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Abstract

This paper describes work in progress on the
problem of concept learning in the presence
of overlap and imbalance in the training set.
A fuzzy set representation of the concept is
adopted and class discrimination is achieved
using a fuzzy classifier.

1. Introduction

Current classification algorithms assume that the data
needed for classifier training are balanced, that is, that
for a two class problem, about the same amount of
data are available for each class. However, this is not
always true. Moreover, as discussed in (Japkowicz,
2000) data imbalance poses some potentially impor-
tant problems for deriving at least some types of clas-
sifiers.

A typical situation that leads to imbalance relates to
the functioning of a system, whose failure may cause
serious consequences. An important issue in the design
of such a system is that of minimizing the probability
of failures. Consequently, the events of smallest prob-
ability become the most important. Yet, failures do
occur and data can be collected about the conditions
of the system that resulted in failure. As described in
(Narazaki & Ralescu, 1994) in some cases, human op-
erators of such systems learn to recognize conditions
leading to failure and act before failure occurs and,
automatic systems can be trained to recognize them
too.

Traditionally, a learning algorithm seeks to optimize
some criterion. The system is usually evaluated ac-
cording to various criteria, including learning curve,
and prediction error which is based on the percentage
of errors made on test data presented to the system.

Table 1. Variability of data between and within label for
variable HD.

LABEL VALUE
30 - 40

S 40 - 55
28 - 32

40 - 65

M 50 - 60
35 - 45

33 - 45

B 50 - 59
48 - 63

However, in the case of imbalanced data measuring
the prediction error only by the percentage of errors
may not sufficient: if it were, one would not need any
learning and instead assume that all data belong to
the large class, ensuring then a small percentage of
error, the smaller in fact, the more the data is imbal-
anced. Other measures for performance, such as the
F-measure may be be needed.

An additional starting point of this study is the obser-
vation that often classification errors occur near class
boundaries. In addition, in many real life problems
classes may overlap in the sense that some data points
may appear as (valid) examples in both classes. Er-
rors in this case, classifying such a data point to the big
class, may have serious consequences (Pazzani et al.,
1994), (Fawcett & Provost, 1997).

The above remarks lead to the idea that prediction
should depend on a penalty or cost associated with an
error. In the general situation described above, an er-
ror on a data point belonging to the small class would
have a larger penalty than one for the large class. The
extent to which this penalty should be larger is also
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to be determined from the data. However, it can be
argued that the effect of assessing penalties is equiv-
alent to changing the relative data distribution in the
two classes, or, in other words, to balancing the data.

2. Problem Description

Two main approaches are currently used for learning
to classify imbalanced data:

e discrimination between the classes;

e recognition (learning) of one class (ignoring the
other one).

In the first approach, examples and counter examples
are used to train the system to discriminate between
classes; the second method works like an associative
memory, learning only the instances of one class. The
problem is to decide which approach of the two men-
tioned above is more suitable for what type of data.
Recent work done on this direction, (Japkowicz, 1999),
concludes that the discrimination classifier performs
better for the cases when the class to be recognized re-
quires particularly strong specialization: if the exam-
ples from the class have large variance within the class,
then the information gained by using the counter ex-
amples helps to discriminate between the classes. The
second method is more suitable when the class to be
learned is more ’tight’ (i.e., there is not high variability
between the members of the same class).

To deal with the imbalance problem, two methods are
mostly used to rebalance them artificially:

e up-sampling: resample from the smaller class until
meets the same number of data as the big class;

e down-sampling: eliminate data from the big class
until the classes are balanced.

The current work proposes a fuzzy set approach to the
problem of learning from imbalanced data. Fuzzy sets
for class representation - as a collection of data points
and their corresponding membership values - can be
used to implement an approach in which the class
membership functions are derived in a way that cap-
tures the contribution of each example to the corre-
sponding class in a way that is correctly reflected by
the prediction error. In addition, the fuzzy set based
approach allows (but does not require) a setting in
which classes may overlap. Related previous work in-
cludes (Narazaki & Ralescu, 1994), (Inoue & Ralescu,
1999), (Visa et al., 2003).

3. The Data Set

The data set used in this study is a real data set ob-
tained for a study on assessing the perception of lifting
tasks by manual workers. The variability within a class
and the overlap between classes are not artificial and
cannot (should not) be dismissed as they convey both
the variability within each concept to be learned, and
the variability among subjects.

Figure 1. The high overlap between classes M and B: 54
random data from each of the classes M and B are plotted
1D.
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Figure 2. The high overlap between classes M and B: all
data plotted 2D.

The data set comes from a survey on manual workers
from Hong Kong and express the perceived difficulty
level on lifting weights. A full and detailed descrip-
tion of the data set can be found in (Visa, 2002). Two
hundred seventeen manual workers were required to
imagine various lifting conditions (described verbally)
on several aspects (variables) of the lifting task. Seven
variables were used to describe the lifting task as fol-
lows: Floor Weight (FW), Waist Weight (W), Hori-
zontal Distance (HD), Twisting Angle (TA), Frequency



(F),Work Duration (WD), Vertical Distance (VD).
The values of the lifting tasks variables were assessed
by each individual and labeled as Small (S), Medium
(M) or Big (B) as illustrated in Table 1. In the current
study only the data for class M and B for the variable
HD were used. The total number of data used is 432:
216 from class M and 216 from class B. From a more
complete study done for all the seven variable (Visa,
2002), it was observed that the data for variable HD
had the highest overlap between classes and therefore
the lowest accuracy in prediction (see Figure 1 for data
plotted as segments and Figure 2 for data plotted as
points in a two-dimensional space).

Throughout this study 108 data points from each of
the two classes, labeled M and B are used for testing.
The training data are artificially imbalanced:
Class M is considered the 'Big’ class and class B will
be the "Small’ class. The overlap is controlled by elim-
inating points and resampling from the those which
respect that degree of overlap which varies from 0% -
64% (64% is the real overlap between the classes over
all data). For example, when the overlap is fixed to
42% only those data points for class B with first co-
ordinate larger than 50 can be used and for a fixed
value of 7% of overlap only those points from B for
which the first coordinate has a value larger than 57
can be used. If there are not enough points for class B
which respect the overlapping degree resampling from
the ones which satisfy it is done until the desired size
of the imbalanced class B is reached. For a given, fixed
degree of overlap between the two classes, various de-
grees of imbalance are generated. The imbalance de-
gree varies from 0% to 99% (in this case only one data
point was used for class B to model its corresponding
fuzzy set).

4. Current Approach

In a nutshell, the current approach consists of the fol-
lowing steps: given training data for each class, the
membership functions of the corresponding fuzzy sets
are derived under various conditions of imbalance and
overlap. For each such derivation the F-measure and
prediction errors of the fuzzy sets on the test data are
assessed.

4.1. Deriving the Fuzzy Sets

Each class is represented as a fuzzy set on the data
points used as examples of that class. The fuzzy sets
are obtained from the relative frequency distributions
for each class according to equation (1),

By = kfy + For) + fogo) + oo+ fny - (1)

where f) and p() denote the kth largest value of
the frequency distribution and membership function
respectively. Equation (1) is derived as a particular
case of a general procedure converting a relative fre-
quency distribution into a fuzzy set (Ralescu, 1997),
(Visa et al., 2003). Example 1 illustrates this proce-
dure.

Example 1 Suppose that a class C contains the fol-
lowing values: C = {x1,22,%1,23,%2,T1,%1,T3,23}.
Written as a frequency distribution, C =
{(z1,4), (22,2),(23,3)} and again as a relative
frequency distribution (in nonincreasing order) as
C = {(21,4/9),(23,3/9), (22,2/9)}. Then the mem-
bership values for x; (also on monincreasing order)
are obtained as follows:

pay = po(zy) = 1(4/9) +3/9+2/9=1

2y = pe(@2) =2(3/9) +2/9=38/9
1) = polzs) = 3(2/9) = 6/9

4.2, Performance evaluation

In the testing phase, a data point z is classified to class
pred(z) given by (2).

pred(z) = argmax{pc(z); C € {B,M}} (2)

Two error models are used to evaluate the performance
of the classifier (taking into account the overlap and
imbalanced degrees).

First, for a test point z whose true class is true(z)
(either B or M) the simple error model of equation
(3) is used to compute the prediction error:

0 if true(z) = pred(z)
1 otherwise

error(x) = { (3)
It should be noted that, the class assignment strategy
of (2) and error model of (3) are very conservative,
and produce an upper bound on the prediction error.
In the fuzzy set approach other error models can be
devised based on the membership values pp(z) and
was () which are less drastic (for example, taking into
account not only the ranking but the relative magni-
tude of these values).

A frequently used tool for assessing a classifier’s per-
formance for the small class is the confusion matrix
associated with the classifier, shown here in Table 2.
For a two-class classification problem (negative and



positive class ) the confusion matriz contains informa-
tion about actual and predicted classification done by
a classification system. The entries of the confusion
matrix have the following meanings:

e ¢ is the number of correct negative predictions;
e ) is the number of incorrect positive predictions;
e ¢ is the number of incorrect negative predictions;

e d is the number of correct positive predictions.

Of interest here are the quantities P (Precision) and
R (Recall) computed from the confusion matrix using
equations (4) and (5) respectively.

d

P_b+d (4)
d

R_c+d (5)

Noticing that P and R cannot both increase or de-
crease together, they are combined through a convex
combination with parameter 0 < A <1, that is

d

)\c—+—d

d
0=V

Letting A = li‘% the above can further be written as

a® 14 1 1
1+a2 P 1+a2 R
1
PR

which leads to equation (6).

(e* +1)PR

Fo=~5P1 R

(6)

Selecting a particular value for « is problem-dependent
and can be decided based on the cost of each type of
errors. In this study Fj, when recall and precision are
considered equally important, F5, when recall is twice
as imortant as precision, and Fy 5, when precision is
twice as important as recall, are calculated.

4.3. Measuring the Overlap of Fuzzy Sets

The overlap between two (fuzzy) sets can be defined in
several ways. In this study a measure of overlap known
as index of intersection is used. In general, given two
sets A and B, their index of intersection, I(A, B), is

Table 2. The Confusion Matrix.

PREDICTED PREDICTED

NEGATIVE PosiTivE
AcTUAL NEGATIVE a b
AcTUAL POSITIVE c d

defined as the size of their intersection relative to the
size of their union, as described in equation (7).

_|4nB|
~ JAUB

I(A, B) (7)

where |A| denotes the cardinality, that is, the number
of elements in the set A. Obviously,

0 fANB=10
I(A4,B)={ 1 ifA=B
<1 ifAcBorBCA

For fuzzy sets, such as B and M, the right hand side
of (7) is defined in terms of the corresponding mem-
bership functions in two steps as follows:

1. Local calculation of the index of overlap:

min(pa (), pB(z))
maz(u (@), i @)

Moverlap (37) =

where min and max are the standard fuzzy sets
operators for intersection and union. foyeriap(2)
is the degree to which the fuzzy sets B and M
overlap at . The result of computing foperiap at
all the data points is a fuzzy set.

2. Calculation of the cardinality of the overlap fuzzy
set. The cardinality of a fuzzy set with n ele-
ments, is computed according to equation (9) first
derived in (Ralescu, 1986).

Ncard(k) = min(ﬂoverlap,k; 1- /J/overlap,kJrl) (9)

where loperiap,r denotes the kth largest value of
the membership values for the set overlap, and the
dummy values, Moverlap,0 = 1 and Moverlap,n+1 =
0 are introduced. The value pcqra(k) represents
the degree to which B and M overlap on & points.

Example 2 illustrates the computation of the fuzzy sets
for two classes (where data points are actually inter-
vals) and of the overlap between these fuzzy sets.

Example 2 Let the two classes be M = {x1, 9,25}
and B = {x4,x5,26}, where z1 = [2,7], z2 = [2,5],
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Figure 3. Data points of example 2.

Table 3. Membership function for classes M and B.

k| pum nB
2 0.80 0
3 1 0
4 1 0
5 1 0.5
6 0.80 0.83
7 0.8 1
8 0 1
9 0 0.83
10 0 0.5

x3 = [3,7], 24 = [5,9], x5 = [7,10] and z¢ = [6,8]
(see Figure 8). The computed frequencies for class
M and B on the points {2,3,4,5,6,7,8,9,10} are
[2,3,3,3,2,2,0,0,0] and [0,0,0,1,2,3,3,2,1] re-
spectively. The corresponding relative frequency
distributions — are [Z,2, 2 2 2.0,0,0] and
[0,0,0 1l 2 3 3 2 =]

1120 120 120 120 120 121

The values of the membership functions for the fuzzy
sets derived according to equation (1) and their assign-
ments to the individual data points are shown in Table
3. The values of the membership functions for the in-
terval data points, x; obtained according to equation
(10) (this is a standard procedure in fuzzy sets theory
to compute the degree - possibility measure - of a set
based on the degrees of its elements) are as shown in
Table 4 along with the degree of overlap.

(i) = supgeq, pu(k) (10)
For the data in example 2 the values of
Hoverlap SOrted in nonincreasing order (after
Hoverlap,0 = 1, and Hoverlap,7 = 0 were added),

are [1,1,1,1,0.8,0.8,0.5,0]. Then the fuzzy cardinal-
ity of the overlap set is given by [0,0,0,0.2,0.2,0.5,0.5]
as shown in Table 5. According to this, the degree to

Table 4. Membership values to classes M and B and their
overlap.

interval | punv BB Hoverlap
1 1 1 1
T2 1 0.5 0.5
T3 1 1 1
T4 1 1 1
5 0.8 1 0.8
Te 0.8 1 0.8

Table 5. Fuzzy cardinality of the overlapped region.
no. of elements | 0 1 2 3 4 5 6
| 0 0 0 02 02 05 05

Meard

which B and M have exactly one, two or no points in
common is 0; the degree to which they have exactly
three or exactly four points in common is 0.2, and
the degree that they have exactly five or exactly six
points in common is 0.5.
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Figure 4. The error in classification as function of overlap
and imbalance degree.

5. Results

The error prediction results for the fuzzy sets for the
classes M and B respectively, computed according to
the equation (7), under various degrees of overlap com-
puted according to the equation (9) are summarized in
Table 6. All the results are computed in average over
100 runs for each combination of the nine different lev-
els of imbalance and seven levels of overlap.

It can be observed from the Table 6 and also from



Table 6. Error in classification over varying degrees of over-
lap(O) and imbalance(I).

1(%) 0 (%)
0 4 7 27 42 62 64

0 0 .46 9 2.3 6.4 15.2 16.3
8 0 .46 92 2.3 5.8 15 16.3
26 0 .46 92 2.2 6.1 14.6 16.6
53 0 .46 95 2.2 6.7 14.6 16.6
72 0 .46 .96 2.2 6.6 15.5 17
90 0 46 1.1 2.6 7.8 16.6 17.8
95 0 .46 1.2 3.4 8.2 17 19.2
97 0 46 1.5 3.6 10.1 18.5 21
99 0 2.7 34 7.2 17.2 256 28

the Figure 4, that when the overlap and imbalance
are high the error increased rapidly (see the region
for overlap degree greater than 50% and for imbalance
greater than 90%). In this region, for a fixed value
of overlap the error grows fast with a small imbalance
change. This suggests that, for this region, the de-
gree of imbalance affects the classification performance
more than the overlap of data. In the low region (low
values of imbalance and overlap) the effect is exactly
opposite: the overlap affects more than the imbalance
at a lower rate.

Figure 5 shows results for the Fj-measure: it can be
observed that F; decreases faster when imbalance de-
gree increases than when the overlap increases. This
confirms the previous observation, based on error rate,
that the imbalance has a higer impact on errors than
the overlap.

0.95
0.9+

0.85—

Fl-measure
o
®
]

0.75

0.65 = 20
0

40

Imbalance (%)
Overlap (%) 70 100

Figure 5. The error in classification as function of overlap
and imbalance degree.

Fy, F5, Fy s-measures are computed for all combina-
tions of the seven overlap and nine imbalance levels.

Only four sets of results (others beeing similar) are
shown in Figures 6-9 with imbalance in [0%,99%] and
overlap in [4%, 64%)].

Comparing the three F-measures in figures 6 and 7,
it can be concluded that the classifier performs bet-
ter when using F5 and Fp 5. The performance drops
fast for overlap higer then 42% in the case of 99% im-
balance (Figure 7) than when there is no imbalance
(Figure 6).

For small degrees of overlap (Figure 8) all F-measures
are high and vary little with the imbalance. The same
small variation over imbalance degrees can be observed
for highest degree of overlap (Figure 9), but with much
smaller accuracy on F-measures. The largest drop oc-
curs only at highest level of imbalance (99%) and high-
est overlap degree (64%).

In general, Fys-measure is more accurate then the
other two F-measures when overlap is high. This can
be observed from all plots (Figures 6 - 9).

F-measures for 0% imbalance
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Figure 6. F-measures for 0% imbalance over the seven lev-
els of overlap degree.

6. Conclusion

Initial results of a study on the effect of imbalance and
overlap between classes for a fuzzy classifier were pre-
sented. These results, using prediction error and F-
measures, support the idea that a fuzzy classifier can
capture these features of the data set in a meaningful
way. The fuzzy set approach can be viewed as a mid-
dle ground of the two main approaches mentioned in
Section 2, to some extent classes are discriminated, to
some extent they are each individually learned. An-
other feature of the approach presented is that no al-
teration of the data sets is required. Although, to
begin with, the scenario of imbalanced data emerges



F-measures for 99% imbalance
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Figure 7. F-measures for 99% imbalance over the seven lev-
els of overlap degree.

F-measures for 4% overlap
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Figure 8. F-measures for 4% overlap over the nine levels of
imbalance degree.

from situations in which this imbalance is inherent
to the nature of the data, a possible new scenario
is in connection with the concept of web intelligence.
More precisely, in this scenario, learning is online and
data may be only temporarily imbalanced. Addition-
ally, over time, the imbalance may also change. This
means that approaches that change the data sets may
not necessarily be suitable. Instead, algorithms which
can adapt the class representation (here the fuzzy set)
are needed. Such adapting algorithms are part of the
general approach of converting frequency (probability)
distributions into fuzzy sets and updating the latter
when more data is obtained are described in (Ralescu,
1997) and will be further explored in this context.

F-measures for 64% overlap

F-measures

Imbalance

Figure 9. F-measures for 64% overlap over the nine levels
of imbalance degree.
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