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Abstract

In their survey on learning from imbalanced
datasets, Japkowitz and Stephen (2002) con-
sider the influence of four key variables: de-
gree of class imbalance, complexity of the
learning task, size of the training set, and the
learning algorithm used. This paper special-
izes these variables to the problem of clus-
tering short, irregularly sampled time-series,
motivated by the practical problem of ana-
lyzing ¢cDNA microarray time-series. These
time-series usually arise from experiments
that attempt to characterize changes in gene
expression following the application of an ex-
ternal stimulus. If, as is often the case, this
stimulus only causes significant expression
changes in a small subset of genes, the result-
ing clustering problem is highly imbalanced.

1. Introduction

This paper analyzes the influence of class imbalance
on the cluster analysis of short, irregularly-sampled
time-series like those currently being generated in our
laboratory. In particular, we are using cDNA microar-
rays to study the dynamics of cellular gene expression
changes in response to the neuropeptide angiotensin
IT activating its cognate AT} receptor. Cluster analy-
sis of these time-series is expected to yield useful in-
sights into the functional associations between genes,
but the resulting cluster size distribution is expected
to be highly imbalanced, with small groups of genes
exhibiting certain characteristic responses and the ma-
jority of genes exhibiting either no response or certain
generic responses. As a preliminary step toward the
design of improved experimental protocols and data
analysis procedures, we specialize the analysis of the
four key issues considered by Japkowitz and Stephen

(2002) in their recent survey on learning from imbal-
anced datasets: degree of class imbalance, complexity
of the learning task, size of the training set, and the
learning algorithm used. Our ultimate objective is to
identify which of these factors are most important in
obtaining reliable clustering results to provide a basis
for enhanced biological understanding. The specific
aims of this paper are more modest: first, to special-
ize the factors considered by Japkowitz and Stephen
to the clustering problems we are attempting to solve
and second, to compare the influence of these factors
on the basis of a simple simulation-based example that
captures the essential characteristics of these microar-
ray time-series clustering problems. Later publications
will apply the results of this paper to the analysis of
real microarray time-series datasets.

1.1. Microarray data analysis

One of the most significant changes in biology in
the last century has been the development of high-
throughput analytical methods like ¢cDNA microar-
rays (Schena, 1995), which permit the simultaneous
measurement of expression levels essentially across an
entire genome (i.e., in ~ 10* genes). A typical mi-
croarray dataset contains results for multiple microar-
rays, obtained with varying degrees of biological and
methodological replication (e.g., duplicate slides pre-
pared from the same tissue sample, slides prepared
from different tissue samples of the same type, etc.).
A typical example is that of Pritchard et al. (2001),
who consider a collection of 72 microarrays, obtained
from three different tissue types for each of six dif-
ferent mice. Microarrays were prepared from each of
these 18 tissue samples using two-fold replication with
two method variations (specifically, two different dye
labellings). Analysis of the resulting datasets involves
a wide variety of issues, including data prefiltering to
detect and eliminate various types of data anomalies,
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normalization to correct for slide-to-slide differences,
and various types of summary analysis that attempt
to either classify genes into groups on the basis of be-
havior differences across the set of microarrays (e.g.,
normally variable vs. highly variable genes in the anal-
ysis of Pritchard et al. (2001)), or classify tissue types
on the basis of differences in the expression patterns
of a subgroup of the genes (Golub et al., 1999).

Our own work is closely related to that of Tavazoie et
al. (1999), who obtained significant biological insights
by applying the popular k-means clustering procedure
to the yeast microarray time-series discussed by Cho et
al. (1998). There, microarrays were used to monitor
the expression changes in approximately 6,000 yeast
genes, generating a time-series of length L = 15 that
was sampled approximately uniformly in time. Two
important practical differences between the yeast time-
series considered by Tavazoie et al. and our time series
are first, that our time-series are shorter (6 samples
vs. 15) and second, that our sampling times are highly
non-uniform (i.e., ¢ = 0, 5, 15, 30, 60, and 240 min-
utes). Unlike typical engineering (Kay and Marple,
1981) and statistical (Brockwell and Davis, 1991) time-
series analysis problems where uniform sampling is the
norm, the approximately exponential sampling scheme
considered here is quite common in biology, arising
from a dose-response view: a key objective is to de-
termine the time required for the biological system to
exhibit a significant response. Further, because mi-
croarray generation involves significant manual effort,
time-series of length L ~ 102 or 102, typical in many
engineering applications, are not currently feasible.

1.2. Cluster analysis

Many different clustering methods have been proposed
and examined to varying degrees, both theoretically
and experimentally, and space does not permit a de-
tailed survey here. In this paper, we are concerned
exclusively with wunsupervised clustering procedures,
which take a dataset and generate one of two results:
partitioning methods partition a dataset summarizing
N objects into k mutually exclusive subsets, while hi-
erarchical methods generate a hierarchy of such parti-
tionings, ranging from a finest partitioning where each
object represents its own cluster, to a coarsest par-
titioning that contains all objects. Because it is best
suited to the biological questions of primary interest to
us, we restrict consideration here to partitioning meth-
ods. This class includes both the extremely popular k-
means procedure considered by Tavazoie et al. (1999)
and others in the analysis of gene expression data, and
the Partitioning Around Medoids (PAM) algorithm
described in detail by Kaufman and Rousseeuw (1990).

In practice, cluster analysis involves more than the
choice of a general method (hierarchical vs. parti-
tioning) and a specific computational algorithm. This
point is nicely illustrated for the PAM algorithm,
which generates a partitioning of a dataset based on
a computed matrix D of dissimilarities D;; between
every pair of objects, ¢ and j in the dataset. Like all
partitioning methods, this algorithm requres the num-
ber of clusters k to be specified as an input parameter.
Given k, the PAM algorithm finds a set {z}} of k
medoids or representative objects from the dataset and
a collection of k sets S; such that zj € S; and the fol-
lowing aggregate dissimilarity measure is minimized:

k
T=2_2_ Dij (1)

i=1 jES;

where Dj; is the dissimilarity between the represen-
tative object z} and the object z; € S;. A detailed
description of this algorithm is given in Chapter 2 of
the book by Kaufman and Rousseeuw (1990).

Since the choice of clustering method represents one
of the four key variables considered by Japkowitz and
Stephen, it is important to consider the influence of
this choice. However, because so many partitioning
methods have been proposed (see, for example, the
discussions in the books by Kaufman and Rousseeuw
(1990) and Gordon (1999)), it is important to restrict
the range of algorithms considered, especially in light
of the ranges of the other three factors to be considered
here.

Initially, we restrict consideration to the PAM algo-
rithm, but with different choices of dissimilarity mea-
sures D;; between objects. We chose this algorithm
over the better known k-means procedure in part be-
cause it addresses some of the known limitations of
k-means (e.g., the dependence of the results on the
order in which the objects appear in the dataset), dis-
cussed further by Kaufman and Rousseeuw (1990, p.
114), and in part because it is inherently more flexible,
permitting the use of arbitrary dissimilarity measures.

2. Case Study Structure

To compare the influence of the four factors just de-
scribed, we use the Generalized Sensitivity Analysis
(GSA) framework proposed recently for comparing
data analysis results (Pearson, 2003). This framework
consists of the following five steps:

1. Define a collection {¥} of scenarios to be com-
pared (here, different degrees of class imbalance,
task complexity, and dataset size).



2. For all scenarios, specify a common sampling
scheme that generates a collection of datasets
{S;}, each of which are expected to yield “equiv-
alent” results.

3. Select a common, real-valued descriptor that will
be used to compare the results obtained across the
different scenarios.

4. Select a collection of methods to be compared,
all of which are compatible with the descriptor
chosen in Step 3.

5. To compare the results generated in Steps 1
through 4, construct boxplots summarizing the
variation in the descriptor values defined in Step
3 that are seen across the datasets generated in
Step 2, for each scenario defined in Step 1 and
each method defined in Step 4.

The GSA framework provides a systematic basis
for managing comparisons between different problem
characteristics, and it is particularly useful in cases like
the one considered here where the number of interest-
ing comparisons is too large to explore exhaustively, a
point discussed further in Sec. 3.

The methods compared here correspond to the PAM
algorithm described in Sec. 1.2 with the two most
popular dissimilarity measures: Euclidean distance be-
tween feature vectors, and the product-moment cor-
relation coefficient between feature vectors (Gordon,
1999; Kaufman and Rousseeuw 1990). The other
three of the four factors considered by Japkowitz and
Stephen correspond to the three scenarios considered
here, described in detail in Secs. 3 through 5. In
all cases, a dataset is generated that consists of time-
series from three simulation-based classes: N4 series
from class A, Np from class B, and N¢ from class C.
As in the survey of Japkowicz and Stephan (2002), the
total dataset size N = N4+ Np+ Ng¢ is fixed, allowing
us to separate imbalance effects from size effects. All
time-series {yx} in each class are of fixed length L and
are of the form:

Yk = Tk + €, k:172:"'5L: (2)
where a is a positive random amplitude variable, {ex}
is an independent, identically distributed (i.i.d.) ran-
dom noise sequence, statistically independent from a,
and {z} is a class-specific deterministic sequence that
defines the noise-free response. The random amplitude
a is uniformly distributed on the interval [1 — X, 1+ )]
for a fixed value of A\, and each noise sample €, is nor-
mally distributed with mean zero and standard devi-
ation . The parameters A\ and o define the variation

between individual members of each class, since taking
A =0 and o = 0 reduces all objects in the class to the
deterministic sequence {x}. The deterministic class
templates considered here correspond to the solutions
of three simple dynamic models:

A: exponential decay, T, = al*,
B: hyperbolic decay, = = 1/(1 + Sti),

C: decaying oscillation, z; = al* coswty.

Specifically, Sequence A comes from a simple first-
order, linear ordinary differential equation model, Se-
quence B comes from an inherently more complex first-
order partial differential equation model, and Sequence
C comes from a second-order linear ordinary differen-
tial equation model. Here «, # and w are positive
constants and the sequence {tx} corresponds to one of
the following three sampling patterns:

U: uniform sampling, t,, = (k — 1)T/(L — 1),
E: exponential sampling, t;, = [T+ 1]*-1D/(L=1) 1,

R: random sampling: t; is an increasing sequence of
random times, uniformly distributed on [0, T7].

Note that the deterministic sequences U and E both
satisfy the condition 0 =t <ty < ---<tp,=T.

3. Learning task complexity

The learning task complexity is essentially determined
by the difficulty of distinguishing objects from differ-
ent classes. For the simulation case studies considered
here, this difficulty is determined by:

a. the length of the individual time-series: L,
b. the noise-free response characteristics: a, 3, w,
c. the observation noise characteristics: A, o,

d. the sampling pattern: class U/E/R, duration T

Even if we only consider three values for each of the
eight variables listed here, the total number of com-
binations is 3% = 6,561, illustrating the point noted
earlier that exhaustive comparison of interesting sce-
narios is not feasible here. To overcome this difficulty,
we adopt the following strategy:

a. To keep the series length L appropriate to the
biological problems motivating our investigation,
we consider L = 6, corresponding to the length
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Figure 1. PAM clustering results for Scenarios 1 and 2, Eu-
clidean vs. correlation dissimilarities

of the time-series generated in our laboratory and
L = 15, corresponding to the length of the yeast
time-series considered by Cho et al. (1998).

b. We consider four noise-free responses:

bl: a3 =0.8, 51 = 0.5, w1 = 30,
b2: as = 0.2, B, = 15.0, wy = 30,
b3: a3 =0.8, 33 =0.5, wg =1,
bd: a4 =0.8, B4 =5.0, wy = 1.

c¢. To compare both scaling and noise effects, we con-
sider the following combinations of A and o:

cl: low noise, no scaling: A =0, 0 = 0.1,

c2: moderate noise, no scaling: A =0, 0 = 0.2,

¢3: high noise, no scaling: A =0, 0 =04,

c4: low noise, random scaling: A = 0.2, ¢ = 0.1,

¢H: moderate noise, random scaling: A = 0.2,
o =0.2,

¢6: high noise, random scaling: A = 0.2, 0 = 0.4.

d. The fixed duration T' = 2.5 was chosen so that the
noise-free sequences {x} are neither essentially
constant, as would be the case if T' were chosen
too small, nor essentially zero for all £ > 1, as
would be the case if T' were chosen too large.

Even under these restrictions, the number of combined
scenarios to consider would be 144, far too many to at-
tempt to summarize here. Hence, we further simplify
the problem by first comparing the 24 possible combi-
nations of the four noise-free sequences bl through b4
with the six scaling and noise scenarios c1 through c6.

Fig. 1 compares the results obtained by the two clus-
tering methods considered here (i.e., Euclidean vs.
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Figure 2. PAM clustering results for Scenarios 3 and 4, Eu-
clidean vs. correlation dissimilarities

correlation dissimilarities) for Scenarios 1 and 2, cor-
responding to the noise-free responses b1l and b2 listed
above. Here, we consider the case of balanced clusters
(Noa = Np = N¢ = 20) and uniform sampling (U),
so the differences between the objects in each cluster
are determined both by random scaling (with A = 0.1)
and additive noise (with o = 0.1). The results shown
in Fig. 1 are the cluster assignments made for each
time-series, plotted against its index. The correct clas-
sification in this case corresponds to the assignment of
the first 20 objects to cluster number 1 (Cluster A),
the next 20 objects to cluster number 2 (Cluster B),
and the last 20 objects to cluster number 3 (Cluster
C). The results obtained for both Scenarios 1 and 2
using Euclidean dissimilarities are shown in the left-
hand two plots in Fig. 1 and it is clear from these
plots that three objects of the 60 are misclassified. The
corresponding results obtained for these scenarios us-
ing correlation-based dissimilarities are shown in the
right-hand plots. For Scenario 2, this result is only
slightly worse than the corresponding Euclidean re-
sult, but for Scenario 1, the correlation-based results
are dramatically worse: 17 misclassifications wvs. 3.

The corresponding results for Scenarios 3 and 4, repre-
senting the noise-free responses b3 and b4 listed above
with the same noise and random scaling as before, are
shown in Fig. 2. As in Fig. 1, it is clear that the
Euclidean results are substantially better than those
obtained using correlation-based dissimilarities. This
result is particularly pronounced for Scenario 4, where
the Euclidean dissimilarity gives perfect classification,
whereas the correlation-based dissimilarity results ex-
hibit 17 misclassifications. This last result also illus-
trates an important practical issue that arises in as-
sessing misclassification rates (Pearson et al., 2003):
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Figure 3. Influence of noise-free responses, random scaling,
and noise amplitude on misclassification rates

the clustering procedure has no knowledge of the clus-
ter identities, but can only assign objects to arbitrar-
ily ordered clusters. That is, the mapping of the em-
pirically identified clusters 1, 2, and 3 into the data
generating clusters A, B, and C requires knowledge of
these cluster characteristics that is not available to the
clustering algorithm. Hence, this assignment must be
made after the fact, and it can be made in different
ways that generally give different results. Since we are
ultimately interested in comparing misclassification re-
sults for different scenarios, the results presented here
are based on the pairing of the triples (A, B,C) and
(1,2, 3) that give the lowest misclassification rate. For
example, note that if we choose the pairing A — 1,
B — 2, and C — 3 for Scenario 4 under the Euclidean
dissimilarity measure, we obtain perfect classification,
but if we adopt this choice for the correlation-based re-
sults, we obtain 26 misclassifications (6 for Cluster A
and all 20 for Cluster C). In contrast, the assignment
A — 3, B— 2, and C' — 1 yields only 17 misclassifi-
cations for this case.

These results demonstrate that the choice of cluster-
ing method is profoundly influential, even for perfectly
balanced clusters. Because the results obtained for
this preliminary test case are so much better for Eu-
clidean dissimilarities than for correlation-based dis-
similarities, we restrict consideration to the Euclidean
case for the remainder of this paper.

Fig. 3 summarizes the misclassification rates for 12
scenarios, corresponding to two different choices of
noise-free response (bl vs. b2) and the six noise effect
classes, cl through c6. More specifically, each boxplot
in this figure summarizes the misclassification rates for
50 statistically independent repetitions of the cluster-

ing problem considered here. The white line at the
center of each boxplot corresponds to the median mis-
classification rate for the 50 clusterings, the top and
bottom of the black box represent the upper and lower
quartiles, respectively, and the whiskers correspond to
the most extreme non-outlying data values. Outliers
are defined as points lying further than 1.5 times the
interquartile range from the median, and are marked
with separate horizontal lines in the plot.

Several conclusions are clear from a comparison of
these boxplots. First, as expected, the learning task
becomes more difficult with increasing object variabil-
ity: misclassification rates increase strongly with in-
creasing o (noise classes ¢l vs. ¢2 vs. ¢3 and c4 vs.
¢h vs. ¢6) and somewhat less strongly with increasing
A (cl/c2/c3 vs. ¢4/c5/c6). These differences also de-
pend on the noise-free response characteristics, b1 vs.
b2 shown here, and qualitatively similar dependences
are obtained for noise-free responses b3 and b4, not
shown. For example, the effect of increasing X is negli-
gible relative to the effect of increasing o for response
class b2, as may be seen by comparing the c1/c2/c3
results with the c4/c5/c6 results. In contrast, for re-
sponse class bl, the misclassification rates are signif-
icantly higher for noise class c4 than for noise class
cl (A =0.2vs. A =0, both with o = 0.1). Also,
the rate at which the number of misclassifications in-
creases with o is a very strong function of the response
class. This point may be seen most dramatically when
comparing noise scenarios cl, ¢2, and c¢3 in Fig. 3:
response class b2 is consistently better than response
class bl when o = 0.1 (noise class c1), but consistently
worse when o = 0.4 (noise class ¢3).

To compare the influence of sequence length and sam-
pling pattern, Fig. 4 summarizes the results obtained
for two of the 12 scenarios compared in Fig. 3 as these
factors are varied. Specifically, Scenario A corresponds
to the response and noise class combination bl /c1, and
Scenario B corresponds to the combination bl/c3. As
noted earlier, the sequence lengths considered here are
L = 6 and L = 15, and the sampling patterns con-
sidered are uniform (U), exponential (E), and random
(R). Note that in the boxplots shown in Fig. 4, the
same random sampling time sequence {tj} is used in
all simulations to facillitate comparisons: the variabil-
ity seen in each boxplot is entirely due to differences
between the 50 statistically independent realizations
defined by the noise class, cl or ¢3. The results pre-
sented in Fig. 4 give some evidence that the cluster-
ing problem is more difficult for shorter sequences, but
these differences are negligible at the higher noise level
(Scenario B). These results also suggest that the sam-
pling pattern—uniform vs. exponential vs. random—
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Figure 4. Influence of sequence length and sampling pat-
tern on misclassification rates

has a significant influence at low noise levels, particu-
larly for shorter sequences. In particular, note that for
Scenario A, uniform sampling is clearly the best strat-
egy, followed by exponential and then random sam-
pling, both for L = 6 and L = 15, but the sampling
pattern has essentially no effect on the results for Sce-
nario B.

Fig. 5 presents analogous results for two additional
scenarios: Scenario C corresponds to the combination
b2/cl and Scenario D corresponds to the combination
b2/c3. As before, it is clear that noise effects are dom-
inant: results for the high-noise Scenario D are uni-
formly worse than those for low-noise Scenario C. For
the low-noise case, the effects of sequence length L are
much more pronounced than they were for Scenario
A; in particular, increasing the sequence length from
L =6 to L = 15 in Scenario C yields a much more
dramatic improvement than in Scenario A, reflecting
an inherent difference in our ability to separate the bl
patterns vs. the b2 patterns. Finally, note that in
marked contrast to Scenario A, the different sampling
schemes have precisely the opposite ordering for both
Scenarios C and D: random sampling appears best, fol-
lowed by exponential with uniform sampling poorest.
Again, note that sampling pattern effects appear more
significant for shorter sequences than for longer ones.

4. Class imbalance effects

For fixed sample size N, the membership of each
individual cluster can vary between 0 and N, with
Na = N = Ng = N/3 for the perfectly balanced
case. The number of possible partitionings into three
classes is (N? + 3N + 2)/2, meaning that there are
1,891 possible cases for the case N = 60 considered
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Class Njp Np Ng | Class N4y N  Ne

1 20 20 20 6 10 10 40
2 20 10 30 7 5 35 20
3 20 5 35 8 5 20 35
4 10 20 30 9 5) 10 45
5 10 30 20 10 5) 5 50

Table 1. Imbalance classes considered here

here. Again, exhaustive search is impractical so we
initially examine the 10 special cases listed in Table
1. As before, since we are principally interested in
the case of very short sequences (L = 6) and exponen-
tial sampling patterns (E), we restrict consideration to
these cases and consider the consequences of the ten
different class imbalance patterns listed in Table 1 on
the clustering of time-series generated under Scenarios
C and D from the previous example.

Fig. 6 gives a boxplot summary of the misclassification
results obtained under each of these different imbal-
ance patterns, numbered as in Table 1, for Scenarios C
and D. It is clear from this plot that class imbalance ef-
fects are extremely significant, comparable to the noise
effects that distinguish these two scenarios (o = 0.1 for
Scenario C and ¢ = 0.4 for Scenario D). For Scenario
C, generally good results are obtained for most imbal-
ance classes. In particular, only Classes 3, 9, and 10
give consistently poor results, while Classes 6, 7, and 8
occasionally give poor results, as indicated by the out-
lying cases with high misclassification rates. Classes 1,
2, 4, and 5 exhibit the best results, consistent with the
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Figure 6. Effects of class imbalance on Scenarios C and D

fact that these cases also exhibit the lowest degree of
class imbalance of the ten cases considered here. Fur-
ther, note that the five cases with very small classes
(Cases 3 and 7-10) all exhibit either consistently poor
misclassification rates or outlying examples with high
misclassification rates. As before, differences are much
less pronounced for high-noise Scenario D, where re-
sults are uniformly poorer.

5. Size effects

The last problem characteristic considered here is the
size of the dataset, IN. Since it gives the most con-
sistent results, we examine this effect for Scenario C
for the three sizes N = 24, N = 60, and N = 120,
corresponding to scalings of the previously considered
problem by factors of 2/5, 1, and 2. These scalings
were chosen because the larger and smaller datasets
are scaled by roughly the same factor, while keeping
integer values for cluster sizes N4, Np, and N¢ in all
of the ten imbalance classes defined in Table 1. These
effects are shown in Fig. 7, which should be compared
with the left-hand side of Fig. 6, which has the same
format and scaling. Careful comparison of these plots
generally reveals little change in the median misclassi-
fication rates with total sample size, but the variabil-
ity of these results does decrease with increasing N,
as indicated both by the width of the solid portion of
the boxplots and the indicated outliers. Exceptions
are Classes 3 and 7, where the misclassification rates
seem to improve dramatically as N increases from 24
to 60 to 120. In contrast, note that imbalance classes
9 and 10 are consistently the hardest to cluster cor-
rectly in this example, giving results that are almost
entirely independent of sample size, at least over the
range considered here.
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Figure 7. Effects of dataset size on Scenario C

6. Summary

Motivation for this study was to provide the necessary
background information to develop a systematic proce-
dure for the analysis of microarray time-series that are
being generated in our laboratory. Consequently, we
have attempted to incorporate characteristic features
of this problem to determine their influence on the re-
sults we obtain. To accomplish this, we have special-
ized the four characteristics of the imbalanced learning
problem considered by Japkowicz and Stephan (2002)
as follows. First, the degree of class imbalance is de-
termined by the biological aspects of the problem; sec-
ond, the nature of the time-series to be clustered is
dictated by the length L, the noise-free response, the
magnitude of the noise or other sources of variability,
and the sampling pattern; third, the overall problem
size is the number of gene responses to be clustered;
and fourth, the learning method, is the clustering al-
gorithm used in analyzing the time-series data.

A key practical question is whether it is possible to
extract useful information from time-series as short as
L = 6, given that classical results in engineering and
statistical time-series analysis (e.g., spectrum estima-
tion) are almost entirely useless in such cases. Both
our previous results (Pearson et al., 2003) and the
results presented here suggest that analysis of these
time-series can yield useful results. The comparisons
presented here with time-series of length L = 15,
a choice motivated by the results of Tavazoie et al.
(1999) and Cho et al. (1998), demonstrate that in-
creasing the length of the time-series can make the
analysis problem easier, but that this effect is not dom-
inant. Similar conclusions apply to the total sample
size, N, which appears to be the least influential of all
of the factors considered here.



The most significant factors appear to be the noise
characteristics, the class imbalance pattern, and the
clustering algorithm used. Beyond showing that it
was a highly influential factor, we did not investigate
the influence of the clustering method in detail here,
primarily because the choice of clustering method is
entirely under our control in analyzing the data and
is not directly influenced by experimental considera-
tions, in contrast to factors like the time-series length
L. The results presented here show, not surprisingly,
that noise effects ultimately become dominant, essen-
tially eliminating our ability to cluster the time-series.
A less obvious insight is the degree to which this noise-
induced degradation depends on both the character of
the noise-free response and the class imbalance pat-
tern. It is also worth emphasizing that the class imbal-
ance pattern appears to be a more significant influence
than the fact that highly imbalanced problems exhibit
some very small classes. In the microarray time-series
analysis problems of interest to us, these results sug-
gest the exploration of preprocessing procedures that
improve the imbalance pattern by removing candidate
genes from consideration that are not expected to be
biologically interesting.

Finally, a particularly interesting observation was the
influence of sampling pattern on the time-series clus-
tering results considered here. As noted, engineer-
ing and statistical time-series tend to be uniformly
sampled in time, whereas biological sampling patterns
tend to be highly irregular, often approximately ex-
ponential, motivated by a dose-response view of re-
sponse times. The results presented here show that
sampling pattern differences can have a significant in-
fluence on clustering results, but that these differences
are strongly case-specific and thus impossible to pre-
dict a priori. Also, it was seen that, at least in the
examples considered here, these differences are more
important for shorter time-series like those of primary
interest to us than for longer time-series like those typ-
ical of engineering and statistical applications.
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