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Abstract

Recent experimental evidences have shown that ribonucleic acid
(RNA) plays a greater role in the cell than previously thought. An
ensemble of RNA sequences believed to contain signals at the struc-
ture level can be exploited to detect functional motifs common to all
or a portion of those sequences. We present here a general framework
for analyzing multiple RNA secondary structures. A family of related
RNA structures may be analyzed using statistical regression methods.

In this work, we extend our previously developed algorithm, Seed,
that allows to explore exhaustively the search space of RNA sequence
and structure motifs. We introduce here several objective functions
based on thermodynamic free energy and information content to dis-
criminate native folds from the rest. We assume that the variation
across the various scores can be represented by a statistical model.
Regression analysis permits to assign separate weight for each score,
allowing one to emphasize or compensate the variance that differs
across the different scores. A statistical model can be formulated us-
ing techniques from regression analysis to obtain a template or scoring
model that is able to identify putative functional regions in RNA se-
quences.

We show that thermodynamic based regression models are effective
to associate the variation of scores obtained from different functions.
The models can generally identify motifs with high measures of speci-
ficity and positive predicted value to known motifs. A good scoring
method will allow to eliminate invalid motifs thereby reducing the size
of the hypothesis space.

Keywords: Motif discovery; ribonucleic acid; secondary
structure; thermodynamics; linear regression.

1 Introduction

While the main role of DNA (deoxyribonucleic acid) is
the storage of genetic information, RNA (ribonucleic acid),
a versatile bipolymer, has many different biological roles
to fulfill. The widely recognized functions include carry-
ing and recognizing genetic information as messenger RNA
(mRNA) and transfer RNA (tRNA). In addition to these,
RNA has been implicated in several other biological events.

Recent developments have shown that RNAs also have
important regulatory functions. Examples include micro-
RNAs that regulate the expression of genes by binding to
the 3’-untranslated regions of specific mRNAs [1]. They
exercise control over those RNAs that code for proteins.
The function of these regulatory elements depends on the
presence of motifs that are conserved both in structure and
more loosely in sequence.

Post-transcriptional regulation of gene expression often
involves secondary structure elements located in the un-
translated regions of mRNAs [2]. These untranslated re-
gions share distinct structural features in RNA molecules

and are correlated with their biological function. Finding
these similar structural features in a group of RNA se-
quences believed to share the same function can provide
substantial information predicting which parts of the se-
quence are functionally important.

To address the requirement of computational tools to an-
alyze RNA sequences, various methods have been devel-
oped. The most popular approach to structure prediction
is perhaps through energy minimization. Here, the free
energy modeled as the sum of the contributions of inde-
pendent cycles using nearest neighbor model [3]. Although
the predictions have been on an average about 70% accu-
rate [4], low accuracy predictions are also made. There are
several reasons why free energy minimization methods can
fail. Firstly, the lowest free energy conformation may not
coincide with the native conformation. This can be due
to experimental errors in determining the free energy pa-
rameters, or simply because there are several free energy
conformations, and it can be difficult to distinguish the na-
tive conformation from the others. Secondly, not all the
factors that determine the energy of a fold are understood,
and computational time limitations would make it infeasi-
ble to include all of such influences. Many situations are
highly approximated, especially the calculation of multi-
loop structures. No tertiary interactions are included in
the model, no pseudoknotted structures and no interactions
with the cellular environment are considered.

Seed is a data-driven exploratory tool that is designed to
search a space of conserved RNA secondary structure motifs
[5], [6]. It identifies all the conserved RNA structure mo-
tifs from a set of unaligned sequences. The approach used
for discovering secondary structure motifs has two compo-
nents. First, the search space is generated from the seed
sequence using suffix arrays. Secondly, suffix arrays are
used to match secondary structure elements. See [7] for an
introduction to suffix arrays. The main steps of the Seed
algorithm are as follows.

1. Select a seed sequence;
2. Construct the most specific motif;
3. General-to-specific search of the motif space;
4. Report the motifs.

Seed is built with user defined parameters to relax or re-
strict the size of the search space and accordingly the exe-
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cution time. It also allows to impose a running time restric-
tion for cases when the search space is very large. Unlike
other motif finding algorithms, Seed has the ability to pre-
dict consensus secondary structures with conserved base
pairs.

2 Method

The purpose of a scoring function is to distinguish the
biological relevant motifs amongst an ensemble of motifs,
that is, to approximate the biological meanings of the mo-
tifs in terms of a mathematical function. We expect the
shape of the molecule to be primarily determined by the
bases involved. As a result, understanding the factors de-
termining the stability of an RNA structure is important in
predicting the correct structure. There are several factors
which contribute to the stability of a RNA structure. They
are,
• The number of G-C vs A-U and G-U base pairs (stable
structures contain higher energy bonds);
• Number of base pairs in stem (longer stems result in more
bonds);
• The number of base pairs in a hairpin loop;
• The number of unpaired bases (unpaired bases decrease
the stability).

An effort to circumvent the limitations of the nearest
neighbor model is to have a linear combination of the free
energy of multiple input sequences, when folded into a com-
mon structure [8], [9], [10]. As the number of input se-
quences increases, it is unlikely that the common struc-
ture(s) will fold into a bad minimum free energy. Although
the results of using more sequences are promising, the pro-
hibitive time/space complexity of these approaches restricts
their use to few sequences (< 4) that are less than hundred
nucleotides long. Considering the above contributing fac-
tors and limitations to the model, we introduce several func-
tions combining the free energy of all or some of the matches
of a given motif. These functions are: TSum, TBest and
TWorst.

Seed is a framework for finding conserved RNA motifs
in a set of unaligned sequences. It produces an ensemble
of structures that are present in the majority of the in-
put sequences. Here, we study several scoring schemes and
evaluate their potential to discriminate native folds from
the rest.

Each motif matches at least min support×k sequences,
and up to k sequences; where min support is a user de-
fined parameter. Also, certain motifs will occur more than
once in any sequence. Thus, there are several possible ap-
proaches to calculate the free energy score for a given motif
and set of matches. For a given motif, TSum is defined
as the sum of the free energy of all the occurrences in all
the matching sequences. TBest is the sum of the lowest
free energy match in each sequence. Finally, TWorst is the
sum of the highest free energy match from each sequence.
In particular, given a set of sequences and matches, the

functions are calculated as

TSum =
∑

i

∑
j

mi,j

TBest =
∑

i

min
j

mi,j

TWorst =
∑

i

max
j

mi,j

where mi,j is the free energy of the jth match in the ith
sequence.

Information content has often been used in the context
of sequence pattern discovery. Accordingly, we include a
function that consists of the sum of the information content
contributions from unpaired and paired regions. Shannon
uncertainty (H) was calculated for each loop position and
was subtracted from the maximum uncertainty possible, to
give the information content (in bits). H = −

∑
Pi log2 Pi

summed over each base pair (i = A, U/T, G, C), where
the observed nucleotide frequencies of each base i from the
input sequences is used to estimate Pi. A nucleotide in a
stem is base paired to its pairing partner, which increases
the information content relative to an unpaired nucleotide
in a loop. There are sixteen possible two nucleotide pairs
giving a maximum uncertainty of 4 bits. Out of these pairs,
there are four Watson-Crick base pairs (A-T, T-A, G-C, C-
G). For a Watson-Crick base pair, the uncertainty is 2 bits
making the information content 4 bits - 2 bits = 2 bits. If
G-U (and U-G) base pair are considered, the uncertainty
is reduced to 2.8 bits; the information content of this pair-
ing is 4 bits - 2.8 bits = 1.2 bits. The resulting loop and
stem information contents were added to calculate the total
information content.

In [11], the correlation between the normalized energy
(energy per base pair) and % G-C was studied. It was ob-
served that they are negatively correlated. This is expected
due to the fact that G-C base pairs have lower free energy
than the other base pairings. We include this distinguishing
feature with the above defined functions.

Correlation coefficient was studied in [6] to measure the
usefulness of these scoring functions. Strong correlation was
observed between the normalized scores and Positive Pre-
dicted Value (PPV)/sensitivity across the datasets used.
The value of r ranged from -0.783 to -0.95. For some in-
stances, it was even lower (better). However, no particu-
lar function outperformed the other; the highest correla-
tion coefficient was different across each dataset. It was
also pointed out that the linear combination of free energy
score and information content outperformed either of the
two scores alone.

Since the free energy scores were particularly effective
to separate high PPV/sensitivity motifs from the rest, we
assume that variations in the scoring functions can be rep-
resented by a statistical model. We used the most classical
field of statistical analysis, regression, to analyze a set of
RNA secondary structure motifs. A statistical model can
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be constructed using techniques from regression analysis
to obtain a template or model that is able to discriminate
native folds from the rest.

In order to remove the undue influence of the scores
with large outlying numerical values, we normalize the vari-
ants by dividing the scores with the number of sequences
matched and number of matches (for TSum). In addition,
we re-normalize the scores by length and number of base
pair present in the motif. Multiple regression models were
built to show the relationship between the set of scores ob-
tained above and different performance measures (see be-
low). The measures were used as the response parameter
for building the models.

2.1 Building Base Models Using Selection
Criterion

Having obtained all the explanatory variables, we define
the maximum model, that is, the model containing all the
explanatory variables that could possibly be present in the
final model. Including all the explanatory variables may
introduce the risk of collinearity, that is, two or more vari-
ables being linearly dependent. One of the common pur-
ported remedy of collinearity is variable selection. Since
the number of variables in our case is not large, we opted
for a best subset regression.

The number of possible models built for each data set
with different variants is large. A statistical selection crite-
rion approach is taken to determine which model is better
than the rest. Although many different selection criteria
have been suggested through time, we used measures of co-
efficient of determination (R2) and Mallows Cm criterion
to pick the best model for each dataset used.

2.2 Performance Measures

2.2.1 Matthews Correlation Coefficient, PPV

We call references, the secondary structures that were
obtained from the tRNA compilation by Sprinzl and the
Comparative RNA Web Site. We define as true positives
(TP) the base pairs that are occurring in both structures,
reference and predicted, false positives (FP), the base
pairs that are occurring in the predicted structure but not
in the reference one, and false negatives (FN ), the base
pairs that are occurring in the reference structure but not
in the predicted one. Offsets were not allowed.

The positive predictive value (sometimes called PPV)
is defined as the fraction of the predicted base pairs that
are also present in the reference structure, TP/(TP +FP).
The sensitivity is defined as the fraction of the base pairs
from the reference structure that are correctly predicted,
TP/(TP +FN ). Finally, we also measured the Matthews
Correlation Coefficient, as defined by Gorodkin, Strick-
lin and Stormo [12]:√

TP
(TP + FN )

× TP
(TP + FP)

When a given motif matched the input sequence more
than once, the performance indexes of the match having
the highest PPV are reported.

2.2.2 Distance

The measures described above quantify the agreement
between the predicted and reference structures with respect
to the position of the base pair in the sequence under con-
sideration. Although this is a refined measurement, it does
not consider similar structures placed at an offset greater
or less than the length of the structure.

In order to have a more general way of comparison, we
consider to measure the dissimilarity between the secondary
structures. A simple measure would be the base pair dis-
tance, that is, the number of base pairs that have to be
opened or closed to transform one structure into the other.
However this comparison restricts both the structures to be
of same length. Another measure to compare structures is
by encoding the secondary structure by ordered trees, fol-
lowed by the computation of edit distance. This approach
is a part of the Vienna RNA package [13]. The edit dis-
tance defines a metric of the number of insertion, deletion
and replacements of nodes in the tree.

2.3 Data

All the 3’ UTR entries containing the keyword his-
tone as well as an HSL3 feature were extracted from
UTRdb release 19 [14]. A total of 28 sequences was
obtained. The length of the sequences varies from 51
to 1, 955 nucleotides, with an average length of 701 nu-
cleotides. The dataset consists of the following en-
tries: 3HSA054868, 3HSA041812, 3HSA027954, 3HSA034695,

3HSA079397, 3HSA082131, 3HSA047510, 3HSA083260, 3HSA083338,

3HSA083659, 3HSA048427, 3HSA049188, 3HSA084501, 3HSA086570,

3HSA086915, 3HSA087013, 3HSA089561, 3HSA058723, 3HSA058724,

3MMU017942, 3MMU040716, 3MMU043604, 3MMU045939, 3MMU-

046704, 3MMU004991, 3MMU004994, 3MMU004995 and 3DRE-

005245.
All the mammalian 5’ UTR entries containing the key-

word ferritin and a valid IRE motif were extracted from
UTRdb release 19 [14]. A total of 14 sequences was
obtained. The length of the sequences varies from 58
to 2,188 nucleotides, with an average length of 378 nu-
cleotides. The dataset consists of the following en-
tries: 5DLE000003, 5HSA021933, 5HSA033035, 5HSA060296,

5HSA072191, 5HSA073036, 5HSA079314, 5MMU018600, 5MMU-

025452, 5MMU027798, 5MMU032372, 5RNO004780, 5RNO005974

and 5RNO007816.
A tRNA dataset was assembled using a subset of the se-

quences from Masoumi and Turcotte [10]. Seven sequences
having approximately the same length were used. These are
generally challenging sequences for traditional approaches,
such as MFOLD [15]. The following entries were extracted
from the compilation by Sprinzl et al. [16], [17]: RD0260,

RD0500, RD1140, RD2640, RE2140, RE6781 and RF6320.
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TABLE I

Runtime statistics

Experiment #Sequences #Motifs #Matches

HSL3 27 357 1,945,328

IRE 13 110 167,076

tRNA 7 5,518 3,407,012

5S 7 365,505 152,741,463

Similarly, a 5S dataset was assembled using a subset of
the sequences from Masoumi and Turcotte [10]. Seven se-
quences having approximately the same length were used.
These also are generally challenging sequences for tradi-
tional approaches, such as MFOLD. The following entries
were extracted from the Comparative RNA Web Site [18],
[19], [20]: V00336, X02627, X04585, M24839, X67579, AJ251080

and M25591.

2.4 Evaluation of Models

With the base model determined for the corresponding
dataset, we evaluate the model on the basis of its perfor-
mance on remaining dataset. The standard approach to
evaluating regression model performance is through addi-
tive, residual based loss function. One test procedure is
by calculating the standard error of estimate. However,
since we want the scoring function to rank the motifs in
decreasing order of the measure used, we used a rank based
evaluation as proposed by [21].

Rank based evaluation offer advantages over residue
based evaluation by being robust to outliers and providing
insights about the local performance of the model. They
also provide statistics that are similar to the commonly used
correlation coefficients in data analysis. Value of τ̂ and ρ̂
range from -1 to +1, where +1 corresponds to a perfect
model performance and -1 to making all possible errors.

3 Results

Different parameters were used in Seed to generate suit-
able stem-loop structures for each dataset. The search
space contained motifs of varying degree of PPV and sensi-
tivity. Table I shows the number of motifs and match made
by Seed for each data set.

3.1 Base Models

As discussed earlier, the selection strategy for choosing
the best model was due to best subset regression. In this
we identify the best-fitting models that can be constructed
with the specified predictors variables. We restrict our re-
sults to models having the dependent variable as MCC due
to space limitations.

Analysis of the R2 and Cm statistic yielded in the follow-
ing models shown in Table II.

TABLE II

Regression Models

Y HSL3
MCC = 0.09 + 203%GC + 12.1N2 TInfo − 125N21 TBest

−163N21TWorst + 230N21 TSum

Y IRE
MCC = −110 + 308%GC + 8.23NTInfo + 0.93N11 TBest

−0.71N11TWorst − 3.42N11 TSum

Y tRNA
MCC = 25.5 − 74.9%GC + 0.809TInfo − 1.28N11 TBest

+1.33N11TWorst − 2.62N11 TSum

Y 5S
MCC = 14.3 + 22.1%GC + 0.212TInfo − 2.66N11 TBest

+2.74N11TWorst − 1.45N11 TSum

3.2 Visualization of Ranking Performance

Visualization of ranking performance can often provide
additional insights about the model performance. Figure 1
shows the percentage of correct ranked pairs as a function of
rank as described in [21]. The ranking statistics are listed in
Table IV. The area under the curve corresponds to ρ̃, where
ρ̃ is the re-normalized version of ρ̂ (ρ̃ = 1/2 + ρ̂/2), and
the area above the curve represents the sum of incorrectly
ranked pairs.

3.3 Identification of Native Folds

Tables III show the sensitivity, PPV, MCC of best mo-
tifs predicted by the different models built on MCC. We
can see that the PPV/sensitivity of the predicted struc-
tures of HSL3 data by different models is often 100%. The
HSL3MCC model (regression model built on HSL3 data set)
performed well on IRE, tRNA and itself. For IRE data set,
the top ranked motif had a sensitivity of 92.7% and a PPV
of 100%. There is a slight drop in the performance on
tRNA data set resulting in a PPV of 88.2% and sensitivity
73.7%. For 5S data set, the model identifies a motif with
PPV/sensitivity of 41.2/18.1%. IREMCC performed well
on all the data sets. The top motif picked from 5S has an
PPV and sensitivity of 72.5% and 30.1% respectively. For
the remaining motifs, this model has the same performance
as HSL3MCC .

To study the performance of models built on higher com-
plexity data set, we built models on 7 tRNA and 7 5S
sequences. We can see that tRNAMCC performs well on
all the data sets (Table III). The PPV of the top tRNA
motif increased to 96% as compared to 88.2% ranked by
IREMCC . However, the sensitivity drops to 71.2%. Ex-
cluding the results on the base data set, tRNAMCC has the
highest average sensitivity (74.26%) over the other mod-
els. Figure 2 illustrates these result for two of the four
experiments. Finally, models built on 5S data set appear
to perform well on all the 4 data sets. It is interesting to
see that all the models on 5S have the highest average PPV
over other models. This suggests that models built on com-
plex structures and large number of examples (motif) are
capable to detect motifs of higher PPV.
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TABLE III

Performance of MCC models

Dataset MOTIF# AVGSEN AVGPPV AVGMCC

HSL3 261 100 100 100

IRE 85 92.7 100 96.28

H
S
L
3

tRNA 569 73.7 88.2 80.62

5S 38708 18.1 41.2 27.3

HSL3 261 100 100 100

IRE 85 92.7 100 96.28

IR
E

tRNA 569 73.7 88.2 80.62

5S 39929 30.1 72.5 46.71

HSL3 261 100 100 100

IRE 85 92.7 100 96.28

tR
N

A

tRNA 4984 71.2 96 82.67

5S 39929 30.1 72.5 46.71

HSL3 356 83.3 100 91.26

IRE 109 58.9 100 76.74

5
S

tRNA 4968 76.2 100 87.29

5S 39929 30.1 72.5 46.71

TABLE IV

Ranking statistics : AVGMCC

HSL3 IRE tRNA 5S

τ̂ ρ̂ τ̂ ρ̂ τ̂ ρ̂ τ̂ ρ̂

HSL3 0.802 0.907 0.612 0.719 0.607 0.794 0.381 0.535

IRE 0.760 0.885 0.614 0.705 0.608 0.799 0.410 0.571

tRNA 0.793 0.905 0.577 0.675 0.718 0.887 0.551 0.736

5S 0.779 0.888 0.511 0.596 0.684 0.862 0.575 0.761

4 Discussion and Conclusion

In this work, we presented a scoring method for the soft-
ware system Seed. The purpose was to distinguish the bio-
logically relevant RNA secondary structure motifs from the
rest. We evaluated our method on four different datasets
having varying range of complexity. Two datasets we con-
structed consisted of selected members of UTRdb database
where the coding region are flanked by two untranslated
regions (5’UTR and 3’UTR). Others were assembled using
a subset of sequences from [10].

We found that the method was able to identify high PPV
motifs. We also found that the performance of models based
on the PPV and MCC were better than Distance; MCC be-
ing the best among the three. The presence of outliers had
a considerable effect on the residual based measures and
made them unreliable and inappropriate for model compar-
ison. On the other hand, the ranking based evaluation were
much more stable and robust to outliers, allowing a confi-
dent model comparison. We were able to detect greater
performance by models that were build using more num-
ber of examples. The performance of models build on less
complex structures generally showed inconsistent results on
predicting complex structures.

With the visualization of ranking performance, we were
able to see that certain examples were out of place. Ana-
lyzing the common characteristics of these examples could
lead to conclusions about the shortcomings of the models
and possible ways to improve its ranking performance. It is
likely that some moderate refinements to regression mod-
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Figure 1. Ranking Performance. Starting from top left
in clockwise direction: Performance of tRNAMCC re-
gression model a) on HSL3, b) on IRE, c) on 5S and
d) on tRNA data sets

els would improve its PPV without altering its efficiency,
for example, taking into account insertions/deletions (hav-
ing a penalizing factor) and addition of other variants of
thermodynamic scores.

Seed produces an enormous amount of consensus sec-
ondary structures that are structural, partially or fully in-
stantiated (conserved pairs). Results indicate that a struc-
ture with high degree of specificity (information content)
and low energy scores for all functions TSum, TBest and
TWorst is deemed significantly stable. Regression based
models were effective to associate the variation of scores
obtained from different functions and the different perfor-
mance measures.

We have introduced a scoring function formulation, im-
plemented on the software Seed, designed to pick the best
prediction(s) of RNA secondary structure motifs. The ad-
vantage of scoring functions is that they give us an intuitive
mean by which to compare different possible configurations
of motif structure and locations. This general approach of
using regression models built on multiple functions to ob-
tain different estimates of an RNA secondary structure can
be useful models for motif discovery.
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