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Abstract— The history of molecular biology is punctuated by
a series of discoveries demonstrating the surprising breadth
of biological roles of ribonucleic acid (RNA). An ensemble of
evolutionary related RNA sequences believed to contain signals
at sequence and structure level can be exploited to detect motifs
common to all or a portion of those sequences. Finding these
similar structural features can provide substantial information
as to which parts of the sequence are functional. For several
decades, free energy minimization has been the most popular
method for structure prediction. However, limitations of the
free energy models as well as time complexity have prompted
us to look for alternative approaches. We therefore, investigate
another paradigm, minimum description length (MDL) encoding,
for evaluating the significance of consensus motifs. Here, we
evaluate motifs generated by Seed using the description length
as a selection criteria. MDL scoring method was tested on four
data sets of varying complexity. We found that the scoring
method produces competing structures in comparison to the ones
predicted with lowest free energy. The top rank motifs have high
measures of positive predicted value to known motifs.

Keywords: RNA, secondary structure, motif, minimum descrip-
tion length.

I. INTRODUCTION

RNA molecules are involved in a vast number of cel-
lular functions, some of which include catalysis, splicing
of premature messenger RNAs (mRNA), storage of genetic
information and performing regulatory functions. To a great
extent, the function of the RNA molecule is determined by
its structure. RNA secondary structure prediction methods
provide structural information that can serve as input constraint
for solving the tertiary structure.

There are several automated methods for predicting sec-
ondary structures, either from a set of homologous RNA
sequences or from a single sequence. The methods based on
a set of sequences have the advantage of using evolutionary
information, but have the disadvantage of requiring expensive
computations. Also, these methods require an accurate align-
ment of the sequences, which is often not readily available.
One of the most popular methods for prediction from a single
sequence is through free energy minimization. A review of the
developments of this paradigm can be found at [1], [2], [3].
Secondary structure prediction has also been approached by
combining thermodynamics and comparative information. This
class of algorithm attempts to fold and align the sequences

simultaneously using a dynamic programming approach. The
algorithms are both time and memory expensive, and restricted
implementations are available in FOLDALIGN [4] and Dy-
nalign [5].

As a result, the identification of RNA structures requires
extensive human examination. We recently developed a novel
method, Seed, to exhaustively search the space of RNA
sequence and structure motifs using suffix arrays [6], [7].
The approach consists of two phases. First, the search space
is generated from the seed sequence using suffix arrays.
Secondly, suffix arrays are used to match secondary structure
elements. The main steps of the Seed algorithm are as follows.

1) Select a seed sequence;
2) Construct the most specific motif;
3) General-to-specific search of the motif space;
4) Report the motifs.

The algorithm is built with user defined parameters to re-
lax or restrict the size of the search space and accordingly
the execution time. Seed identifies all the conserved RNA
secondary structure motifs in a set of unaligned sequences.
The search space is defined as the set of all the secondary
structure motifs inducible from a seed sequence. Since Seed is
exhaustive and independent of any scoring scheme, it provides
an ideal environment to evaluate and study scoring methods
to identify native folds.

For several decades now, free energy minimization has been
the de facto method for studying RNA secondary structure.
It suggests that the structure with the lowest free energy
should be the most stable, and hence, the active fold. Also
assumed is that the free energies of individual structural motifs
are additive. Melting experiments are performed to determine
the free energy parameters for small structures. Since the
free energy can be decomposed into a sum of independent
contributions, it can be solved exactly and efficiently when
formulated as a dynamic programming problem [8].

Nearest neighbor model is the most common model used
for predicting the stability of RNA. Figure 1 illustrates the
calculation of the nearest neighbor stability in a small RNA
molecule. Factors such as helical stacking, loop initiation,
and unpaired nucleotide stacking contribute to the total con-
formational free energy. Favorable free energy increments
are less than zero. The thermodynamic values for a helical



CCC
GU

GG
A

A

C
A

C C
U A

G G G
G

5’

3’

5

10

15

123

-0.3

4.9

-3.3 -0.2
-1.1

-3.3

-3.3

Fig. 1. Prediction of the conformational free energy for a conformation of
5’-CCCGUGGAACACCUAGGGG-3’. The total free energy is the sum of
each increment. The total free energy amounts to -5.5 kcal/mol.

region are calculated as the sum of the adjacent stacked pairs.
For example, the consecutive CG base pairs contribute -3.3
kcal/mol each. Predicting the free energy for loop regions
have unfavorable increments called loop initiation energies.
For example, the hairpin loop of four nucleotides has an
initiation energy of 4.9 kcal/mol. These increments differ for
hairpin, bulge and internal loops. Unpaired nucleotides in
(internal) loops can provide favorable energy increments as
either stacked nucleotides or as mismatched pairs.

Although the predictions have been on an average about
70% successful for sequences less than 100 nucleotides long
[9], the performance of thermodynamics based methods is
limited by thermodynamic models and parameters. There are
several reasons why free energy minimization methods can
fail.
• The lowest free energy conformation may not coincide

with the native conformation. This can be due to experi-
mental errors in determining the free energy parameters,
errors due to the extrapolation of the parameters, or
simply because there are numerous lowest free energy
conformations, and it can be difficult to distinguish the
native conformation from the others;

• Certain classes of RNA have more than one active struc-
ture. This is the case for several RNA regulatory elements
termed riboswitches [10], [11], [12];

• No tertiary interactions are included in the model, no
pseudoknotted structures and no interactions with cellular
environment are considered.

The MDL statistical inference approach has proven to be
highly valuable for numerous model selection problems. An
MDL framework is outlined for tackling the problem of
selecting the native fold from the rest. We present in this paper,
an alternative approach to evaluate the significance of motifs
such that the motifs ranking the highest are also biologically
relevant. The paper is organized as follows. Section 2 outlines
the basic concept of MDL and, in particular how to calculate
the description length of the motifs. Section 3 presents the
results obtained on the different data sets and Section 4

discusses the results and concludes.

II. METHOD

The purpose of a scoring function is to distinguish the
biologically relevant motifs amongst an ensemble of motifs,
that is, to approximate the biological meanings of the motifs in
terms of mathematical function. In [13], we found that statisti-
cal (regression) model based on thermodynamic principles was
effective to identify native folds. The attributes used captured
the essential features of the motifs and helped us to summarize
the data by estimating them. Herein, we investigate a pure
statistical method to determine the native fold that avoids using
a priori information.

The minimum description length principle [14], [15] was
formulated in the context of computational complexity and
coding theory. Its use for statistical model selection has
developed over the last decades, largely as a result of the work
by Rissanen (1978).

The secondary structure prediction is seen here as a sci-
entific discovery process. Paraphrasing Grünwald, an impor-
tant component of any discovery process consists of finding
regularities in data. Regularities can be used to compress
the data. Thus, when considering competing hypotheses, the
hypothesis that achieves the highest compression can also
be considered the most significant [16]. Accordingly, the
minimum description length principle postulates that the best
model (motif in our case) is the one that minimizes the length
in bits, of both the description of the model and the data
encoded by the model.

We propose a simple encoding that follows [17] and is
as close as possible to the encoding used by Seed. Let
T = {T1, T2, ..., Tk} be a set of k input sequences, such
that T ∈

∑
RNA, where

∑
RNA = {A,C,G,U} is a 4-letter

nucleotide alphabet. Without loss of generality, let us assume
that the sequences have been sorted by length, so that T1 is
the shortest input sequence. Let M denote a consensus RNA
secondary motif. For a given M , let T+ denote the sequences
of T matching M , and T− the rest, that is, T− = T\T+, it is
assumed that T1 is not included in T+, see below.

Let L(X) be a function that returns the length of its inputs
X , in bits. The significance of the motif M given T is defined
as follows.

L(T1) + L(M) + L(T+) + L(T−)

where L(T1) + L(M) defines the length of the model and
L(T+) + L(T−) defines the length of the data.

A. Encoding the Model

We use information theory in its fundamental form to
measure the significance of different motifs [14], [15]. The
theory takes into account the probability of a nucleotide in a
motif (or sequence) when calculating the description length
of the motif (or sequence). Shannon showed that the length
in bits to transmit a symbol b via a channel in some optimal
coding is − log2 Px(b), where Px(b) is the probability with
which symbol b occurs. Given the probability distribution Px



over an alphabet
∑

x = (b1, b2, ..., bn), we can calculate the
description length of any string bk1bk2 ...bkl

over the alphabet∑
x by −

∑l
i=1 log2 Px(bki

).
The length in bits to transmit the sequence T1 is given as

dlen(T1) = −
4∑

i=1

nai
P (ai)

where probability distribution P is estimated using frequencies
of nucleotides in the data set, ai ∈

∑
RNA and nai

is the
number of occurrences of ai.

Figure 2 illustrates the encoding of the second part of the
model M .

In the above example, the motif M was inferred using T1.
It is described with respect to T1.

The given motif consists of two stems. It matches the
sequence indicated by ‘Seq’ at position 2. As a sender, we
first send the sequence T1 followed by the information of the
motif. A bitmap representation is used to encode the stem
information of the motif. A bit value of ‘1’ tells the receiver
to extract the information of the base from the sequence T1.
Assuming only Watson-Crick base pairs, the base at 3’-end
can be constructed. Bit value of ‘0’ indicates that the base is
not conserved across the sequences. Consequently, the base
information is extracted from the remaining sequences (T+)
sent later. To reconstruct the motif at the other end, the location
and length of the stems are also transmitted. Hence, we achieve
compression by sending the positions of the stems followed
by the bitmap representation instead of sending the complete
motif.

We encode the above motif as 2, 6, 69, 0, 0, 0, 0, 0, 9, 12,
17, 0, 0, 0, 0, 27, 31, 17, 1, 0, 0, 1, 1, 49, 51, 17, 0, 0, 1,$
where$ is a delimiter to signal the end of the motif. The first
three numerals indicate the start, end (position) and length of
the first stem occurring in the motif, followed by the bitmap
representation of that stem. This is followed by the remaining
stems.

Let
∑

1 denote the alphabet {s, e, l, 1, 0, $}, where s, e and
l are the parameters that define the stem. Let P1 denote the
probability distribution over the alphabet

∑
1. P1($) can be

approximated by the reciprocal of the average length of motifs.
P1(s), P1(e) and P1(l) can be calculated as n(P1($)) where
n denotes the number of stems. Finally, P1(0) = (1 − (n +
1)P1($))P (0) and P1(1) = (1 − (n + 1)P1($))P (1). Given
P1, we can calculate the description length of a motif. For the
above example the description length is

dlen(M) =− [log2 P1($) + 4 log2 P1(s) + 4 log2 P1(l)
+ 4 log2 P1(e) + 13 log2 P1(0) + 4 log2 P1(1)]

B. Encoding Positive and Negative Sequences

Sequences matching the motif (T+) are encoded with the
help of motif M while the rest (T−) are encoded similarly
to T1. Figure 3 illustrates encoding a matching sequence with
help of the motif.

For the receiver to recreate the sequence, we need to send
the 5’-end nucleotide information of the stem whose bitmap

has a value ‘0’, as the bases with associated with the values
‘1’ are recreated from the model, the offset k of the motif
and the remaining part of the sequence. The 3’-end of the
stem can be recreated from the 5’-end information as they
are complementary. Seed allows a range operator that permits
additional base pairs to be considered by the pattern matcher.
We use a separate delimiter i to indicate insertions of base
pairs.

The message to be transmitted now includes the 5’-stem
information of the stems followed by the offset k, and the
remaining nucleotide information. An insertion is indicated
by the delimiter i containing the position followed by the
nucleotide inserted. We encode the above sequence as G, A,
U, U, G, G, U, U, C, C, G, G, C, k, G, U, A, A, A, U, U, G,
G, U, C, A, C, U, G, U, C, A, A, A, A, G, A, U, G, G, U, U, C,
G, A, G, C, C, C, C, C, G, C, C, A, G, $ where $ indicates the
end of the sequence and k is the offset location of the motif.
Since there are no insertions in the above example, we do not
include the delimiter i.

Let
∑

2 denote the alphabet {a1, a2, a3, a4, i, k, $}, where
a1, a2, a3, and a4, are the four nucleotide types. Let P2 denote
the probability distribution over the alphabet

∑
2. P2($) and

P2(k) can be approximated by the reciprocal of average length
of the positive sequences. P2(i) = nP2($), where n denotes
the number of insertions. Finally, P2(ai) = (1 − (2P2($) +
nP2(i)))P (ai). For the above sequence, the description length
is

dlen(Ti,M) =− [log2 P2($) + log2 P2(k) + 13 log2 P2(A)
+ 16 log2 P2(G) + 15 log2 P2(C) + 13 log2 P2(U)]

C. Significance of a Motif

Suppose there are n sequences out of which k sequences
match the motif, the significance of the motif M , denoted by
w(M) is defined as

w(Mj) =
n∑

i=1

dlen(Ti)− (dlen(Mj) +
k∑

i=1

dlen(T+i
,M)

+
n−k∑
i=1

dlen(T−i
))

Intuitively, the more sequences in T+ matching Mj and the
less number of bits we use to encode Mj and to encode the
those sequences based on Mj , the larger weight Mj has.

D. Data Sets

All the 3’ UTR entries containing the keyword histone as
well as an HSL3 feature were extracted from UTRdb release
19 [18]. A total of 28 sequences was obtained. The length of
the sequences varies from 51 to 1, 955 nucleotides, with an
average length of 701 nucleotides. See [7] for further details.

All the mammalian 5’ UTR entries containing the keyword
ferritin and a valid IRE motif were extracted from UTRdb
release 19 [18]. A total of 14 sequences was obtained. The
length of the sequences varies from 58 to 2,188 nucleotides,
with an average length of 378 nucleotides.
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A tRNA dataset was assembled using a subset of the
sequences from Masoumi and Turcotte [19]. Seven sequences
having approximately the same length were used. These are
generally challenging sequences for traditional approaches,
such as MFOLD [1].

Similarly, a 5S dataset was assembled using a subset of the
sequences from Masoumi and Turcotte [19]. Seven sequences
having approximately the same length were used. These also
are generally challenging sequences for traditional approaches,
such as MFOLD.

E. Performance Measures

1) MCC, PPV and Sensitivity: We call references, the sec-
ondary structures that were obtained from curated databases.
We define as true positives (TP) the base pairs that are occur-
ring in both structures, reference and predicted, false positives
(FP), the base pairs that are occurring in the predicted structure
but not in the reference one, and false negatives (FN), the base
pairs that are occurring in the reference structure but not in
the predicted one. Offsets were not allowed.

The positive predictive value (PPV) is defined as the
fraction of the predicted base pairs that are also present in the
reference structure, TP/(TP+FP). The sensitivity is defined
as the fraction of the base pairs from the reference structure
that are correctly predicted, TP/(TP +FN ). Finally, we also
measured the Matthews Correlation Coefficient, as defined
by Gorodkin, Stricklin and Stormo [4]:√

TP
(TP + FN )

× TP
(TP + FP)

2) Ranking Statistics: The scoring method should be able
to rank the motifs in decreasing order of their performance. In
order to measure the performance of the scoring function, we
used a rank based evaluation recently proposed by [20]. Rank
based evaluation offer advantages over residue by being robust
to outliers and providing insights about the local performance
of the model. They also provide statistics that are similar to
the commonly used correlation coefficients in data analysis

(Spearman’s ρ and Kendall’s τ ). Value of τ̂ and ρ̂ range
from −1 to +1, where +1 corresponds to a perfect model
performance and −1 to making all possible errors.

III. EXPERIMENTAL RESULTS

We have tested the performance of the MDL based scoring
method proposed on four data sets. Different parameters were
used in Seed to generate suitable stem-loop structures for each
dataset. The search space contained motifs of varying degree
of PPV and sensitivity. Table I shows the number of motifs
found by Seed for each data set. The ranking statistics are
shown in Table II. For 5S experiment, the number of motifs
was large (365,505). Ten samples comprising of 10,000 motifs
were picked randomly and averaged to calculate the statistics
for 5S data set. Plots are drawn to show the correlation
between MCC and description length of the motifs.

For single stem structure, HSL3, the top motif ranked
by the scoring method has PPV and sensitivity of 100%.
Also, for the second data set, IRE, we see that the high
PPV/sensitivity motifs have lower description length; the top
motif measuring at 100/92.7%. Figure 4 shows that the motifs
producing the maximum compression (minimum length) also
have high MCC. As expected, the search space also contains
small and/or generic motifs with low compression but high
MCC; represented by the spikes toward the right hand side of
the diagram. The performance on HSL3 and IRE data set is
also supported by high values of ranking statistics (see Table
II).

We now focus on the performance of the MDL scoring
method for complex structures. The motif with the lowest de-
scription length has an average PPV/sensitivity of 88.2/73.7%.
We see a strong correlation between the different performance
measures and the description length (see Figure 4). This also
fits in nicely with the significance results of ρ̂ (0.727 for
AVGMCC). On 5S data, the average sensitivity is lower than
that for the other datasets. However, the top ranked motif has
a sensitivity of 40.4%, which is 7.8 percentage points less than
the maximum observed sensitivity for the whole search space.



TABLE I
DETAILS OF THE EXECUTION OF SEED FOR ALL THE 4 EXPERIMENTS SHOWING THE NUMBER OF SEQUENCES (Seqs) PRESENT IN THE DATA SET, THE

NUMBER OF MOTIFS DISCOVERED (Motifs), THE TOP MOTIF PICKED BY THE MDL BASED SCORING SCHEME AND ITS PERFORMANCE MEASURES. MFE
IS THE SCORE OBTAINED USING FREE ENERGY FOR RANKING THE MOTIFS, MAX INDICATES THE LARGEST SCORE FOR THE WHOLE SEARCH SPACE

(MAXIMUM ATTAINABLE SCORE).

Id Seqs Motifs AVGPPV AVGSEN AVGMCC
MDL MFE MAX MDL MFE MAX

HSL3 27 357 100.0 100.0 100.0 100.0 100.0 100.0 100.0
IRE 13 110 100.0 100.0 100.0 92.7 92.7 93.3 96.3
tRNA 7 5,518 88.2 96.0 100.0 73.7 71.2 76.2 80.6
5S 7 365,505 70.9 72.5 100.0 40.4 30.1 48.2 53.5

TABLE II
RANK STATISTICS. RANKING STATISTICS FOR THE SCORING METHOD FOR ALL FOUR EXPERIMENTS. AVGMCC HAS BEEN USED AS THE RESPONSE

VARIABLE.

HSL3 IRE tRNA 5S
τ̂ ρ̂ τ̂ ρ̂ τ̂ ρ̂ τ̂ ρ̂

AVGSEN 0.686 0.813 0.561 0.639 0.584 0.770 0.277 0.394
AVGPPV 0.708 0.819 0.562 0.638 0.435 0.603 0.118 0.165
AVGMCC 0.686 0.813 0.561 0.639 0.539 0.727 0.198 0.288

Although the ranking statistics of 5S indicate poor ranking
performance, the results for the top ranks motifs is optimal, in
the sense that this is the motif with the highest MCC in our
search space. The maximum PPV and sensitivity of the top 8
structurally distinct motifs are 86.4 and 50.0% respectively.

For all the four experiments, the figures and ranking statis-
tics support the use of MDL criterion for ranking consen-
sus motifs. Top-ranked motifs generally correspond to high
PPV/sensitivity motifs while bottom-ranked motifs correspond
to low PPV/sensitivity motifs.

IV. DISCUSSION AND CONCLUSION

In this work, we presented a scoring method for the software
system Seed. The purpose was to distinguish the biologically
relevant RNA secondary structure motifs from the rest. We
evaluated our method on four different datasets having varying
range of complexity. Two datasets we constructed consisted
of selected members of UTRdb database, which contains the
flanking 5’ and 3’ untranslated regions of genes. Others were
assembled using a subset of sequences from [19].

We found that the method was able to identify high PPV
motifs. For single stem structures, HSL3 and IRE, the pre-
dictions made have a high measure of PPV/sensitivity, often
100%. For complex structures, the scoring method could
identify motifs with high PPV but lower sensitivity. All the
results were supported by the ranking statistics.

The MDL method has its unique merits over thermodynamic
based method as it successfully avoids a priori information.
Since this method does not use any biological information, this
work could be extended to compare pseudoknotted structures,
for which no experimentally derived parameters are available.
Future work includes developing a more theoretical/general
framework expressed in terms of code length functions rather
than a specific encoding.

We have introduced a scoring function formulation, imple-
mented on the software Seed, designed to pick the best pre-
diction(s) of RNA secondary structure motifs. The advantage
of scoring functions is that they give us an intuitive mean by
which to compare different motifs. This general approach of
using MDL principle to evaluate RNA secondary structure can
be useful for motif discovery.
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