Sequential Logic and The Flip-Flop

Sequential logic may have one or more, inputs and one or more outputs. However, the outputs are a function of both the present value of the inputs and also the previous output values. Sequential logic requires memory to store these previous outputs values.

Sequential circuit $=$ Combinational logic + Memory Elements

Latches and Flip Flops

- A Flip-flop is a bistable device, that is, it can remain in one of two states (0 or 1) until appropriate conditions cause it to change state. Therefore, a flip-flop can serve as a memory element.
- A flip-flop has two outputs, one of which is the complement of the other.
- For example, $R S$ flip flop has two inputs (R and S) and two outputs. When $R=S=0$, the $S R$ flip flop remains in its present state.
- When $S=1$ and $R=0$, the $R S$ flip flop is set to 1 state.
- When $S=0$ and $R=1$, the $S R$ flip flop is reset to 0 .
- It is not permitted for both S and R to be equal to 1 .

S	R	Q
0	0	Present state
0	1	Reset
1	0	Set
1	1	Disallowed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

S	R	Q
1	0	1
0	0	1
0	0	1
0	1	0
0	0	0
0	0	0
0	1	0
0	0	0
1	0	1
0	0	1

S-R Latch

- Active-HIGH input S-R latch

- Active-LOW input $S^{\prime}-R^{\prime}$ latch

Gated S-R Latch

S-R latch + enable input (EN) and 2 NAND gates \rightarrow gated S-R latch.

When the Enable is high the circuit acts as a conventional active high input S-R latch But when the enable is low the circuit ignores any signal applied to the S-R inputs.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. $\quad P=1$ means $S=1$

(a)

Level-Sensitive Flip-Flop

- Level-sensitive flip-flop (also called a "latch")
- " Q " changes whenever clock is "high"

D Flip Flop

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

D Flip-Flop: Excitation Table

D	$C L K$	Q	$\overline{\mathrm{Q}}$
0	\uparrow	0	1
1	\uparrow	1	0
\uparrow			
Rising Edge of Clock			

Timing of D Flip-Flop

If one input $(J$ or K) is at logic 0 , and the
 set or reset (by J and K respectively), just like the RS flip-flop, but on the (falling) clock edge.
If both inputs are 0, then it remains in the same state as it was before the clock pulse occurred; again like the RS flip flop.
If both inputs are high, however the flipflop changes state whenever the (falling) edge of a clock pulse occurs;

$J K$ flip-flop

J_{n}	K_{n}	Q_{n+1}
0	0	Q_{n}
0	1	0 (reset)
1	0	1 (set)

J/K Flip-Flop: Excitation Table

J	K	CLK	Q	No Change
0	0	\uparrow	Q	
0	1	\uparrow	0	Clear
1	0	\uparrow	1	Set
1	1	\uparrow	Q	Toggle

\uparrow : Rising Edge of Clock
$\overline{\mathrm{Q}}$: Complementof Q

J/K Flip-Flop: Example Timing

Clock Edges

Positive Edge Transition

Negative Edge Transition

Positive and Negative Edge Triggered D

Positive Edge Trigger

D	$C L K$	Q	\bar{Q}
0	\uparrow	0	1
1	\uparrow	1	0

\uparrow : Rising Edge of Clock

Negative Edge Trigger

D	CLK	Q	$\overline{\mathrm{Q}}$
0	\downarrow	0	1
1	\downarrow	1	0

\downarrow : Falling Edge of Clock

Edge Triggered J/K

Positive Edge Trigger

J	K	CLK	Q
0	0	\uparrow	Q_{0}
0	1	\uparrow	0
1	0	\uparrow	1
1	1	\uparrow	\bar{Q}_{0}
\uparrow			

Negative Edge Trigger

J	K	CLK	Q	
0	0	\downarrow	Q_{0}	
0	1	\downarrow	0	
1	0	\downarrow	1	
1	1	\downarrow	$\overline{\mathrm{Q}}_{0}$	
Rising Edge of Clock				

Flip-Flop Versus Latch

- The primary difference between a D flip-flop and D latch is the EN/CLOCK input.
- The flip-flop's CLOCK input is edge sensitive, meaning the flip-flop's output changes on the edge (rising or falling) of the CLOCK input.
- The latch's EN input is level sensitive, meaning the latch's output changes on the level (high or low) of the EN input.

