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Abstract

This paper reports work in progress on bal-
ancing training data which has the two
classes of interest in heavily unbalanced pro-
portions. We focus on the case of super-
vised learning with support vector machines.
We consider the impact of both sampling
and weighting imbalance compensation tech-
niques and then extend the balancing to situ-
ations when one of the classes is ignored com-
pletely and learning is accomplished using ex-
amples from a single class.

Our investigation shows that for some real
world problems, such as the gene knock-out
experiments for understanding Aryl Hydro-
carbon Receptor signalling pathway that pro-
vided the data for the second task of the KDD
2002 Cup, minority one-class SVMs signifi-
cantly outperform models learnt using exam-
ples from both classes. We investigate this
anomalous behaviour through an extensive
analysis of this data as well as text bench-
marks such as Reuters Newswire data.

1. Introduction

A standard recipe for two class discrimination is to
take examples from both classes, then generate a
model for discriminating them. This approach is so
entrenched in machine learning that practitioners of-
ten will not consider data unless it contains examples
of both classes. Moreover, many machine learning al-
gorithms, such as decision trees, naive Bayes or mul-
tilayer perceptron, do not function unless the train-
ing data includes examples from two classes. How-
ever, there are many applications where obtaining ex-
amples of a second class is difficult and the data has
heavily unbalanced representatives of the two classes
of interest (unbalanced priors). A supervised learning
algorithm applied to such a problem has to implement
some form of balancing. The point we want to make in
this paper is that sometimes it is beneficial to design
re-balancing even more radically than warranted by

unequal priors. The extreme case here is learning two
class discrimination with one class data only. We show
in this paper that in some real life learning problems,
such as the Aryl Hydrocarbon Receptor data used for
the second task of the KDD 2002 Cup (Craven, 2002),
Support Vector Machines (SVM) do benefit from such
an extreme approach (Kowalczyk & Raskutti, 2002).

The paper is organised as follows. Section 2 places
our research in the context of existing work. Section 3
introduces the basic support vector machines in the
particular form used for this research. We then discuss
in Section 4 the two forms of imbalance compensation
techniques investigated in this paper. The experimen-
tal setup including data collections and performance
measures is described in Section 5. In Section 6 we
present results on experiments for both sample balanc-
ing and weight balancing techniques, and discuss the
implications of our experimental findings in Section 7.

2. Related Research

The problem of discrimination of unbalanced classes
is encountered in a large number of real life applica-
tions of machine learning, e.g., detection of oil spills in
satellite radar images (Kubat et al., 1997), information
retrieval and filtering (Lewis & Catlett, 1994) and bio-
logical domains (Craven, 2002; Kowalczyk & Raskutti,
2002). Many solutions have been proposed to address
the imbalance problem including sampling and weight-
ing examples, cf. (Japkowicz & Stephen, 2002) for a
thorough survey. However, these methods typically
focus on cases when the imbalance ratio of minority
to majority class is around 10:90. In this paper, we
focus on extreme imbalance, where the minority class
consists of around 1-3% of the data, then extend the
sampling to situations when one of the classes is ig-
nored completely and learning is accomplished using
examples from a single class.

The possibility of single class learning with support
vector machines (SVM) has been noticed previously.
In particular, (Scholkopf et al., 1999) have suggested
a method of adapting the SVM methodology to one-
class learning by treating the origin as the only mem-
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ber of the second class. This methodology has been
used for image retrieval (Chen et al., 2001) and for
document classification (Maneivitz & Yousef, 2002).
In both cases, modelling is performed using exam-
ples from the positive class only, and the one-class
models perform reasonably, although much worse than
the two-class models learnt using examples from both
classes. In contrast, in this paper, we show that for
certain problems such as the gene knock-out experi-
ments for understanding Aryl Hydrocarbon Receptor
(AHR) signalling pathway, minority one-class SVMs
significantly outperform models learnt using examples
from both classes. We investigate this peculiar be-
haviour through a thorough analysis of the AHR data
and text benchmarks such as Reuters Newswire data.

3. Support Vector Machines

In this section we recall basic concepts of Support Vec-
tor Machines (SVM) in a form suitable for this paper.
Given a labelled training sample

X_@m = ((1’1,91); seeey (xmaym)) € (XX {il})m (1)

drawn from a high dimensional feature space X C R",
with n > m. The case of prime interest is when the
target class, labelled “41”, is much smaller than the
background class (labelled “—17), e.g. when the prior
of the target class is of the order ~ 1% of the data.
Our aim is to find a direction of “good” discrimination,
such that the target class instances have scores w - z;
higher than the scores for the background class. The
solution wym is defined as a homogeneous support vec-
tor machine (hSVM) which minimises the regularised
risk (Cristianini & Shawe-Taylor, 2000; Scholkopf &
Smola, 2001; Vapnik, 1998)

w = ||wl]? + Z Ci[max(0,1 — y;w - x;)]P, (2)

i=1

where C; > 0 are regularisation constants and p = 1
(linear penalty, hSV M) or p = 2 (quadratic penalty,
hSV M?). Both values of p were used in our experi-
ments with marginal differences in performance.

Without further comments, we shall assume from now
on the usage of the “homogenised” or augmented data,
i.e., z; = (z},1) where z} is the original feature vector.

One thing to stress is that (2) provides a unique solu-
tion in “regular” cases of interest, in particular, if at
least some C; # 0 and 0 € R™ does not belong to the
convex shell spanned by all vectors y;x;. This means
in particular that such a solution is provided also if all
data points belong to a single class. In fact, we can al-
ways absorb the signum y; by substituting z; < y;x;,

which formally reduces the two class problem (2) to a
single class optimisation.

The geometrical meaning of the solution (2) can be
most clearly illustrated in the limiting case of “hard
margin”, i.e. C; = C' — oo. In such a case, the optimal
solution wygm of (2) is the direction of the shortest
vector from the origin to the convex shell spanned by
all vectors y;x;.

4. Re-balancing of the data

We investigate two forms of imbalance compensation
in this paper.

4.1. Sample Balancing

This method “re-balances” data by neglecting some
examples from the training set. It selects m’ and m/,
examples out of the total m_ and m4 examples from
the negative and the positive label classes in the train-
ing set, respectively. The regularisation constant is the
same for all instances, i.e., C; = C > 0 for all 5. In
th,is case we will be reporting the class proportion ratio
m

= Z—i directly. In particular, the proportion ratios
1:0, 1:1 and 0:1 represent the case of 1-class learner
using all of the negative examples, 2-class learner us-
ing all training examples, and 1-class learner using all

of the positive examples, respectively.

This form of sample balancing is a generalisation of
the techniques used in (Elkan, 2001), where all minor-
ity cases are used while the majority cases are sam-
pled so as to take into account the relative cost of
mis-classification of the two classes. In this specialised
MajorityOnly sampling, since all minority cases are
used, i.e. m!. = m,, we can use a single number to de-
scribe the proportion ratio uniquely. We shall call this
number B_,; :=m’ /m, the class mizture ratio, and
it varies from 0 to T := m_ /m . The value B_,; =0
is the case when only minority class examples are used
(equivalent to the proportion ratio 1:0) and B_,; =T
represents the situation when all training instances are
used (equivalent to the proportion ratio 1:1).

The sample balancing has speed advantages since a
smaller number of examples are actually used for train-
ing, hence it has been used in most of our experiments.

4.2. Weight Balancing

In this case all training examples are used, but we use
different values of the regularisation constants for the



minority and majority class data:

o — (1+ B)C/2m
‘Tl -B)C/2m_

By 3)
if Yi = _17

fori =1,...,m, where C > 0and -1 < B<1lisa
parameter called a balance factor. In the above formu-
lae, the denominators do compensate for unequal class
proportions in the training set while the parameter B
introduces an additional compensation. For instance,
the case of “balanced proportions” achieved for B =0
discounts the majority class by the ratio of the two
class sizes in training, % Further discounting of the
majority class occurs in the range 0 < B < +1, with
B = +1 representing the case of learning from posi-
tive examples only. Similarly, learning from negative
class only is achieved for B = —1, with discounting of
positive examples in the range —1 < B < (.

4.3. Balancing Modes

When balancing the data, we consider two modes:
similarity detector which learns a discriminator based
predominantly on positive examples (e.g., B_,4 ~ 0,
B ~ 1), and novelty detector which is trained using pri-
marily negative examples or majority class examples
(e.g., B_/4+ >>1, B = —1). In practice both modes
have applications. For instance, classification of web-
sites “attractiveness” based on history of user’s activ-
ities is an application where negative examples (i.e.
the sites of no interest) are difficult to obtain. On the
other hand, for network intrusion detection, we have
few (if any) examples of the target class we want to
identify, i.e. of successful intrusion episodes.

5. Experimental Setup

In our experiments, we first pre-process the data in
a manner appropriate for the data set, and create a
sparse matrix representing the data set. For the tex-
tual data set, this matrix is the word presence matrix
while for the AHR data this is some property of the
gene associated with that instance.

5.1. Data Collections

AHR-data. Our primary corpus is the AHR-data
set which is the combined training and test data sets
used for task 2 of KDD Cup 2002. The data set is
based on experiments by Guang Yao and Chris Brad-
field of McArdle Laboratory for Cancer Research, Uni-
versity of Wisconsin. These experiments aimed at
identification of yeast genes that, when knocked out,
cause a significant change in the level of activity of
the Aryl Hydrocarbon Receptor signalling pathway,

cf. (Craven, 2002) for more details. Each training in-
stance is labelled with one of three class labels: “nc”,
“control”, or “change”. Each of the 4507 instances
in the data set is described by a variety of informa-
tion that characterises the gene associated with the
instance, e.g., associated abstracts from scientific ar-
ticles, genes whose encoded proteins physically inter-
act with one another, information about the subcellu-
lar localisation and functional classes of the proteins
encoded by various genes. For the experiments de-
scribed in this paper, we convert all of the informa-
tion from the different files to a sparse matrix con-
taining 18330 features (Kowalczyk & Raskutti, 2002).
Following the KDD Cup requirements we experiment
with three tasks: change-task discriminating “change”
class instances from the rest, control-task discriminat-
ing “control” class instances from the rest and either-
task discriminating instances in either “change” or
“control” classes from the rest, i.e. “nc”. The class
sizes vary considerably with 57 instances of “change”
70 instances of “control” and the rest 4380 instances
labelled “nc”.

Reuters data. Our second corpus is the popular text
mining benchmark, Reuters-21578 news-wires. Here
we used a collection of 12902 documents (combined
test and training sets of so called modApte split avail-
able from http://www.research.att.com/lewis) which
are categorised into 115 overlapping categories. Each
document in the collection has been converted to a vec-
tor of 20,197 dimensional word-presence feature space
using a standard stop-list and after stemming all of
the words using a standard Porter stemmer.

5.2. Performance Measures

We have used AROC, the Area under the Receiver Op-
erating Characteristic (ROC) curve as our main per-
formance measure. In that, we follow the steps of KDD
2002 Cup, but also, we see it as the natural metric of
general goodness of classifier (as corroborated below)
capable of meaningful results even if the target class
is a tiny fraction of the data.

We recall that the ROC curve is a plot of the true posi-
tive rate or precision, P(f(z;) > 6|y; = 1), against the
false positive rate, P(f(x;) > 6|y; = —1), as a decision
threshold 6 is varied. The concept of ROC curve orig-
inates in signal detection but these days it is widely
used in many other areas, including data mining, psy-
chophysics and medical diagnosis (cf. review (Centor,
1991)). In the latter case, AROC is viewed as a mea-
sure of general “goodness” of a test, formalised as a
predictive model f in our context, with a clear sta-
tistical meaning as follows. AROC(f) is equal to the



probability of correctly answering the two-alternative-
forced-choice problem: given two cases, one z; from
the negative and the other z; from the positive class,
allocate scores in the right order, i.e. f(z;) < f(z;).
Additional attraction of AROC as a figure of merit
is its direct link to the well researched area of or-
der statistics, via U-statistics and Wilcoxon-Whitney-
Mann test (Bamber, 1975).

There are some ambiguities in the case of AROC esti-
mated from a discrete set in the case of ties, i.e. when
multiple instances from different classes receive the
same score. Following (Bamber, 1975) we implement
in this paper the definition

AROC(f) = P(f(z:i) < f(zj)| —yi =y; = 1)
+0.5P(f(@:) = f(@j)| —yi =y; = 1)

expressing AROC in terms of conditional probabili-
ties.

Note that trivial uniform random predictor has AROC
of 0.5.

6. Experiments

For each experiment, 20 random splits of the data
into the training and test sets were implemented.
These splits were generated with proportional sam-
pling (without replacement) from the positive and the
negative classes in the pooled set. The sizes of the data
split training:test were 50%:50% for the Reuters data
and 70%:30% for the AHR-data. Other splits produce
similar results and are not shown here for brevity.

We first study the impact of regularisation constant C
on SVM solutions, and choose a restricted range of C'
for further experimentation. We then experiment with
different forms of balancing with these values of C.

6.1. Impact of Regularisation Constant

We plot in Figure 1 mean AROC (with standard devi-
ation bars) as a function of C for the two linear kernel
machines: hSV M! (Figures 1A and 1C) and hSV M?2
(Figures 1B and 1D). We use two balancing techniques:
MajorityOnly sample balancing (Figures 1A and 1B)
and the weight balancing (Figures 1C and 1D). For
this test, we focus on the either-task for the AHR-
data, and means are computed over 20 random splits
of the pooled set into 70%:30%, learning:test. Plots
are shown for four different modes: (i) positive 1-class
(B_/+ = 0 and B = +1, solid line); (ii) negative
1-class (B = —1, dotted line); (ii7) balanced 2-class
(B-/+ = 1 and B = 0, dashed line); (iv) un-balanced
2-class (B_;4 = T, the dash-dot line).
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Figure 1. Results for AHR-data, the either-task. We plot
mean AROC as a function of the regularisation constant C
for hSVM' (Figs. A & C) and hSV M’ (Figs. B & D).
We use two balancing techniques: MajorityOnly sample
balancing (Figs. A & B) and weight balancing (Figs. C&
D). Plots are shown for four different modes: (i) positive
l-class (B_;+ = 0 and B = +1, solid line); (i7) nega-
tive 1-class (B = —1, dotted line); (i¢) balanced 2-class
(B_;+ = 1 and B = 0, dashed line); (iv) un-balanced
2-class (B_;4 = T, the dash-dot line).

An inspection of plots brings a number of interesting
observations:

(1) the AROC values for the positive one-class classi-
fier is consistently above that for the two-class classi-
fier for all values of C, and this is irrespective of the
machine that is used for training.

(2) The performance of the positive one-class learner
is not sensitive to the value of C, although the per-
formance is slightly better at higher values of C' (the
“hard margin” case).

(3) As expected, the performance of the negative one-
class learner is consistently worse than both the posi-
tive one-class and the balanced and un-balanced two-
class learners for the two machines, performing worse
than random for all values of C*.

(4) There are differences in performance based on
whether sample or weight balancing is used particu-
larly for the balanced two-class learner, and weight-
balanced two-class learners (dashed line in Figures 1C
and 1D) perform significantly worse than sample-

n fact, for hSV M?, a better classifier may be obtained
by using the negative one-class learner and inverting the
labels than by using any other hSV M* learner! This in-
triguing phenomenon is the subject of our current research.



(a) AROC for Reuters Dataset

AROC

1r corn - 2%

0.6 earn - 30% 1f grain - 4% 1t interest - 4%

0:1 11 1.0
Positive:Negative

0.7
0081 7 [—— average
8 “““ + std dev
< 0.5~ 1| - - random
0.4 change =1.3% " 1| control - 1.5% 1| either - 2.8%

0:1 11 1.0 0:1 11 1:0 0:1 11 1.0
Positive:Negative  Positive:Negative  Positive:Negative

Figure 2. Average AROC = standard deviation of test set

as a function of the proportion ratio Z—:r : :*’ € {0:1,
0.2:1, 0.4:1, 0.6:1, 0.8:1, 1:1, 1:0.8, 1:0.6, 1:0.4, 1:0.2, 1:0}.
Results are presented for hSV M? trained for four Reuters
categories and three AHR-tasks for hSV M? trained with

sample balancing method (Section 4).

balanced two-class learners (dashed line in Figures 1A
and 1B). The performance of sample-balanced two-
class learners is close to random for all but very low
values of C, while that of weight-balanced two-class
learners is closer to the negative one-class learner.

(5) There are noticeable differences between the per-
formance of different SVMs (e.g. the differences be-
tween unbalanced two-class hSV M?! and hSV M? rep-
resented by the dash-dot lines in Figures 1B and 1D).
However, observations (1)-(4) hold for both classifiers
over the whole range of values for the regularisation
constant C.

6.2. Experiments with Sample Balancing

The sample balancing has an obvious advantage in
speed since in training we use only a part of the data
set. For this reason it has been used in our main ex-
periments requiring multiple generations of SVMs. For
the results reported in this section we have used sev-
eral class proportion ratios starting from 0 : 1 (100% of
positive class and 0% of negative class), through 1:1
(100% of examples of both classes) to 1 : 0 (0% posi-
tive and 100% of negative examples). In experiments
we have used all three categories of the AHR-data as
described above and selected four Reuters categories:
“earn”, “grain”, “interest” and “corn”.

Figure 2 presents the averages and standard deviations
of test set AROC for different values of class propor-

tion ratio m—+ . Plots are shown for four Reuters

categories and the three categories of the AHR dataset.
Due to space considerations, results are shown only for
the hSV M? classifier.

The results for the Reuters dataset are as expected,
with positive and negative examples on their own pro-
viding sufficient information to perform better than
random predictor (Figure 2(a)). However, both are
outperformed by the two-class model even if the model
includes only 20% of the other class data. Further, the
AROC with 2-class learners is close to 1 for all cate-
gories indicating that this categorisation problem is
reasonably easy to learn.

The AROC for the AHR dataset, on the other hand,
has a maximum mean value of around 0.64 for all three
categories (Figure 2(b)). For all three categories, the
AROC starts off at the highest point when positive
examples alone are used, and then drops as negative
examples are added, indicating that the knowledge of
negative examples in this problem is detrimental to
learning. Further, the standard deviations are the low-
est when only positive examples are used. Once again,
the balanced two-class learner performs close to a ran-
dom classifier (mean AROC = 0.5). The negative one-
class learner performs much worse than random (mean
AROC =~ 0.4), in effect, providing better discrimina-
tion than balanced two-class learner (cf. footnote 1).

6.2.1. IMPACT OF FEATURE SELECTION

In order to determine if the better performance of the
single class learner is due to the sparse high dimen-
sional input space, we explore the same KDD cup 2002
data, but this time with aggressive dimensionality re-
duction of the input space using automatic feature se-
lection, or more precisely feature ordering methods.
The ordering is done via sorting the features in de-
creasing order of scores calculated by one of the fol-
lowing methods.

A: DocFreq (Document frequency thresholding):
This method has its origins in information re-
trieval (Salton & McGill, 1983) and is based on the
notion that rare features are not informative for pre-
dicting classes. In this case the score of a feature is
simply the number of instances where it is equal to 1.

B: ChiSqua (x?): The x? measures the lack of in-
dependence between a feature and a class of interest.
First, for each feature and each class, i.e. y = %1, a
score is computed on the basis of the two-way contin-
gency table (Yang & Pedersen, 1997). The final score
for a feature is the maximum of these class scores.

C: MutInfo: (Mutual Information): This method
prioritises the features of the basis of the joint and
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Figure 3. Mean AROC for the KDD subtask “either” as a function of the mixture ratio B_,; for four different fractions
of the original feature set (0.1%, 1%, 10% and 50%), for three linear kernel machines with C' = 100: (A) hSVM' and

(B) hSVM?. B_,,=[0,0.01,0.1,0.5, 1,5,10, T].

marginal probabilities of their usage estimated from
the training data (Yang & Pedersen, 1997).

D: InfGain: (Information gain): This is frequently
employed as a term goodness measure in machine
learning (Quinlan, 1986), and measures the number
of bits of information obtained for class prediction by
knowing the presence or absence of a term in an in-
stance.

Given the worse than random performance of nega-
tive one-class learners, for these experiments, we have
used all of the minority cases and sampled the ma-
jority cases at different mixture ratios (MajorityOnly
sample balancing). Figure 3 shows mean AROC (with
standard deviation as an envelope) as a function of
the mixture ratio B_,, for different fractions of the
original feature set (0.1%, 1%, 10% and 50%). Re-
sults are shown for KDD either-task, for two linear
kernel machines: (A) hSVM! and (B) hSVM?2. For
both machines, results are presented for C = 100, al-
though results for C' = 10 and C = 1000 show similar
trends. Results are presented for the four different fea-
ture selection methods listed above. The other feature
selection methods such as Idf-tf (inverse document fre-
quency — term frequency) and average discrimination
scoring (Salton & McGill, 1983) showed similar be-
haviour.

As seen from Figure 3, all feature selection meth-
ods select informative features that allow learning at
some mixture ratio. This is the case even at very low
fraction of features (0.1% or just 18 features) for all

methods except MutInfo. The poor performance of
MutInfo at low fractions is not surprising given that
this measure is strongly influenced by the marginal
probability of terms and tends to favour rare terms
rather than common terms. Hence, at low fractions
most of the instances have all of their attributes set to
0, and very little learning is accomplished. This is in
contrast to the performance of DocFreq which simply
selects the most common terms.

The drop in performance as negative class examples
are added is consistently visible for hSVM?! (Fig-
ure 3(A)) and hSVM? (Figure 3(B)). Interestingly,
with hSV M2, DocFreq and ChiSqua with just 18
features (first column, rows 1-2 of Figure 3(B)), the
unbalanced 2-class learner using all training examples
performs surprisingly well indicating that feature se-
lection can indeed combat the destructive influence of
the negative class examples.

6.3. Experiments with Weight Balancing

In order to understand if the impact of negative ex-
amples may be reduced using the balance factor B in
Equation (3), we investigate the performance for the
AHR dataset using weight balancing as described in
Section 4.

Figure 4 plots the mean and standard deviation of the
test set AROC as a function of the balance factor B.
Plots are shown for the three categories of the AHR
dataset for the hSV M? classifier with regularisation
constant C' = 10, although results for other values of
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Figure 4. Mean AROC with standard deviation envelope
as a function of balance factor B for the AHR dataset. We
use here hSV M? with C = 10.

C show similar trends (Kowalczyk & Raskutti, 2002).
The first row explores the whole range -1.0 to +1.0,
while the second row expands the range 0.75 to 1.0
where sudden rises in AROC occur. We note that
the best AROC values for all three learning tasks are
obtained for B > 0.99, and the worst for B = —1.0.

Thus, both the weight balancing and the sample bal-
ancing techniques yield the conclusion that for the
AHR dataset, extreme re-balancing by ignoring all of
the negative examples produces the best AROC.

7. Discussion and Conclusions

In order to understand why one can obtain better re-
sults using examples from a single class rather than
both classes, we first explore the feature space for one
particular randomisation of the KDD cup 2002 pooled
data. Figure 5(A) plots the number of instances when
a particular feature is used in the pooled set versus
the number of features, where these features are or-
dered in the decreasing order of their usage in the
pooled set. As seen from Figure 5(A), the high di-
mensional space consisting of 18,330 features is hardly
sampled. Furthermore, for this particular split, there
are around 14,610 features that occur only in the nega-
tive examples of the training set. We call these features
NegOnly features, and explore how these NegOnly
features affect the two-class models.

To this end, we plot in Figure 5(B), the magnitude
of the SVM weights for the same split, for the bal-
anced two-class hSV M? model created with the set-
ting C = 5000, B = 0. The x-axis is the fraction of
NegOnly features, where these features are sorted by
decreasing order of magnitude of the SVM weights for
the features. The usage of these features in the pos-
itive class of the training set is 0. Hence, during the
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Figure 5. Understanding the influence of sparse high di-
mensional space on the SVM solution of two-class learner.
(A) Usage of features in decreasing order of usage.
(B) Magnitude of SVM weights for two-class model for
the NegOnly (features used only in the negative class in
the training set) features in decreasing order of magni-
tude. (C) Contribution of NegOnly features to SVM score.
(D) Usage of NegOnly features in the positive test set.

training (minimisation of regularised risk (2)), these
features may have relatively large negative weights so
as to minimise the error penalty. However, as shown
in Figure 5(D) their usage in the test instances con-
tributes large negative scores for the positive instances
in the test set, cf. Figure 5(C) which plots the con-
tribution of these features to the SVM scores. Effec-
tively, NegOnly features are “confusing” the two-class
classifier, while leaving the one-class learner unaffected
(since one-class solution vector has entries correspond-
ing to these features set to zero).

While the above analysis is for the whole feature set,
we also observed in Section 6.2.1 that even in low
dimensional dense space, this phenomenon of better
performance with one-class learner persists. Our in-
tuitive explanation here is that if the learner uses the
minority class examples only, the “corner” (the half
space) where minority data resides is properly deter-
mined. However, the minority class is “swamped” by
the background class. Once the background instances
are added, the SVM solution is determined by the need
to minimise the margin errors for this class at the ex-
pense of the target class and the resulting solution be-
comes suboptimal in terms of the resulting ROC curve.
The strange thing is that the heavy discounting of the
majority class does not rectify this impact completely,
cf. B=10.99 in Figure 4.

In this research we have concentrated on the simplest
linear kernel case only. There are three reason for such
a choice: (i) simplicity, (i¢) from past experience, on



Reuters data, non-linear kernels improve performance
only marginally (Dumais et al., 1998; Raskutti et al.,
2001), and (4i7) the non-linear kernel case viewed from
the feature space level reduces to the linear one anyway
(Vapnik, 1998). Some preliminary experiments with
synthetic datasets using polynomial kernels show that
our finding with linear kernels do indeed carry over to
non-linear kernels (Kowalczyk & Raskutti, 2003).

In the paper we have analysed two data sets, Reuters
and AHR data set. The Reuters dataset is an exam-
ple of a ‘regular data set’, where extreme re-balancing,
provides quite good results but using both classes al-
ways produces better results. On the other hand, the
AHR data set behaves differently, with the positive
one-class learners performing significantly better than
two-class learners. Further, for this dataset, negative
one-class learner performs worse than random. This
anomalous behaviour and its potential for discrimina-
tion is the subject of our current research.
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