
Workshop on Learning from Imbalanced Datasets II, ICML, Washington DC, 2003.

Learning Rare Class Footprints: the REFLEX Algorithm

Ray J. Hickey RJ.HICKEY@ULSTER.AC.UK
School of Computing and Information Engineering, University of Ulster, Coleraine, Co. Londonderry, N. Ireland, UK,
BT52 1SA

Abstract
An r-contour footprint is a set of individuals
each of whom has a propensity of at least r of
belonging to a rare class. The properties of
footprints are summarized. An algorithm,
REFLEX, is proposed for extracting a footprint
from an induced decision tree. Results of initial
experiments comparing REFLEX to m-
estimation Laplace smoothing show that both
algorithms deliver broadly similar performance
for different contours. Unlike Laplace, REFLEX
does not require extensive tuning. When high
propensity rare class disjuncts exist (> 50%),
both algorithms perform better on pruned trees.

1.  Introduction

Learning to classify when one or more classes is rare,
known as the class imbalance problem, continues to be a
topic of major interest. Rare classes are often associated
with higher misclassification costs (Drummond & Holte,
2000). A discussion of the problem and review of recent
approaches is provided by Japkowicz and Stephen (2002).

If a class is rare then either the underlying rules
identifying it are subject to substantial noise or have very
low support (or both). There may even be no rules for
which the rare class is the majority.

Instead of building a classifier, the aim here will be to
characterize a subset of a population, called a footprint,
where the probability of an individual belonging to the
rare class exceeds a given level. Often this level will be
less than 50%.

2.  p-Propensity Footprints

Assume that individuals in a population are represented
using a set of description attributes and that they belong to
one of two classes common and rare. Typically, it is not
known for any individual which class they belong to. For
each individual, based on their description, there is a
propensity, q, to belong to the rare class and a propensity,
p, to belong to the common class where q + p = 1. Given

probabilities for the occurrence of descriptions, a subset
of the attribute space can be assigned propensities for the
common and rare classes by averaging over descriptions.

Definition 1 A (p-propensity) footprint, F, is a subset of
the attribute description space for which the (average)
propensity of the rare class is prop(F) = p. The probability
of occurrence of the footprint is its support, supp(F).

The term propensity is used here rather than probability to
emphasize that tendency to be rare will be viewed as an
inherent characteristic of an individual or group.
Probability, on the other hand emphasizes risk assessment
and decision making.

Every description space can be represented as a disjoint
union of disjuncts, D = 1{ }k

i iD = such that, within each
disjunct, the propensity of individuals is constant and no
two disjuncts have the same propensity.  Assume, without
loss of generality, that the Di are indexed in order of
increasing propensity. Each footprint, F, then has a
canonical representation with respect to D as
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where Ei is a sub-disjunct, i.e. subset, of Di, i = 1, � , k.
Some of the Ei may be empty. If, for some i, Ei = Di then
Ei is said to be full.

The propensity of F can be expressed as
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where si is the conditional support of Ei within F and
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More generally, Equation 1 can be used to obtain the
propensity of a union of disjoint footprints given the
individual propensities.

Some properties of footprints can be obtained
immediately.

Property 1 min ( ) ( ) max ( )i ii i
prop E prop F prop E< <

for non-empty sub-disjuncts, Ei , of footprint, F.

Property 2 For any disjoint footprints, F and G each
having positive support

          prop(F) <  prop(G) ⇒

                            prop(F) < prop(F ∪  G) <  prop(G).

Property 3 If F, F' and G are disjoint footprints with

0 < prop(F') < prop(F) < prop(G) and supp(F') ≥ supp(F)
then

( ' ) ( )prop F G prop F G∪ < ∪

Proof Let ( ) /( ( ) ( ))supp F supp F supp Gα ′ ′ ′= + and define
α correspondingly (so that α < α'). Then

( ) ( ) (1 ) ( )
( ) (1 ) ( )
( ) (1 ) ( )

( )

prop F G prop F prop G
prop F prop G
prop F prop G

prop F G

α α
α α
α α

′ ′ ′ ′∪ = + −
′ ′< + −

< + −
= ∪

using Equation 1 applied to disjoint unions. □

2.1  r-Contour Footprints

A particularly important footprint is one in which all sub-
disjuncts of at least a given propensity are present and full
while all others are empty.

Definition 2 The r-contour footprint is

( )i

r i
prop D r

D
≥

= ∪C

Note that it is not implied in Definition 2 that there is a
disjunct with the exact propensity r.

Some basics properties of contour footprints are:

Property 4  prop(Cr) ≥ r.

Property 5  prop(Cr) is non-decreasing in r.

Property 6  supp(Cr) is non-increasing in r.

The following result also holds.

Theorem 1 If F is a footprint with supp(F) > supp(Cr)
then  prop(F ) <  prop(Cr).

Proof Suppose there exists F with supp(F) > supp(Cr) and
prop(F) ≥ prop(Cr). Amongst all such F select one, F*,
with maximum propensity. Compare sub-disjuncts in F*
to the corresponding disjuncts in Cr. In F*, all disjuncts,
Ei, with prop(Ei) > prop(F*) must be full otherwise, by
Property 2, filling these would further increase prop(F*).
Consider the remaining (lower) disjuncts in Cr. Some of
the corresponding sub-disjuncts in F* must not be full
else F* contains all of Cr; but supp(F*) > supp(Cr) so then
F* would contain all of Cr and additional sub-disjuncts
with propensity less than r implying, from Property 2, that
prop(F*) < prop(Cr) which is a contradiction. Therefore
F* must:
•  include some lower sub-disjuncts, Cr

in, from Cr
•  omit some, Cr

out, from the bottom of Cr
•  include some, Flower, from below Cr.
Thus F* can be expressed as the disjoint union

 F* = Flower ∪  (Cr
in ∪ Cr')

while
  Cr = Cr

out ∪  (Cr
in ∪ Cr').

where r' = prop(F*). Clearly prop(Flower) < prop(Cr
out)

and, by assumption, supp(Flower) > supp(Cr
out). Applying

Property 3 shows that prop(F*) < prop(Cr) which is a
contradiction. Thus F* does not exist and so there is no
footprint, F, with supp(F) > supp(Cr) and prop(F) >
prop(Cr). □

Amongst footprints achieving a given minimum
propensity, it does not follow that the footprint that
maximizes support will be a contour. The lowest r for
whichCr exceeds the required propensity will, typically
have a propensity well above this. It may be possible to
add sub-disjuncts below the contour, which while
lowering the propensity, will not take it below the
minimum.

2.2  ROC Points and Footprints

Receiving operator characteristic (ROC) points (Provost,
Fawcett and Kohavi, 1998) can be used to compare
footprints. Given a confusion matrix for probabilities

Actual +ve Actual -ve

Predict +ve True +ve (TP) False +ve (FP)

Predict -ve False -ve (FN) True -ve (TN)

(with rare as +ve) then, if it is assumed that every
individual in a footprint, F, is rare, it follows that

( ) ( ) ( )
( ) ( ) (1 ( ))

TP F supp F prop F
FP F supp F prop F

= ×
= × −



Note that

( )  ( ) /( ( )  ( ))prop F TP F TP F FP F= + (2)

Let prare be the overall propensity of the rare class in the
population. The true positive rate (TPR) and the false
positive rate (FPR) are defined as TPR(F) = TP(F)/prare
and FPR(F) = FP(F)/(1- prare). A footprint is said to
dominate another if its ROC point, (TPR, FPR), is more
north-west, i.e. has greater TPR for no greater FPR.

Property 7 If footprints E and F are disjoint then

( ) ( ) ( )
( ) ( ) ( )

TP E F TP E TP F
FP E F FP E FP F

∪ = +
∪ = +

Property 8 If footprints E and F are disjoint and have
positive support, then

E ∪  F dominates F ⇔ prop(E) = 1

In particular, no contour footprint dominates another
contour footprint.

Proof  If E ∪  F dominates F then

( ) ( ) ( ) ( )FP E F FP E FP F FP F∪ = + ≤

so FP(E) = 0 and prop(E) = 1 from Equation 2.
Conversely, if prop(E) = 1, then, also from Equation 2,
TP(E) > 0 and FP(E) = 0. Thus TP(E ∪  F) > TP(F) while
FP(E ∪  F) = FP(F) and so E ∪  F dominates F.

For r < r', either Cr = Cr' or Cr = E ∪ Cr' where E and Cr'
are disjoint with positive support and prop(E) < 1. Thus
Cr cannot dominate Cr'. If Cr ≠Cr' then, it is clear that
TP(Cr') < TP(Cr) and Cr' cannot dominate Cr . □

Theorem 2 A contour footprint is not dominated by any
other footprint.

Proof   Suppose a footprint, F*, dominates Cr for some r.
It follows from Property 8 that F cannot be a contour
footprint nor be contained within a contour footprint.
Thus, as in the proof of Theorem 1,

F* = Flower ∪  (Cr
in ∪ Cr')

where
Cr = Cr

out ∪  (Cr
in ∪ Cr').

By supposition, TP(F*) > TP(Cr) so from Property 7

TP(Flower) > TP(Cr
out)

that is

supp(Flower) × prop(Flower) > supp(Cr
out) × prop(Cr

out)

but prop(Flower) <  prop(Cr
out) hence

supp(Flower) >  supp(Cr
out)

and

supp(F*) >  supp(Cr)

Thus the conditions of Property 3 apply to the
decomposition of F* and so prop(F*) < prop(Cr) and

1 - prop(F*) > 1 - prop(Cr)

Therefore

FP(F*) = supp(F*) (1 - prop(F*))

> supp(Cr) (1 - prop(Cr) ) = FP(Cr)

which contradicts the dominance of F* over Cr. □

2.3  Expected Benefit

A rare class often incurs a greater misclassification cost.
Elkan (2001) has shown that inappropriate specification
of costs leads to inconsistency and, instead, recommends
the use of benefits. An appropriate benefit matrix for
footprints, corresponding to the confusion matrix in
Section 2.2, is

Actual +ve Actual -ve

Predict +ve B1 - B2

Predict �ve 0 0

where B1 and B2 are positive. The negative benefit -B2
reflects the loss from wrongful identification of an
individual as rare, e.g. loss of profit or wasteful use of
medical treatment. In many applications, 1 2B B" .

The (unit) expected benefit from using a footprint, F, to
identify rare class individuals based on the confusion and
benefit matrices above is

1 2

1

2

( )
( ) ( )

( ) (1 ( )).

Expben F B TP B FP
B supp F prop F

B supp F prop F

= × − ×
= × ×

− × × −
(3)

Property 9 If E is dominated by F then

Expben(E) < Expben(F).

Property 10 Expben(F) > 0 if and only if

prop(F) > B2 / (B1+ B2 ).

Property 11 Expected benefit is maximized over all
footprints by Cr where

2 1 2min{ ( ) : /( )}i i ir r prop D r B B B= = > + . (4)



3.  Learning Footprints

A footprint may be represented as a decision tree in which
each leaf is tagged as either belonging to the footprint or
not. The individual paths to the leaves tagged as being in
the footprint represent its sub-disjuncts. This tree can be
learned from training examples classified as common or
rare.

The algorithm proposed here is called REFLEX (RarE
class Footprint Learning from EXamples). It attempts to
induce the r-contour footprint for given r. REFLEX is
applied to a decision tree induced by an algorithm such as
ID3 (Quinlan, 1986). The tree may be pruned before
application of REFLEX.

In REFLEX (see table 1) the tree expansion is reversed
beginning at the bottom and working upwards until
footprint nodes are first encountered. A footprint node is
identified by a statistical test.

3.1  The Footprint Assignment Criterion

Suppose n examples reach a node. Let the frequency
distribution at the node be (f1 / n, f2 / n) where is f2 / n is
the relative frequency of the rare class. Based on the value
of f2 / n, a decision must be made as to whether to assign
the node to the footprint.

A disjunct belongs to the r-contour footprint if its
propensity is greater than or equal to r. A statistical test
can be applied to establish this. Such a test is really a
heuristic since a multiple comparison effect applies to
node frequency distributions (Jensen & Cohen, 2000).

The one-sided upper confidence bound ub(r, α), where α
is a significance level, can be used to accept or reject the
node for footprint membership: accept if f2 ≥ ub(n, r, α).
For sufficiently large n, ub(n, r, α) can be approximated
from the Normal distribution N(nr, nr(1-r)) otherwise it is
obtained exactly from the Binomial distribution B(n, r).
The test offers some protection against sub-disjuncts with
propensity less than r being accepted into the footprint.

If, however, there are sub-disjuncts of Cr with propensity
close to the contour boundary, their chance of being
assigned to the footprint can be small. For example if r =
0.20, α = 0.1 and n =30, then

ub(30, 0.2, 0.1) = 10

thus to be assigned to the footprint, a sub-disjunct would
require f2 ≥ 10, that is f2 /n ≥ 10/30 = 0.3. There is only a
37% chance of achieving this. Disjuncts immediately
above the contour boundary will, therefore, tend to be
under-represented in the induced footprint until the
training set size grows sufficiently.

Table 1. The REFLEX algorithm.

 (FC(N) is the footprint criterion, for node N)

Input: an induced decision tree, T
Output: footprint, Fp

initialize Fp = {}

while there is an end node in T (i.e. all its children are
leaves) for which no child, M, satisfies FC(M) do

replace the end node by a leaf

return RefT.

for each leaf, l, in RefT, do

if l satisfies FC(l)
Fp ← Fp ∪  {path to l}

return Fp

Use of significance tests for the learning of small
disjuncts was criticized by Holte et al. (1989) on the
grounds that meaningful as well as uninformative
disjuncts can be pruned away. It is also known (Provost et
al., 1998) that pruning can degrade probability estimates
in the leaves. The mechanism described above, however,
does not trade child nodes for the parent in quite the same
way. Pruning takes place only if none of the child nodes
offers a footprint member. The parent, though, with a
lower rare class propensity, may compensate through its
greater frequency and reach significance.

As recommended by Elkan (2001), REFLEX is applied to
a directly learned tree. That is, the initial induction
process is not oriented towards the detection of footprint
disjuncts.

4.  Experimental Results

To evaluate REFLEX, an artificial universe (Hickey,
1996) was created. This specified a complete class model
for the two classes common and rare in terms of six
informative description attributes and three pure noise
attributes. The contours for this domain are shown in
Table 2 in descending order of rare class propensity. The
rare class base rate is 9.57%. The attributes provide very
little lift: the maximum attainable classification rate, 100
� Bayes error rate, is 90.94%.

REFLEX was tested against the Laplace m-estimation
smoothing method (Cestnik and Bratko, 1991). Here the
raw frequency score, k/n, from k rare class training
examples at a leaf containing n examples, is smoothed to
(k + bm)/(n+m) where b is the base rate of the rare class
and m is a parameter.



Table 2. Cr details for an artificial domain, Domain 1.

r prop(Cr)
(%)

supp(
Cr)

r prop(Cr)
(%)

supp(Cr) r prop(Cr)
(%)

supp(Cr) r prop(Cr)
(%)

supp(Cr)

0.95 95.00 0.0038 0.21 43.93 0.0225 0.11 16.64 0.3581 0.05 12.18 0.7599

0.89 93.33 0.0053 0.20 36.03 0.0336 0.10 14.45 0.5338 0.04 12.12 0.7660

0.73 89.76 0.0064 0.18 23.21 0.1163 0.09 14.00 0.5771 0.03 11.46 0.8256

0.52 85.35 0.0073 0.16 22.18 0.1355 0.08 13.92 0.5855 0.01 09.57 1.0000

0.45 77.24 0.0091 0.15 19.09 0.2378 0.07 13.20 0.6539

0.24 69.97 0.0105 0.13 18.09 0.2846 0.06 12.26 0.7521

The smoothed value is a convex combination of k/n and b.
Increasing m pulls the value more towards b. The
rationale for smoothing is that small leaf frequencies tend
to gravitate towards 0 or 1 as a consequence of the
attribute selection competition during tree growth. The
parameter m must be determined either using expert
advice or from the data itself. The m-estimation technique
is a generalization of simple Laplace smoothing in which
k/n is smoothed to (k+1)/(n+2). The latter corresponds to
b =1/2 and m = 2.

To determine the footprint, the smoothed rare class
frequency was obtained for each leaf of the induced tree.
Each leaf whose smoothed frequency exceeded the
contour level was placed in the footprint.

Three contours 25%, 60% and 12.5% were chosen for the
experiments.

A series of trials, at a range of sizes, was performed to
induce footprints from training examples generated from
the model. The number of replications ranged from 1000
at smaller sizes down to 10 at the largest sizes.

The significance level for REFLEX was set mostly at
0.05.  For Laplace, m was selected on the basis of trials
involving separate inductions on specially generated data.

From Table 2, the 25% contour is the union of the first
five disjuncts. Results for fully grown ID3 trees for this
contour are shown in Table 3 (a) and (b). For Laplace
smoothing, m = 10 was found to be best.

Overall, the results for REFLEX and for Laplace
smoothing were broadly similar. It required a sample of
approximately 2000 to guarantee that induced footprints
that would not be empty. From n = 3000 virtually all trials
yielded a footprint attaining the required minimum
propensity of 25%. REFLEX tended to produce a smaller
number of disjuncts than Laplace.

From table 2, the true propensity and support for the
contour are 77.24% and 0.0091. As n increased, the
induced footprints moved towards these true values.
Initial support levels were inflated as a result of including
only non-empty footprints in the averaging.

An induced sub-disjunct is described as hot if belongs toC
r and as cold otherwise. The percentage support of hot
sub-disjuncts relative to the induced footprint as a whole
is shown in the Hot Supp (%) column. This increased with
n as cold sub-disjuncts were gradually eliminated. For
larger n, Laplace smoothing produced less hot support
then REFLEX, which explains its lower propensities.

Benefits were set at B1 = 600 and B2 = 200 which, from
Equation 4, correspond to a 25% contour for maximising
expected benefit. Equation 3 gives the maximum as 3.8.
Almost all trials produced positive expected benefit from
n = 3000 onwards (corresponding to attainment of the
required propensity). Expected benefit levels rose with n
and REFLEX was slightly ahead for most of the learning
curve.

To investigate the effects of pruning, the induced trees
were pruned using MEP pruning (Niblett and Bratko,
1986) involving simple smoothing. The results are shown
in tables 3 (c) and (d). For n < 3000, pruning produced a
higher incidence of empty footprints (not shown). For
example, at n = 1000, REFLEX applied to the full tree
had a 10% occurrence of empty footprints which rose to
45% on pruning. Similar statistics applied to Laplace.

But for larger n, pruning had a definite advantage. The
number of disjuncts decreased (which was to be expected)
and Laplace was on a par with REFLEX. Propensity
levels generally improved, particularly for Laplace. Hot
support percentages rose and cold support was eliminated
at n = 100000. Finally, expected benefit improved across
all sample sizes and approached the maximum of 3.8.



Table 3.  Statistics for inductions of the 25% contour footprint from ID3 trees using REFLEX and Laplace smoothing (m = 10) on
training examples from Domain 1. SE estimates: Prop < 2%; Supp < 0.0005; Exp Benefit < 0.1.

n No. of
Disj

Prop
(%)

Supp Hot Supp
(%)

Exp
Benefit

No. of
Disj

Prop
(%)

Supp Hot Supp
(%)

Exp
Benefit

(a) REFLEX on full tree (b) Laplace on full tree

1000 2.2 42.4 0.0100 32 0.71 2.1 46.3 0.0072 44 0.88

2000 3.3 52.9 0.0090 43 1.42 3.4 49.8 0.0078 47 1.31

3000 4.6 55.9 0.0095 49 2.00 5.3 49.3 0.0103 41 1.67

5000 7.1 59.2 0.0091 57 2.26 8.2 49.5 0.0106 42 1.84

10000 10.7 68.5 0.0078 73 2.62 13.5 52.6 0.0111 46 2.20

30000 23.8 74.4 0.0079 81 3.06 32.5 54.6 0.0122 53 2.80

100000 41.6 76.8 0.0085 93 3.51 60.0 61.9 0.0118 70 3.44

(c) REFLEX on pruned tree (d) Laplace on pruned tree

1000 2.0 49.3 0.0094 41 1.24 2.0 49.7 0.0085 46 1.24

2000 2.6 62.4 0.0076 59 1.95 2.9 60.4 0.0080 55 1.88

3000 3.0 71.2 0.0071 72 2.37 3.1 69.7 0.0071 70 2.32

5000 3.9 75.3 0.0073 79 2.80 4.1 75.8 0.0071 82 2.78

10000 5.3 79.4 0.0075 88 3.19 5.9 78.3 0.0076 86 3.16

30000 7.3 81.6 0.0077 99 3.50 8.8 80.1 0.0081 99 3.57

100000 10.4 79.4 0.0085     100 3.68 12.0 78.6 0.0086     100 3.70

It is generally held that pruning with a marked class
imbalance and/or differing costs may not be productive
and often results in the tree being pruned away. Elkan
(2001) recommends no pruning when Laplace
smoothing is used to estimate probabilities. Whether or
not pruning is beneficial, though, may depend on the
existence of high propensity disjuncts (>50%).

From Table 2, the 60% contour consists of the top three
disjuncts and has propensity 89.76% and support
0.0064. For Laplace, m = 4 was found to give the best
results. Thus it appears necessary to tune m to the
contour as well as the domain.

The results for REFLEX and Laplace on the full trees
were virtually identical across the learning curve. With
fewer true disjuncts involved, a sample of about 5000
was necessary before non-empty footprints were
obtained with certainty. Along the learning curve,
footprints for REFLEX and Laplace contained similar
numbers of disjuncts unlike for the 25% contour. At n =
100000, support reached 0.0052 (±0.0001) for REFLEX
and 0.0054 (±0.0001) for Laplace. Benefits were set at
B1 = 200 and B2 = 300 giving a maximum of 0.95. At n
= 100000, REFLEX and Laplace had reached 0.84 and
0.87 respectively (±0.01).

Pruning produced qualitatively the same improvements
as for the 25% contour. At n = 100000, both algorithms
attained virtually full coverage of the true footprint with
no cold support.

Finally, the 12.5% contour was induced (using m = 10).
Table 2 shows there is a cluster of disjuncts just below
and above this level. It thus provides a more demanding
test. The propensity is 18.09% and support is 0.2846.
REFLEX required a larger sample than Laplace to
produce non-empty footprints (about n = 250 against
100). The main differences, though, were in the number
of disjuncts with Laplace having more by a factor of
five, and also in support where REFLEX attained only
0.112 (±0.004) at n = 100000 whereas Laplace achieved
0.277 (±0.002). With B1 = 1400 and B2 = 200, expected
benefits (maximum is 25.46) were similar for most of
the learning curve, but at n = 100000, Laplace achieved
20.07 (±0.06) against 15.99 (±0.24) for REFLEX.

Thus the stringent test applied by REFLEX for entry to
the footprint has inhibited the growth of support and,
consequently, of expected benefit.



4.1  A Second Domain

To investigate behaviour of the algorithms when high
propensity rare class disjuncts are not available,
Domain 1 was altered to produce Domain 2 while
leaving the base rate approximately the same. Disjunct
definitions and attribute distributions were unchanged.
Rare class propensities now range from 0.32 down to 0.
Details of the top six disjuncts are shown in Table 4.
The base rate is 9.68%.

Table 4. Partial Cr details for an artificial domain, Domain 2.

r prop(Cr)  (%) supp( Cr)

0.32 32.00 0.0008

0.27 28.83 0.0023

0.25 25.66 0.0134

0.23 25.46 0.0145

0.21 21.78 0.0830

0.19 21.66 0.0868

Inductions were carried out for the 20% contour
containing the top five disjuncts with propensity
21.78% and support 0.0830 (Table 4). For Laplace, m =
40 was used. For REFLEX, the 0.01 significance level
was found to be better. Results are shown in Table 5.

A sample size of about 5000 was required before
footprints reached the 20% level. Empty footprints,
though, occurred until about n = 20000. Laplace was
worse in this respect: at n = 10000, about 35% of
footprints were empty against 6% for REFLEX.
Support rose steadily with n and Laplace moved ahead
of REFLEX (as was seen above with the12.5% contour
for Domain 1). Even at n = 100000, though, the Laplace
support was less than half the maximum. Induction had
been made difficult by the cluster of disjuncts around
the contour. Laplace gained expected benefit more
quickly as n increased because of its better support.

In contrast to Domain 1, pruning produced mostly
empty trees at all sample sizes (over 90% of trials). This
was to be expected in a situation where there are no
disjuncts with a majority for the rare class.

4.2  Relative Frequency and Simple Laplace

In a final series of experiments, footprints were induced
for the four contours above using relative frequency as
the criterion for the footprint, i.e. f2 / n  ≥ r where (f1 / n,
f2 / n) is the frequency distribution at the leaf and f2 / n is
that of the rare class. Simple Laplace was also used.

For the full trees, performance on the 25% contour of
Domain 1 was poor for both algorithms. Footprints

contained a very large number of disjuncts (575 for
Laplace at n = 100000). At all sample sizes, footprints
contained considerable cold support resulting in low
propensities and expected benefit. Laplace was much
worse then frequency. Neither algorithm seems to have
been able to find the high propensity disjuncts.

For the 60% contour, both algorithms started badly
requiring a size of about n = 20000 to reach the contour
level. Thereafter performance improved but still fell
short at n = 100000.

By contrast both algorithms performed very well on the
12.5% contour. They matched REFLEX and m-
estimation at larger sizes although simple Laplace
produced over 1300 disjuncts at n = 100000 (compared
to about 170 for REFLEX).

For the 20% contour of Domain 2, the performance of
both algorithms was exceedingly poor (with Laplace the
worse of the two). At no size did either reach the
contour level and so all expected benefits were
negative. Hot support levels, though, were better than
REFLEX and m-estimation Laplace. Once again, the
problem was the failure to detect the higher disjuncts.

On pruning, the 25% and 60% contour results greatly
improved but were still inferior to REFLEX and m-
estimation at the lower sizes. Results for 12.5% also
improved slightly.

5.  Discussion and Conclusion

With footprint induction, the goal is to find a
characterization of individuals exceeding a given
propensity for the rare class. There is no interest in
individuals outside the footprint. The REFLEX
algorithm applies a stringent test for membership of the
footprint. Individuals excluded from it are not deemed
to belong to the common class; it is just that their claim
to be in the footprint was not sufficiently strong. Thus
REFLEX does not seek to produce a classifier or other
optimal decision procedure across the population.

The important characteristics of a footprint learner are
that it should be able to produce a footprint description
meeting the required propensity level with a high
degree of certainty (over trials) and from as small a
sample as possible. Further, the hot support for the
footprint should grow effectively to the maximum
(implying that expected benefit will do likewise).

The natural competitor to REFLEX is m-estimation
Laplace smoothing applied, likewise, to the direct tree.
Considerable effort was expended, using the large
volume of artificial data available, to determine suitable
values for the m parameter.



Table 5. Statistics for inductions of the 20% contour footprint from ID3 trees using REFLEX and Laplace smoothing (m
= 40) on training examples from Domain 2. SE estimates: Prop < 0.3%; Supp < 0.001; Exp Benefit < 0.03.

n No. of
Disj

Prop
(%)

Supp Hot Supp
(%)

Exp
Benefit

No. of
Disj

Prop
(%)

Supp Hot Supp
(%)

Exp
Benefit

(a) REFLEX on full tree (b) Laplace on full tree

5000 2.3 19.6 0.0063 83 0.01 1.4 20.1 0.0049 84  -0.02

10000 2.9 20.1 0.0089 94 0.04 2.0 20.7 0.0059     100 0.04

20000 3.6 21.3 0.0059 90 0.09 4.1 20.4 0.0097 81 0.04

30000 4.3 22.0 0.0051 86 0.09 6.9 20.8 0.0168 87 0.13

50000 5.5 22.9 0.0069 87 0.15 11.9 20.9 0.0226 84 0.20

100000 8.4 22.6 0.0163 97 0.34 20.1 21.3 0.0324 88 0.40

The indications are that m must be re-tuned for different
contours. With limited real data, tuning might not be so
effective and this could impair performance. REFLEX
does not require such extensive tuning. The 0.05 or 0.01
significance levels seem generally satisfactory.

In the preliminary investigation carried out here,
REFLEX was found to compete well against Laplace. It
many instances there were no statistical differences
between the results. On some occasions REFLEX gains
support less quickly than Laplace. Neither algorithm
dominated the other on ROC points. Pruning was found to
be effective for both algorithms when disjuncts with rare
class propensity above 50% exist.

Simple Laplace and relative frequency gave highly
variable performances. Their best results were on large
samples where there were no high propensity disjuncts.

Future work will focus on possible refinements to the
REFLEX criterion for footprint membership. Further
investigations will be carried out using real data sets.
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