear-time[38], and simulating the bottom-up[39] and
top-down[40] traversal of suffix trees, also in linear
time. We used suffix arrays for the implementation of
Seed but we will use suffix trees herein for clarity.
[34] shows the relationships between the two data
structures.

1293

A suffix tree for a text T = t1…tn is a rooted
labelled tree such that,
• the edges of the tree are labelled with substrings

of the text;
• each internal node has at least two children, with

the possible exception of the root of the tree;
• any two outgoing edges of the same internal node

start with a different letter;
• every suffix of the text is spelled out on a path

from the root to a leaf, and that leaf is labeled
with the start position of that suffix.
Several algorithms and implementation

techniques have been proposed for constructing the
data structure in linear-time and space. Applications
include pattern matching and repeat finding. A pattern
P occurs in a text T iff the suffix tree of T contains a
path (from the root of the tree) that spells P; this
follows from the fact that P occurs in T iff P is the
prefix of at least one suffix of T. A suffix tree exposes
all the internal repeats of a text. By definition, every
internal node has at least two descendants,
corresponding to suffixes that share a common prefix,
spelled out on the path from the root to that node.

A generalized suffix tree is a suffix tree that
contains all the suffixes of two or more strings. A
generalized suffix tree allows finding substrings that
are common to an ensemble of strings.

Briefly, a suffix array for a text T = t1….tn is an
array of integers that specifies the lexicographic order
of the suffixes of T; each entry of this array is the start
position a suffix of T. This simple data structure is
enhanced by pre-calculating other indexing structures
in order to perform the top-down and bottom-up
traversal, as well as calculating the longest-common-
prefix.

2.3. Most specific motif
The search space is induced from a seed sequence that
has been selected in the first step of the algorithm. The
basic algorithm is as follows.
1. Construct a suffix tree for T and TR;
2. For every starting position i in T, 1...n;

a) For every starting position j in TR, such that
j=|T|-i-L+1;

b) find the lowest common ancestor, l, of i and j
c) if the length of the complementary region is

larger than some user defined value then save
this stem.

where TR is the reverse complement of T, and L is
a user defined constraint on the maximum distance
between the 5’ end and the 3’ end of a stem. The basic
algorithm is extended in two ways. First, up to e
mismatches per stem are allowed. This involves
adding an inner loop, executed e times. For each

iteration, i and j are incremented by one. This
increases the time complexity by a factor e. The
second extension allows for interior loops; where the
maximum length for interior loops is bound by a used
defined constant m.

The location of each stem is recorded to be used
in the later stages of the algorithms. Similar ideas have
been proposed by Gusfield[41], for suffix trees only.

By using suffix arrays and range minimum query,
we are enumerating stems more efficiently than
GPRM[42, 43], O(n + em2Ln) instead of O(L3n).

2.4. General to specific search
The search algorithm consists of three distinct phases:
initialisation, instantiation and composition. During
the first phase, the algorithm initialises a list (queue)
of open nodes to contain structural motifs (see below).
The motifs have been derived from the selected seed
sequence. Only the motifs that have a minimum
support, i.e. that also match other sequences from the
input set, are part of the list. Structural motifs have no
base pair instantiated.

In the second phase, all the possible sequence
instantiations for every motif of the open list are
considered. Systematically and exhaustively, all the
base pairs of every stem motif in the open list are
replaced by the actual base pair that occurs in the seed
sequence. This information is readily available since
the location of every stem within the seed sequence
has been saved. Each newly created instance is
matched against the remaining sequences. Only the
motifs that have a minimum level of support are added
at the rear of the queue. Figure 1 illustrates this
process for a single stem. In the actual
implementation, the instantiations of all the motifs
currently in the open list are interleaved. In other
words, all the one base pair motifs for all the structural
motifs are explored first, followed by the exploration
of all the two base pair motifs, and so on.
Progressively, all the possible instantiations are
validated. This is done efficiently so that the same
instantiation is never considered twice. At the end of
the second phase, the open queue contains a mixture of
structural, partially and fully instantiated motifs, all
consisting of a single stem.

Finally, the third phase consists of creating multi-
stems motifs by selecting and composing two motifs at
a time from the open list. The composition of two
motifs is dictated by their occurrence within the seed
sequence. Given two motifs, there are two possible
relationships. One motif follows the other or one motif
is nested within the other. The seed sequence is used
to determine which relationship to use and to calculate
the distance parameters. Motifs that are structurally

1294

2.7. Suffix array-based matcher invalid (because they overlap in the sequence space) or
that don’t have the required minimum support are
discarded. During the execution of the third phase, the
open list contains a mixture of single and multi-stems
motifs, that are structural, partially or fully
instantiated.

We introduce an algorithm for matching secondary
structure expressions. The basic idea is to “thread” a
secondary structure expression onto the suffix tree of
the input sequence. This means simultaneously
traversing the expression, from its 5’ end, and the
suffix tree, starting from its root.

The main steps of this algorithm are as follows.
First, build a suffix tree for the input string. Then,
match the characters of the secondary structure
expression along the unique path in the suffix tree
until either 1) the end of the secondary structure
expression has been reached, 2) the end of a branch
has been reached, 3) a mismatch has been found, or 4)
the secondary structure expression contains a joker
(don’t care symbol, any base type should be allowed).

In the former case, every leaf of the subtree below
the last match represents the starting location of an
occurrence. For cases 2 and 3, this is a failure and the
algorithm must restart from the last branch point (see
below), if there are no more branch points, this means
the expression does not occur in the input sequence.

Finally, case 4, there are four issues to be
considered: the joker occurs in a loop region, the joker
occurs in the 5’ end region of a stem, it occurs in the
3’ end region of a stem, or it occurs at an internal node
(fork) of the suffix tree.

For the first three issues, it is assumed that the last
match was not the last letter of the label of an edge (it
occurred at some intermediate position). The first issue
is easy to deal with; the next character along this path
is accepted. Second issue, a joker has been found in a
5’ end region of a stem. The algorithm accepts the
next symbol along the current path, and pushes that
symbol onto a stack. Next and third issue, a joker is
encountered in a 3’ end region of a stem, the top of the
stack contains the base that occurred at the 5’ position
of the pair, if the next character along the current path
inside the tree is its complement then the top element
is discarded and the algorithm continues, otherwise
this is a failure and the algorithm restarts from an
earlier branch point, or stop indicating a failure.
Finally, whenever a joker is found, and the last match
occurred at the end of a label, then a branch point must
be created. Effectively, this means that the algorithm is
applied recursively for all the edges out of the internal
node where the last match has occurred. The system
stack serves to memorise all the branch points. When
the end of a secondary structure expression is reached
(case 1) the stack must also be empty; otherwise, the
expression is not valid.

Fig. 1: Schematic illustration of the sequence

instantiation process. Open circles correspond to
generic base pairs, n:n’, while the filled circles
represent specific base pair, a:u, u:a, c:g, g:c.

2.5. Objective function
Our research has focused on developing a framework
allowing to exhaustively search a space of possible
secondary structure motifs. The objective function that
has been used consists of calculating the information
content of the motif. See the Results section for further
details.

2.6. Matching algorithm
For all three phases of the search algorithm, the newly
created motifs must be matched against the k-1
remaining sequences in order to determine the level of
support.

The algorithm can answer two specific questions:
1) does this secondary structure expression occur in
this input string? and 2) how many occurrences of this

1295

expression are there? For the decision question, the
algorithm stops whenever the end of the secondary
structure expression is found. For the later question,
all the leaves of the subtree below the node where the
last character of the expression was matched must be
visited in order to count the number of occurrences.

Figure 2 illustrates the search. When a joker is
found in a 5’ end region of a stem, the current path, in
the suffix tree, is extended by one character, which is
also pushed onto a stack. Later, when a joker is found
in a 3’ end region of a stem, the character onto the top
of the stack must be the complement of a valid
extension of the current path.

Determining the level of support is critical, as this
allows pruning the search tree. The matching
algorithm is called for each newly created node,
therefore, most of the CPU time is spend matching
sequences.

Fig. 2: Secondary structure matching.

3. Results and discussion
We validated the approach using the secondary
structure model proposed by Le Quesne et al. for the
c-myc IRES[44]. The eight sequences that served to
derive the model were used as input; the sequences are
approximately 400 nucleotides long. We also applied
mfold, a widely used computer program for secondary
structure prediction. Within the top 1000 motifs
having the highest information content, 279 motifs
overlapped with Le Quesne et al.’s model. The
positive predictive value for those motifs varied from
23.5% to 100%, while the coverage varied from 7.8%
to 21.1%. PPV is defined as the fraction of the
predicted base pairs that are also occurring in the
experimentally derived model. The coverage is the

fraction of the base pairs from the model that are
predicted. The low coverage is expected since Seed is
aimed to produce small motifs. On the same dataset,
the PPV score measured for mfold was 12.3%, while
the coverage was 35%.

Our objective of building a software system
capable of enumerating exhaustively all possible
secondary structure motifs, w.r.t. a user defined set of
parameters, has been attained. Furthermore, the set of
motifs produced by the software system contains
biologically relevant candidates.

Several improvements to the algorithms are
considered. Such as replacing the suffix array-based
matcher by an algorithm derived from Myers’
generalisation the Cocke-Younger-Kasami[45].
However, the most urgent issue is to study alternative
objective functions.

Information content alone cannot distinguish
biologically relevant motifs from the rest. We are
currently investigating alternative scoring functions.
Recently, we extended the work of Mathews and
Turner, and implemented a software system for the
simultaneous alignment and structure prediction of
three RNA sequences[46, 47]. We will compare a
function based on a linear combination of the free
energy of all the matches to a more complex
information-based function that takes into account
positive and negative examples, as well as the
complexity of the motif.

Primary sequence information contributes to
defining the identity of RNA motifs. Indeed, in the
case of the T box system, for example, the acceptor
end of an uncharged tRNA forms base pairs with the
antiterminator element[48]. Accordingly, the identity
of the bases in the loop regions will also be
considered.

4. Conclusions
Determining RNA secondary structure motifs is
important for understanding the structure-function
relationship and post-transcriptional regulation, as
well as identifying RNA targets. We presented a
combinatorial algorithm for the detection of RNA
secondary structure motifs that are common to a set of
unaligned sequences. To our knowledge, this is the
first algorithm that directly attempts to exhaustively
explore the space of sequence and structure motifs
using suffix arrays. We also introduced a new suffix
arrays-based algorithm for matching RNA secondary
expressions. Our next research efforts will be focusing
on improving the objective function, and therefore the
ability of Seed to discriminate biologically interesting
motifs from the rest.

1296

5. References

1. Storz, G., An Expanding Universe of

Noncoding RNAs. Science, 2002. 296: p.
1260-1263.

2. Bartel, D.P., MicroRNAs: Genomics,
Biogenesis, Mechanism, and Function. Cell,
2004. 116: p. 281-297.

3. Lai, E.C., RNA Sensors and Riboswitches:
Self-Regulating Messages. Current Biology,
2003. 13: p. R285-R291.

4. Nudler, E. and A.X. Mironov, The riboswitch
control of bacterial metabolism. Trends Biol.
Sci., 2004. 29(1): p. 11-17.

5. Mignoe, F., et al., Untranslated regions of
mRNAs. Genome Biology, 2003. 3(3): p.
0004.1-0004.10.

6. Pesole, G., et al., UTRdb and UTRsite:
specialized databases of sequences and
functional elements of 5' and 3' untranslated
regions of eukaryotic mRNAs. Update 2002.
Nucl. Acids Res., 2002. 30(1): p. 335-340.

7. Szymannski, M., V.A. Erdmann, and J.
Barciszewsk, Noncoding regulatory RNAs
database. Nucl. Acids Res., 2003. 31(1): p.
429-431.

8. Griffiths-Jones, S., et al., Rfam: an RNA
family database. Nucl. Acids Res., 2003.
31(1): p. 439-441.

9. El-Mabrouk, N. and M. Raffinot,
Approximate matching of secondary
structures, in Proceedings of the sixth annual
international conference on computational
molecular biology (RECOMB). 2002, ACM.
p. 156-164.

10. Eddy, S.R. and R. Durbin, RNA sequence
analysis using covariance models. Nucl.
Acids Res., 1994. 22(11): p. 2079-88.

11. Sakakibara, Y., et al., Stochastic context-free
grammars for tRNA modeling. Nucl. Acids
Res., 1994. 22: p. 5112-5120.

12. Borer, P.N., et al., Stability of Ribonucleic
acid Double-stranded Helices. J. Mol. Biol.,
1974. 86: p. 843-853.

13. Zuker, M. and P. Stiegler, Optimal computer
folding of large RNA sequences using
thermodynamics and auxiliary information.
Nucl. Acids Res., 1981. 9: p. 133-148.

14. Mathews, D.H., et al., Expanded Sequence
Dependence of Thermodynamic Parameters
Improves Prediction of RNA Secondary
Structure. J. Mol. Biol., 1999. 288: p. 911-
940.

15. Hofacker, I.L., et al., Fast Folding and
Comparison of RNA Secondary Structures.
Monatshefte für Chemie, 1994. 125: p. 167-
188.

16. Doshi, K.J., et al., Evaluation of the
suitability of free-energy minimization using
mearest-neighbor energy parameters for RNA
secondary structure prediction. BMC
Bioinformatics, 2004. 5: p. 105.

17. Voss, B., C. Meyer, and R. Giegerich,
Evaluating the predictability of
conformational switching in RNA.
Bioinformatics, 2004. 20(10): p. 1573-1582.

18. Hofacker, I.L., M. Fekete, and P.F. Stadler,
Secondary Structure Prediction for Aligned
RNA Sequences. J. Mol. Biol., 2002. 319: p.
1059-1066.

19. Tahi, F., M. Gouy, and M. Régnier,
Automatic RNA secondary structure
prediction with a comparative approach.
Computers and Chemistry, 2002. 26: p. 521-
530.

20. Gardner, P.P. and G. Robert, A
comprehensive comparison of comparative
RNA structure prediction approaches. BMC
Bioinformatics, 2004. 5: p. 140.

21. Knudsen, B. and J. Hein, Pfold: RNA
secondary structure prediction using
stochastic context-free grammars. Nucleic
Acids Res, 2003. 31(13): p. 3423-8.

22. Sankoff, D., Simultaneous solution of RNA
folding, alignment and protosequence
problems. SIAM J. Appl. Math., 1985. 45(5):
p. 810-825.

23. Mathews, D.H. and D.H. Turner, Dynalign:
An Algorithm for Finding the Secondary
Structure Common to Two RNA Sequences.
J. Mol. Biol., 2002. 317: p. 191-203.

24. Gorodkin, J., L.J. Heyer, and G.D. Stormo,
Finding the most significant common
sequence and structure motifs in a set of
RNA sequences. Nucl. Acids Res., 1997.
25(18): p. 3724-3732.

25. Gorodkin, J., S.L. Stricklin, and G.D. Stormo,
Discovering common stem-loop motifs in
unaligned RNA sequences. Nucl. Acids Res.,
2001. 29(10): p. 2135-2144.

26. Woese, C.R. and N.R. Pace, Probing RNA
Structure, Function and History by
Comparative Analysis, in The RNA World,
R.F. Gesteland and J.F. Atkins, Editors. 1993,
Cold Sprint Harbor Laboratory Press. p. 91-
117.

27. Gutell, R.R., J.C. Lee, and J.J. Cannone, The
accuracy of ribosomal RNA comparative

1297

structure models. Curr. Opin. Struct. Biol.,
2002. 12(3): p. 301-310.

28. Chiu, D.K. and T. Kolodziejczak, Inferring
consensus structure from nucleic acid
sequences. CABIOS, 1991. 7: p. 347-352.

29. Gutell, R.R., et al., Identifying constraints on
the higher-order structure of RNA: continued
development and application of comparative
sequence analysis methods. Nucl. Acids Res.,
1992. 20: p. 5785-5795.

30. Zuker, M. and D. Sankoff, RNA Secondary
Structure and Their Prediction. Bulletin of
Mathematical Biology, 1984. 46(4): p. 591-
621.

31. Kurtz, S., et al., REPuter: the manifold
applications of repeat analysis on a genomic
scale. Nucl. Acids Res., 2001. 29(22): p.
4633-4642.

32. Kurtz, S., et al., Versatile and open software
for comparing large genomes. Genome
Biology, 2004. 5(2): p. R12.

33. Manber, U. and G.E. Myers, Suffix arrays: a
new method for on-line string searches.
SIAM J. Comput., 1993. 22(5): p. 935-948.

34. Abouelhoda, M.I., S. Kurtz, and E.
Ohlebusch, Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete
Algorithms, 2003. 2: p. 53-86.

35. Käkkäinen, J. and P. Sanders, Simple Linear
Work Suffix Array Construction, in Annual
Symposium on Combinatorial Pattern
Matching. 2003, Springer-Verlag: Berlin. p.
943-955.

36. Kho, P. and S. Aluru, Space efficient linear
time construction of suffix arrays, in Annual
Symposium on Combinatorial Pattern
Matching. 2003, Springer-Verlag: Berlin. p.
200-210.

37. Kim, D.K., et al., Linear-time construction of
suffix arrays, in Annual Symposium on
Combinatorial Pattern Matching. 2003,
Springer-Verlag: Berlin.

38. Kasai, T., et al., Linear-Time Longest-
Common-Prefix Computation in Suffix Arrays
and Its Applications, in Annual Symposium
on Combinatorial Pattern Matching. 2001,
Springer-Verlag: Berline. p. 181-192.

39. Abouelhoda, M.I., S. Kurtz, and E.
Ohlebusch, The Enhanced Suffix Array and
its Applications to Genome Analysis, in 2nd
Workshop on Algorithms in Bioinformatics.
2002, Springer-Verlag. p. 449-463.

40. Abouelhoda, M.I., S. Kurtz, and E.
Ohlebusch, Optimal Exact String Matching
Based on Suffix Arrays, in 9th International

Symposium on String Processing and
Information Retrieval. 2002, Springer-
Verlag: Berlin. p. 31-43.

41. Gusfield, D., Algorithms on Strings, Trees,
and Sequences: Computer Science and
Computational Biology. 1997: Cambridge
University Press.

42. Hu, Y.J., Prediction of consensus structural
motifs in a family of coregulated RNA
sequences. Nucleic Acids Res, 2002. 30(17):
p. 3886-93.

43. Hu, Y.J., GPRM: A genetic programming
approach to finding common RNA secondary
structure elements. Nucleic Acids Res, 2003.
31(13): p. 3446-9.

44. Le Quesne, J.P., et al., Derivation of a
structural model for the c-myc IRES. J Mol
Biol, 2001. 310(1): p. 111-26.

45. Myers, G., Approximately matching context-
free languages. Information Processing
Letters, 1995. 54: p. 85-92.

46. Masoumi, B. and M. Turcotte. Simultaneous
Alignment and Structure Prediction of RNAs:
Are Three Input Sequences Better than Two?
in International Conference on
Computational Science (ICCS 2005), Lecture
Notes in Computer Science 3515. 2005.
Atlanta, USA: Springer Verlag.

47. Masoumi, B. and M. Turcotte, Simultaneous
alignment and structure prediction of three
RNA sequences. International Journal of
Bioinformatics Research and Applications, In
Press - 2005.

48. Grundy, F.J. and T.M. Henkin, Regulation of
gene expression by effectors that bind to
RNA. Curr. Opin. Microbiology, 2004. 7: p.
126-131.

1298

	BOOK2.pdf
	BOOK2.pdf
	BOOK2.pdf
	BOOK2.pdf
	BOOK2.pdf
	BOOK2.pdf
	BOOK2.pdf
	final_CBGI-23.pdf
	final_CBGI-23.pdf
	SSP ALGORITHM
	Acknowledgements

	revised_WDM-3.pdf
	Introduction
	Retrieval
	Processing
	Cleansing
	Mining
	Visualization
	Conclusion
	REFERENCES

	final_WDM-27.pdf
	1. Introduction
	2. Sensor networks as databases
	2.1. Similarities
	2.2. Differences

	3. SQL-like query language
	4. Silent messages
	5. Simulator
	5.1. Preparing queries
	5.2. Executing queries
	5.3. Results

	6. Related work
	7. Conclusion and future work
	8. References

	final_ESI-10.pdf
	A Web-based Decision Support System for Linear Bilevel Multi-follower Problems without Shared Variables
	
	Abstract

	1. Introduction
	2. The Extended Kuhn-Tucker Method for linear BLMFP
	3. WLBLDSS Architecture and Implementation
	3.1. WLBLDSS Architecture
	3.2. Client Side Application Design
	3.3. Sever Side Application Design
	3.4 Method Design
	3.5. WLBLDSS Database Design
	3.6. Guide of WLBLDSS

	4. Conclusions and Future Work
	References

