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Abstract

This paper describes an application of a simple
kNN approach to a novel classification problem
with an unbalanced class distribution. We dis-
cuss here one particular problem area, extracting
protein names from the biological literature.
Specifically, we empirically study the effects of
under-sampling on the k nearest neighbor kNN
approach and five different methods of choosing
negative training examples. Our experimental
results show that the kNN method is sensitive to
the number of negative examples selected and
the random selection of negative examples
works better than three of the other four example
selection methods.

Introduction

Classification is a well-studied problem in machine learn-
ing. Various classification techniques such as decision
trees, neural networks, and rule induction have been de-
veloped and successfully applied to many domains. Many
of these standard classification algorithms usually assume
that training examples are evenly distributed among dif-
ferent classes. However, as indicated in (Japkowicz,
2000), unbalanced data sets often appear in many practi-
cal applications. In an unbalanced data set, the majority
class is represented by a large portion of all the examples,
while the other, minority class, has only a small percent-
age of all the examples. For a multi-class classification
problem, there may be several minority classes. In some
applications, all classes are minorities and this is espe-
cially true for many information extraction applications.
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Studies (Weiss 1995; Kubat, Holte, & Matwin 1998;
Fawcett & Provost 1997; Japkowicz & Stephen 2002)
show that in many applications, unbalanced class distribu-
tions result in poor performances from standard classifica-
tion algorithms. These classification algorithms generate
classifiers that maximize the overall classification accu-
racy. When dealing with unbalanced data sets, this leads
to either trivial classifiers that completely ignore the mi-
nority class or classifiers with many small (specific) dis-
juncts that tend to overfit the training sample. These small
disjuncts are primarily responsible for errors on unseen
cases (Holte, Acker, & Porter 1989). There have been
some attempts at dealing with classification of unbalanced
data sets (Japkowicz 2000). Methods include resizing
training data sets, adjusting misclassification costs, and
recognition-based learning (learning from the minority
class).

Classifications with unbalanced data sets are also fairly
common in problems of information extraction from text
(Cardie and Howe 1997). Our case study here involves
information extraction from the biomedical literature.
Such information extraction is needed in order to speed
up the creation of structured databases representing the
latest scientific knowledge about specific objects such as
proteins, genes, etc. We discuss here one particular prob-
lem area, that of extracting protein names from
MEDLINE abstracts; this work is a part of a larger project
at Georgetown University aimed at automatically induc-
ing an ontology of protein names by fusing together in-
formation mined from MEDLINE abstracts, protein
databases, and existing ontologies. Protein names show
considerable variation because of the existence of multi-
ple naming conventions and short forms used for conven-
ience in running text. For example, the EphB2 receptor, a
protein involved in signaling in the brain, was initially



referred to as ‘Cek5’, ‘Nuk’, ‘Erk’, ‘Qek5, ‘Tyro6’,
‘Sek3’, ‘Hek5 , and ‘Drt’ before being standardized as
‘EphB2’ (Nature 1999). Existing information extraction
approaches have used lexical resources such dictionaries
as well supervised learning from labeled examples. While
dictionaries are useful, they are costly to develop and
maintain, and fail to handle new names; hence, machine-
learning approaches are of interest. See (Hirschman et al.
2002) for a survey of bioinformatics information extrac-
tion methods.

In this paper, we describe a k nearest neighbor (kNN)
learning approach to extracting protein names from
MEDLINE abstracts. The learning task exhibits an unbal-
anced class distribution and only about 4% of all exam-
ples represent protein names. We study the effects of
under-sampling on the k nearest neighbor approach and
different ways of choosing negative training examples.
We also show that the k nearest neighbor approach per-
forms significantly better than C5.0 (Quinlan 1993) in this
application.

2. Previous Work on Unbalanced Class Distri-
butions

Since many practical machine learning applications in-
volve unbalanced data sets, machine learning researchers
have developed different methods for solving the class
unbalance problem. Developed methods include resizing
training data sets, adjusting misclassification costs, and
recognition-based learning (learning from the minority
class).

Resizing training sets includes over-sampling minority
class examples (e.g., Ling & Li 1998) and/or under-
sampling the majority class (e.g., Kubat & Matwin 1997).
Ling & Li (1998) over-sampled the minority class by add-
ing copies of the minority examples to the training set.
Over-sampling does not increase information, but it does
increase the misclassification cost (see below) of the mi-
nority examples. In under-sampling, examples removed
could be randomly selected, or near miss examples, or
examples that are far from minority class examples. Ku-
bat & Matwin (1997) studied several different methods
for reducing majority class examples. But down-sizing the
majority class results in a loss of information that may
result in overly general rules.

Cost-sensitive classifiers (Pazzani et al. 1994; Domingos,
1999) have been developed to handle the problems with
different misclassification error costs. Cost-sensitive clas-
sifiers may be used for unbalanced data sets by setting a
high cost to the misclassifications of a minority class ex-
ample. This has a similar effect to over-sampling the mi-

nority class and may end up with over specific rules or
rules overfitting training.

Recognition-based learning approaches learn rules from
the minority class examples with or without using the
examples of the majority class. It guarantees some rules
will be learned for the minority class. Japkowicz et al.
(1995) developed recognition-based multi-layer percep-
trons for unbalanced data sets. Kubat et al. (1998) devel-
oped a recognition-based rule learning system, SHRINK,
and applied it to oil spill detection from satellite radar
images. SHRINK generates a single rule, which is a list of
intervals of attributes, for the minority class. In identify-
ing a minority class example, partial matching is applied
to the example and the rule. Other recognition-based
learning systems include Gold-Digger and Brute (Riddle
et al. 1994) and the PNrule method developed by Agarwal
and Joshi (2000).

3. Approach

3.1 The Problem

This case study uses a data set of 300 MEDLINE ab-
stracts corresponding to 300 database entries, which were
randomly picked from ~5000 human-curated database
entries from the Protein Information Resource’. The 300
abstracts have been annotated based on a set of protein-
tagging guidelines (Hu 2003) using MITRE’s Alembic
Workbench (Day et al. 1997). The annotator tagged
nearly 3300 protein names in these abstracts.

The learning approach uses a word-based representation,
where each word token is given a class (protein-start, pro-
tein-end, protein-middle or none, based on overlap with
the annotator’s protein tag). The approach extracts word-
level features. These features include syntactic features
based on part-of-speech tags from the Alembic tagger
(Aberdeen et al. 1995) and semantic features based on
several subdictionaries: a list of macromolecule terms
(1047) (mt), biomedical terms (852) (bt), chemical terms
(806) (ct), common English terms related to protein
names, and other relevant non_word_tokens (2212) (nwt).
Positional features based on a context window are also
extracted.

In summary, each word position in the text gives rise to a
feature vector consisting of:
1. Word token
2. Part-of-speech tag
3. Subdictionary tag — macromolecule, biomedical,
chemical term, common English term, non-word
tokens, or nil
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Protein tag — class

Start of protein tag — class

End of protein tag — class

Features (part-of-speech tag and subdictionary
tag) of all 3 words to left and all 3 words to right

Nownk

Table 1. Number of training and test vectors out of 300
abstracts

Start | Protein | End
# of positive 2434 | 2555 2434
training examples
# of negative 56255 | 58593 56255
training examples
# of positive test 505 509 505
examples
# of negative ex- 11812 | 11808 11812
amples

There are 15 independent variables and three classifica-
tion tasks: one for protein tag, one for start of protein tag,
and one for end of protein tag. Although we view these as
separate tasks, in the protein tagging system the three
classifiers are combined to determine the text extent of
each protein tag. Of these 300 abstracts, the first 50 ab-
stracts are used as test data and the remaining 250 ab-
stracts are used as training data. Table 1 shows the
number of training and test examples for the three classi-
fication tasks. It can be seen that this word based model
generates lots of data but it is heavily skewed with only
4% positive examples.

3.2 Statistical Classifiers

A simple kNN algorithm is applied to the classification
tasks. The similarity metric of the kNN algorithm uses the
longest common subsequence (LCS) for the partial match
of the Word feature and a simple binary match on all
other features. All features except the Word feature are
weighted equally, with the Word feature being weighted
twice as important as the other features. Specifically, the
following similarity metric is used:

14
M + Zmatch(xi , yl-) ’
max(|x, [,| yo ) ‘5

where x and y are the two vectors corresponding to two
word positions, X, (¥) is the value of the word feature and
x; (yp), for i =1, ..., 14, are values of the remaining 14
features, LCS(X, ¥o) is the length of the longest common
subsequence of X, and yy, [Xo|, (|yo|) is the length of X, (yo),
and match(x;, y;) returns 1 if x; and y; are equal and 0 oth-
erwise.

Similarity(x,y) =

We have run 1NN, 3NN, 5-NN, 7NN, and 9NN on the
data sets and differences in performance are not dramatic,
with 5NN achieving the best results. The results reported
in next section were obtained using SNN. In addition to

the kNN algorithm, C5.0, a decision tree learning algo-
rithm, was applied to the same training and test sets.

3.3 Under-Sampling Negative Examples

In this work, we investigate the effect of under-sampling
on the kNN approach. Study of over-sampling and cost-
sensitive methods will be our future research. Under-
sampling negative (here the majority class) examples is an
often-used approach to deal with the problem caused by
unbalanced data distribution. Instead of using the entire
set of negative training examples, a small subset of nega-
tive examples is selected such that the resulting training
data is less skewed. Different ways for selecting examples
have been studied in the past. In our work, we have se-
lected a given percentage of training negative examples in
five different ways: random selection, selection of near-
miss examples (three ways), and selection of most distant
examples.

We have used three different methods to select near-miss
examples. The first method (NearMiss-1) selects negative
examples that are close to someof the positive examples.
In this method, we select negative examples whose aver-
age distances to three closest positive examples are the
smallest. The second method (NearMiss-2) selects nega-
tive examples that are close to all positive examples. In
this method, examples are selected based on their average
distances to three farthest positive examples. In the third
method (NearMiss-3), we select a given number of the
closest negative examples for each positive example. This
method guarantees every positive example is surrounded
by some negative examples. Finally, in selection of most
distant negative examples, we choose the negative exam-
ples whose average distances to the three closest positive
examples are the farthest. We expect the NearMiss meth-
ods should perform better than the random and distant
methods, and the random method should work better than
the distant method. We also expect that the NearMiss-3
method should achieve high precision and low recall
while the distant method should achieve high recall and
low precision.

4. Results

In this section, we report the results achieved by applying
the simple 5NN algorithm to the data sets with different
percentages of negatives examples selected using differ-
ent methods. We use recall, precision, and F-measure as
our performance measures. F-measure is a metric that is
widely used in information retrieval. It is also used in
some machine learning algorithms for unbalanced data
sets (e.g., Weiss & Hirsh 2000). The two components of
F-measure are recall and precision. The recall is the ratio
of the number of positive examples correctly recognized



and the number of all positive examples. The precision is
the ratio of the number of positive examples correctly
recognized and the total number of examples (both posi-
tive and negative) recognized. F-measure (F1) is defined
below.

2 x recall x precision

F — measure(r) =
recall + precision

Predictive accuracy is a reasonable metric when the user's
objective function assigns the same cost to false positives
and false negatives. When the numbers of false positives,
true positives, false negatives, and true negatives are
about equal, predictive accuracy tends to agree with pre-
cision and recall, but when false negatives predominate
there can be large disagreements.

Figure 1 shows the SNN F-measure scores with the dif-
ferent percentages of randomly selected negative exam-
ples. For all three classification tasks: protein, protein
start, and protein end, the highest score was achieved at
10% randomly selected negative examples. This is due to
the fact that the best balance between precision and recall
is achieved at 10%.
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Figure 1. F-measure scores for randomly selected nega-
tive examples

Figure 2 is the 5NN precision-recall curve for different
percentages of randomly selected negative examples,
while Table 2 reports detailed results for SNN and C5.0.
Precision increases with the increase of the percentage of
negative training examples, whereas recall decreases with
it. These are true for both SNN and C5.0 and showed that
both algorithms are sensitive to the amount of negative
training examples in this application. Therefore, under-
sampling may be used to adjust the trade-off between
recall and precision, but it has to be used carefully.

C5.0 achieved higher recalls than those of SNN with sig-
nificantly lower precisions than SNN. F-measure scores of
C5.0 are lower than those of SNN in almost all cases. It
has been noticed that decision tree algorithms are sensi-
tive to unbalanced class distributions (Japkowicz &
Stephen 2002). C5.0 achieved the low precisions for the
small amount of negative examples. This is probably due
the overgeneralization of the positive class. It is known

that the SNN method is better than rule induction (or deci-
sion tree learning) methods in handling small disjuncts
(Zhang 1990). When the percentages of negative exam-
ples are low, the differences are significant. With the in-
creases of percentages of negative examples, C5.0 recalls
drop quickly; this is because CS5.0 tries to maximize the
overall classification precision.
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Figure 2. SNN Precision-recall curve by % negative ex-
amples (randomly selected)

Table 3 shows the results for the five different negative
example selection methods using SNN. The result is the
average of five different runs on different training and test
sets from the protein data. Four fifth of the data was used
for training and the remaining one fifth was used for test.
The number in the parenthesis is the standard deviation.
Surprisingly, the random method performed as well as the
NearMiss-2 method and much better than the other three
methods. The distribution of randomly selected negative
examples should be similar to the distribution of all nega-
tive examples, other methods enforce the change of the
negative example distribution.

The NearMiss-1 method selects negative examples based
on their distances to three of the closest positive exam-
ples. This method performed surprisingly poorly on both
precision and recall. Its poor performance may be ex-
plained as follows. Negative examples selected in this
method may not be evenly distributed around positive
examples. Namely, the NearMiss-1 method may select
many negative examples around some positive examples,
and very few around other examples. Positive examples
with many selected negative neighbors cause low recall,
while examples with very few selected negative neighbors
are the reason of low precision. The results of the Near-
Miss-3 method support this claim.

The performance of the NearMiss-2 method is
comparable with the performance of the random method.
Negative examples selected in this method are close to all
positive examples and they could be evenly distributed
among positive examples. In the NearMiss-3 method,
every positive example is surrounded by some selected
negative examples. Therefore, its precision is high (up to
80%), but its recall is low. Its best F-measure score is
achieved with 5% negative examples. If precision is



preferred, the Near-Miss-3 method could be a good

option. Finally, as expected, the recall of the distant

Table 2. Detailed results for randomly selected negative examples

method is extremely high, but its precision is very low.

% of training nega- Protein Start End
tive examples C5.0 5NN C5.0 5NN C5.0 5NN
Precision 0.16 0.31 0.14 0.33 0.14 0.32
Recall 0.77 0.73 0.82 0.71 0.80 0.74
F-measure 0.27 0.44 0.24 0.45 0.24 0.45
10% Precision 0.19 0.45 0.21 0.47 0.19 0.45
Recall 0.62 0.56 0.68 0.50 0.64 0.55
F-measure 0.29 0.50 0.32 0.49 0.29 0.50
15% Precision 0.25 0.54 0.26 0.56 0.24 0.57
Recall 0.49 0.46 0.54 0.40 0.48 0.43
F-measure 0.33 0.50 0.35 0.47 0.32 0.49
20% Precision 0.29 0.65 0.26 0.62 0.28 0.62
Recall 0.49 0.39 0.45 0.36 0.44 0.38
F-measure 0.37 0.49 0.33 0.46 0.34 0.47
25% Precision 0.32 0.68 0.31 0.66 0.31 0.67
Recall 0.41 0.29 0.43 0.29 0.40 0.32
F-measure 0.36 0.41 0.36 0.40 0.35 0.45
30% Precision 0.36 0.75 0.33 0.72 0.31 0.71
Recall 0.36 0.29 0.39 0.26 0.30 0.28
F-measure 0.36 0.42 0.36 0.38 0.31 0.40
35% Precision 0.42 0.71 0.34 0.72 0.40 0.71
Recall 0.30 0.23 0.30 0.22 0.34 0.26
F-measure 0.35 0.35 0.32 0.34 0.37 0.38
40% Precision 0.43 0.75 0.39 0.76 0.44 0.77
Recall 0.15 0.23 0.28 0.19 0.16 0.23
F-measure 0.22 0.35 0.33 0.30 0.24 0.35
Table 3. Results for five different negative example selection methods
% of training nega- Random NearMissl NearMiss2 NearMiss3 Distant
tive examples
5% Precision 0.30(0.021) | 0.14 (0.011) 0.29 (0.021) 0.52 (0.042) 0.06 (0.004)
Recall 0.78 (0.009) | 0.68 (0.016) 0.78 (0.013) 0.53 (0.055) 0.99 (0.000)
F-measure | 0.42(0.025) | 0.23(0.014) 0.42 (0.022) 0.52 (0.035) 0.12 (0.008)
10% Precision 0.44 (0.030) | 0.28 (0.026) 0.43 (0.030) 0.68 (0.039) 0.08 (0.006)
Recall 0.64 (0.019) | 0.52(0.009) 0.64 (0.012) 0.35(0.015) 0.97 (0.003)
F-measure | 0.52(0.022) | 0.36 (0.022) 0.51 (0.022) 0.46 (0.020) 0.14(0.010)
15% Precision 0.51(0.037) | 0.40 (0.046) 0.51 (0.037) 0.75 (0.043) 0.09 (0.006)
Recall 0.56 (0.016) | 0.40(0.012) 0.54 (0.015) 0.25(0.012) 0.96 (0.002)
F-measure | 0.53(0.021) | 0.40(0.022) 0.52 (0.021) 0.37 (0.017) 0.15(0.013)
20% Precision 0.58 (0.027) | 0.48 (0.063) 0.57 (0.041) 0.78 (0.041) 0.10 (0.008)
Recall 0.47 (0.044) | 0.30(0.011) 0.46 (0.017) 0.19 (0.013) 0.94 (0.005)
F-measure | 0.52(0.019) | 0.36(0.019) 0.50 (0.020) 0.30 (0.020) 0.18 (0.012)
25% Precision 0.62 (0.052) | 0.53 (0.064) 0.65 (0.039) 0.80 (0.042) 0.11 (0.008)
Recall 0.43(0.019) | 0.26 (0.013) 0.41 (0.017) 0.16 (0.010) 0.91 (0.008)
F-measure | 0.50(0.020) | 0.34(0.019) 0.50 (0.022) 0.26 (0.016) 0.19(0.013)
30% Precision 0.63 (0.056) | 0.56 (0.062) 0.68 (0.039) 0.82 (0.038) 0.13 (0.013)
Recall 0.40 (0.028) | 0.22 (0.013) 0.36 (0.019) 0.14 (0.009) 0.88 (0.007)
F-measure | 0.47(0.026) | 0.31(0.014) 0.47 (0.023) 0.23 (0.015) 0.21 (0.013)
35% Precision 0.67 (0.053) | 0.62 (0.062 0.70 (0.040) 0.83 (0.044) 0.13 (0.009)
Recall 0.36 (0.032) | 0.20(0.014) 0.32(0.016) 0.12 (0.007) 0.85 (0.008)
F-measure | 0.45(0.023) | 0.30(0.016) 0.43 (0.017) 0.21 (0.012) 0.22 (0.015)
40% Precision 0.68 (0.059) | 0.66 (0.055) 0.72 (0.044) 0.84 (0.046) 0.13 (0.010)
Recall 0.34(0.024) | 0.18 (0.012) 0.30 (0.015) 0.11 (0.007) 0.83 (0.008)
F-measure | 0.45(0.020) | 0.28 (0.015) 0.42 (0.018) 0.18 (0.021) 0.23 (0.015)




5. Conclusion

In this paper, we described an application of a simple
kNN approach to a novel classification problem in infor-
mation extraction with unbalanced class distribution. Spe-
cifically, we empirically studied the effects of under-
sampling on the kNN method and different negative ex-
ample selection methods. In this application, we found
that both the kNN and C5.0 are sensitive to the percentage
of negative examples selected. Their recalls decrease with
the increase in the percentage of selected negative exam-
ples, while precisions increase with the increase in the
percentage of selected negative examples. Nevertheless,
under-sampling is still a useful strategy for unbalanced
class distribute in this application. It provides us a means
for trading recall (or precision) for precision (or recall).
The kNN method also outperforms C5.0.

Among the five negative example selection methods, the
random and NearMiss-2 methods performed the best. The
other two near miss example selection methods do not
work as well as the random method. The method based on
selection of distant examples tends to have the positive
class overgeneralized. To the best of our knowledge, the
work reported in this paper is the first study of how the
kNN method works with the under-sampling strategy for
the problem of unbalanced class distributions.
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