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ABSTRACT. One-class Bayes learning such as one-class Naïve Bayes and one-class Bayesian 
Network employs Bayes learning to build a classifier on the positive class only for discriminating
the positive class and the negative class. It has been applied to anomaly detection for identifying 
abnormal behaviors that deviate from normal behaviors. Because one-class Bayes classifiers can 
produce probability score, which can be used for defining anomaly score for anomaly detection, 
they are preferable in many practical applications as compared with other one-class learning 
techniques. However, previously proposed one-class Bayes classifiers might suffer from poor
probability estimation when the negative training examples are unavailable. In this paper, we 
propose a new method to improve the probability estimation. The improved one-class Bayes 
classifiers can exhibits high performance as compared with previously proposed one-class Bayes 
classifiers according to our empirical results.

1. INTRODUCTION
One-class classification [9][22][23] is a technique that builds a classifier on the positive 
class only by learning the data characteristics and building the decision boundary to 
discriminate the positive class and the negative class. In general, this is achieved by 
deriving the induction algorithm from the corresponding supervised learning algorithm. 
For example, one-class Support Vector Machine (OCSVM) [22], which is derived in the 
way similar to that of the corresponding supervised SVM, learns the maximum margin 
between the positive examples and the origin.  

Unlike OCSVM one-class Bayes classification applies Bayes learning to build one-class 
classifiers. For example, one-class Naïve Bayes, which is derived from the corresponding 
supervised Naïve Bayes, builds one-class classifier by assuming conditional independences
among attributes given the class. One-class Bayesian Network, which is derived from the 
corresponding supervised Bayesian Network, builds a Bayesian Network on the positive 
class only by learning dependencies of attributes from the positive class.

One-class Bayes classification has been widely used for anomaly detection [3][19], e.g., 
network intrusion detection [7], disease outbreak [28], wireless sensor detecting [20], 
spam filtering [26], etc. The salient advantage is that using Bayes’ rule it can produce 
probability scores, which can be used for defining anomaly score as the degree in which a 
test example is detected to be an abnormal case for anomaly detection. 

The main issue is that previously proposed one-class Bayes learning techniques suffer 
from some limitations to perform probability estimation properly. For example, a simple 
one-class Naïve Bayes [25] directly applies the supervised Naïve Bayes to the positive class 
with the assumption that there is at least one negative case to estimate conditional 
probability given the negative class in nominal cases for one-class learning. There are at 
least three limitations behind this assumption: first, it is ineffective when an application is
involved with continuous variables; secondly, the assumption suffers from the curse of 
dimensionality because it is insufficient in high dimension; thirdly, the method is 
unreliable in one-class learning when it is dependent of the assumption about the 
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negative class distribution. For another example, Naïve Bayes Positive Class [9], which is 
an early proposed one-class Naïve Bayes, only performs classification without outputting 
class membership probability.

Similarly, in previous research [8][28], one-class Bayesian Network, which is built on 
the positive class by using the corresponding supervised discrete Bayesian Network, 
produces probability scores, which are not straightforward to be a proper class 
membership probability. As a result, one-class Bayes classifiers often suffer from poor 
performance for anomaly detection in complex applications. These limitations 
unexpectedly degrade the performance of one-class Bayes learning in many circumstances 
where probability estimation becomes crucial when the costs of false positive cases and 
false negative cases are different [13].

Although people have proposed some approaches for probability calibration in decision 
trees and Naïve Bayes [30]. However, these methods such as the binning method [30], 
which is associated with negative examples for Naïve Bayes, are inapplicable because there 
are positive training examples only in one-class learning.

In this paper, our main work is to propose a new method to improve one-class Bayes 
learning algorithms such that they can produce class membership probability properly. 
The main advantage is that it is independent of the negative class distribution for one-
class learning. It is more effective than previously proposed methods in practical 
applications consisting of either nominal or continuous variables. The improved one-class 
Bayes learning algorithms are compared with previously proposed one-class Bayes 
learning algorithms by conducting experiments on the benchmark datasets from the UCI 
repository [17] and two practical applications for justification.

2. PRELIMINARY

2.1   One-Class Learning and Anomaly Detection
The basic definition of one-class classification [23], also called single class learning [9][22], 
has been described in various works.

One-Class Learning (OCL) is essentially a two-class classification task which follows an 
underlying binary distribution. A One-Class (OC) classifier is built on the single known 
class to predict a new pattern as being a member of the known class or  not. If it is not 
predicted to be a member of the known class, then it is automatically assumed to belong 
to the unknown class whose distribution is different from that of the known class.

The single known class is also called the positive class or the target, normal class while 
the unknown class to be estimated is called the negative class or the outlier, novelty [21],
anomaly class [4] in different applications.

Anomaly detection uses techniques to find patterns in data that do not conform to 
expected behavior [3][4]. The goal can be achieved by producing an anomaly score [4], 
also called outlier factor [2] or outlying degree [31], which is the degree to which an 
instance belongs to an anomaly class. Given an instance x, the decision rule using the 
anomaly score for predicting its class label y is defined as 
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where s0 is the cutoff value of the anomaly score.
According to whether labeled data and unlabeled data are available in the training set, 

anomaly detection techniques consist of three categories: unsupervised learning, 
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supervised learning, and semi-supervised learning [19]. Semi-supervised learning applies 
to positive cases and an abundant unlabeled database. There is, however, an extreme case 
in which people can obtain as many reliable positive cases as they want while obtaining 
negative cases is impractical. Unlabeled data in such settings are more likely to be positive 
cases. Obtaining negative cases is, then, prohibitively expensive. In general, in such cases, 
a few labeled negative examples or artificial negative examples are what are used for 
validating the false negative rate during training [23]. This is the essential distinction 
between one-class learning (the latter) and semi-supervised learning (the former).

Our recent research has been focused on the application of machine learning 
techniques to detect nuclear emissions from medical isotope production facilities. The 
task consists of classifying spectra obtained from NaI scintillation detectors located at two 
different locations in the Ottawa valley. Medical isotope production at Chalk River 
Laboratories routinely results in emissions of various radioactive isotopes that can easily 
be observed in the 15 minute sample acquisition intervals of the NaI detectors. The task is 
to classify each spectra as having nuclear emissions present or not in the presence of a 
fluctuating background. The task is made more difficult in that spectra acquired during 
precipitation events dramatically alter the spectra from those typical of normal 
background and of emission events. For general environmental radiation monitoring the 
observations of the negative class, or spectra containing nuclear emissions superimposed 
on a natural background environment are difficult to obtain, while the observations of the 
positive class for normal background are common. Insufficient sampling of the negative 
class may not describe the underlying distribution properly and a model that relied on 
such data might lead to a failure to predict the abnormal environmental changes. In 
particular, labeling a sufficient number of abnormal cases can be unreliable and 
unrealistic. One-class learning techniques in machine learning are, therefore, necessary,
for this type of environmental radiation monitoring.

Empirically, two-class supervised learning is superior to one-class learning when the 
positive class and the negative class are properly defined [18][23][29]. One-class learning, 
also called Negative selection [32], can be harder than two-class learning due to higher 
sample complexity [23].

2.2   Bayes Learning
Given a training set with a probability distribution P, in supervised learning, Bayesian 
learning defines a classifier with a minimized error, i.e.,

yi = ci = )()(maxarg)|(maxarg xPc,xPxcP i
Cc

i
Cc ii 		

� 
 )()(maxarg ii
Cc

cPx|cP
i	

)()|,...,,(maxarg n21 ii
Cc

cPcaaaP
i 	

�
(2.2)

Naïve bayes (NB) [10] assumes the probabilities of attributes a1, a2, …, an to be 
conditionally independent given the class ci. Therefore, P(x|ci) from the right side of (2.2) 
becomes
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For discrete attribute aj, P(aj |ci) can be estimated by using Maximum Likelihood 
Estimation (MLE) with Laplace smooth, i.e.,
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where njkc is the number of occurrences of the attribute value ajk in the class c, and nc is the 
number of examples in the class c, and l is the number of distinct values in the attribute aj.

Smoothing in (2.4) assumes that each attribute value at least occurs one time in each 
class by following a Dirichlet prior distribution over aj. In particular, in one-class learning, 
it can avoid the result of zero for probability estimation when the negative class c = c1 is 
empty if the traditional supervised Naïve Bayes algorithm is used. In the same way, the 
prior probability for the negative class c1 is estimated by )2(1)(ˆ

1 �� mcP , where m is the 
total number of training examples. 

For continuous attributes aj, P(aj | ci) can be estimated by using Gaussian Estimator
(GE) or Parzen–window density estimator. The latter is defined as 
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where K(x) is a kernel function placed at each observation xj in the d-dimension feature 
space in the window with the width hn. However, the estimation of the parameters related 
to the negative class c1 in one-class learning becomes impossible if the traditional Naïve 
Bayes algorithm is used. To avoid this, P(aj | c1) can be assigned by a small real number
default for the computation of the product in (2.3).

A Bayesian Network (BN) [10][15] with a directed acyclic graph (DAG) describes a joint 
probability distribution P on a set of random variables X =�xj�, j = 1, …, n, by encoding 
independencies among variables X given their parents. Further, BN is used for 
classification by estimating the conditional probability p(x|ci) and P(ci) in (2.2). Given an 
observation x = (a1, …, an), p(x|ci) can be rewritten as
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According to the independence assumptions encoded in DAG, (2.6) can be rewritten as
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where p(aj|�j, ci) (i.e., xj = aj) is a class conditional probability that represents that xj is
independent of nonparent nodes given its parent variables �j and the class ci.

In practice, the DAG G can be learned by using a hill climbing algorithm to search for 
the dependent relationships among variables. Because the optimized DAG is intractable
[5], the hill climbing with a restricted order of variables is usually applied to build DAG [6]. 
A more efficient technique for building DAG is to find a maximal weighted span tree [15]. 

3. RELATED WORK
Bayesian Learning such as Naïve Bayes and Bayesian Network has been used for one-class 
learning [9][20][28]. The main idea is that a Bayes classifier can produce the probability 
score of a given input for the positive class. Given a threshold, the input belongs to the 
positive class if the estimated probability of the input is higher than the threshold. 
Otherwise, it is regarded as a negative case.

We introduce two kinds of one-class Bayes learning: one-class Naïve Bayes such as 
Naïve Bayes Postive Class (NBPC) [9], and One-Class Bayesian Network (OCBN)[28]. They 
are derived from the corresponding Bayes classifiers for one-class learning.
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3.1   One-class Naïve Bayes
Naïve Bayes Positive Class (NBPC) algorithm is a one-class Naïve Bayes method, which is 
derived from the original supervised Naïve Bayes algorithm [9]. Notice that we can only 
estimate the prior probability of the positive class because the negative class is not in the 
training set. Using the traditional Naïve Bayes inductive algorithm, the prior probability 
P(c0), defined in (2.2), of the positive class [9] is estimated as a fraction close to 1 by 
assuming at least one negative case for Laplace smooth. Further, because only positive 
cases are available in the training set, conditional probabilities of nominal attributes given 
the negative class can be estimated by assuming at least one negative case for Laplace 
smooth, as described in (2.4).

During the training period, the parameters of NBPC are calculated as in the traditional 
Naïve Bayes except an additional parameter, which is called the target rejection threshold
�, and is calculated in (3.1). For testing, a new instance is identified as positive if the 
probability output by the NBPC is greater than or equal to �. Otherwise, it is a negative 
case.

� = min{p(c0| )(kx )} = min{p(c0) ��
�

n

j

k
j cap

1
0

)( )|( } (3.1)

where )(kx = ( )(
1

ka , …, )(k
na )	 n

mD , k = 1, ..., m, and n
mD is a training set with n attributes and  

m training examples. Therefore, NBPC does not produce anomaly score but classification.
A simple one-class Naïve Bayes [25], which is also called the simple OCNB, actually is a 

Naïve Bayes built on the positive class only. It is similar to NBPC except the target 
rejection threshold. That is, it performs Laplace smooth by assuming at least one case to 
estimate the prior probability p(ci) and conditional probability p(aj | ci) for nominal 
attributes, as discussed in Section 2.2.

3.2   One Class Bayesian Network
A Bayesian Network (BN) [6] is a probability model that represents a joint probability 
distribution with a direct graph. The graphical structure describes the conditional 
dependences among attributes while it also encodes the conditional independences of the
attributes. It can describe complex relationships between attributes instead of using the 
conditional independence assumption of one-class Naïve Bayes.

Discrete Bayesian Networks have been used for anomaly detection in the multi-class 
setting [8][28]. This corresponding algorithm for one-class learning is called one-class 
Bayesian Network (OCBN), which is expected to be better than OCNB in some complex 
learning tasks because it can learn the dependencies of attributes.

During training, the Bayesian Network structure in the OCBN can also be built by using 
a hill climbing algorithm with a restricted order of variables [6] as in the original BN; the 
parameters for the conditional probability tables (CPTs) related to the negative class is 
initialized by using Laplace smooth as in NB by assuming that one nominal attribute value
at least happen one time in training examples. For testing, the decision rule defined in 
(2.2) is used for predicting the test example. As we can see, this one-class Bayesian 
Network is also called the simple OCBN similar to the simple OCNB because it is just a BN 
built on the positive class only. 

As we can see, both the simple OCNB and the simple OCBN are dependent of the 
negative class due to their assumptions about the negative distribution while NBPC does 
not perform probability estimation. They are only applicable for nominal cases.
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Further, in previous research, to improve the probability estimation in Naïve Bayes for 
supervised learning, the binning method [30] is first to sort training examples according to 
probability scores and dividing the sorted set into 10 bins with the lower and upper 
boundary during the training time. For testing, a new example x is placed in a bin b
according to its score. The corrected probability P(ci|x) = in� / n� , where n� is the number 
of training examples in b; in� is the number of training examples that actually belongs to 
the class i in b. However, the binning method is inapplicable in one-class Bayes learning 
because there are only positive examples for training.

4. PROBABILITY ESTIMATION AND ANOMALY SCORE
Although classification is required, the probability estimation of the class membership of a 
new instance is more critical in some circumstances. In particular, if the costs of 
misclassifications for the false positive and false negative cases are different, the 
probability estimation helps Cost-Sensitive learning [11][13][30]. This is often true when 
applying one-class learning to many practical applications. 

In general, an anomaly detection technique always outputs the anomaly score for 
decision, as defined in (2.1). If the anomaly score falls within [0, 1], it can be easily 
transformed into the class membership probability by defining p(c1|x) = AnomalyScore(x)
and p(c0|x) = 1 – p(c1|x). Both can be mutually exchanged, and can be directly used for 
classification. 

The main issue is that some previously proposed one-class Bayes algorithms do not 
perform probability estimation properly. For example, in NBPC, although the decision rule 
is defined according to �  in (3.1), the estimated probability P(c0|x) in (2.2) is not regarded 
as a proper class membership probability while it becomes a probability score. Because the 
negative class is unavailable in the training set, the prior class probability P(ci) and the 
marginal prior probability P(x) in (2.2) cannot be estimated properly from the data. Note
that in supervised learning the marginal prior probability P(x) is omitted. 

The probability estimation for class membership is not straightforward from (2.2) when 
negative training examples are unavailable. In the simple one-class Naïve Bayes, as 
discussed in Section 3.1, the assumption that there is at least one negative case for the 
probability estimation is unreliable in practice. As a result, it is not expected that the 
simple one-class Naïve Bayes performs probability estimation properly. No anomaly score 
is expected in these one-class Bayes approaches for anomaly detection.

When the minimum probability score in (3.1) is defined as the cutoff � for decision, we 
also can obtain the maximum probability score �̂ = max�p(c0|x(k))�, k = 1, …, m. As a result, 
we can define a new method for probability estimation in one-class Naïve Bayes, e.g., 
NBPC, according to� and �̂ , in (4.1).

� � � �
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�������
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where a sufficiently small number, e.g., � = 0.001, is given; and p(c0|x) is a probability 
score; )|(ˆ 0 xcp is the resulting class membership probability for the positive class, and

)|(ˆ 0 xcp = 0.5 + � if p(c0|x) = �; )|(ˆ 1 xcp = 1 – )|(ˆ 0 xcp , that is, 0 � )|(ˆ xcp i � 1, and the sum is 
equal to 1. In general, � is nonzero and �̂ > �. To avoid an invalid denominator due to �̂ = �,
the denominator is added with �. This extreme case also means that the classifier performs
poor probability estimation. As we can see, )|(ˆ 0 xcp is monotonic increasing with the 
probability score p(c0|x).
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The minimum probability score � and the maximum probability score �̂ are useful for 
probability calibration because one cannot expect that the probability scores p(c0|x) fully 
spread over the interval [0, 1]. )|(ˆ 0 xcp , defined in (4.1), is a probability function with 
respect to the probability score p(c0|x) and two related parameters, �̂ and �, i.e., )|(ˆ 0 xcp =
f(p(c0|x), �̂ , �). )|(ˆ xcp i , i = 0, 1, can be properly used as class membership probabilities.
Similarly, the probability estimation method in OCBN can be defined as in (4.1).

It can be easily seen that the probability function, defined in (4.1), is independent of the 
negative class distribution. This property is more important when negative examples are 
unavailable because they are too prohibitively expensive to obtain in some cases. The 
critical issue is that �, as defined in (3.1), might be inappropriate for target rejection in 
noise circumstances. In one-class learning, the target rejection rate r is defined as the 
proportion of training examples that will be classified as the negative class. Therefore, (3.1)
can be rewritten as 

� = min(p(c0|x(k)), r�m), k = 1, …, m (4.2)
where min(P, l) function returns the lth minimum value of P.

5. IMPROVED METHOD
According to the above discussion, we propose OneClassNaiveBayes (OCBN) and 
OneClassBayesNet (OCBN) algorithms, which improve previously proposed one-class 
Naïve Bayes and one-class Bayesian Network algorithms, respectively. The algorithms are 
derived from the traditional Naive Bayes and Bayesian Network. During the training time, 
the most parameters are calculated in the same way as in the original supervised methods 

OneClassNaiveBayes algorithm
Input D: training set

r: target rejection rate
Output OCBN: OneClassNaiveBayes 

classifier
1 assuming c0: target class, c1:

the negative class
2 calculate p(ak|c0), p(c0),

where k = 0,…,l-1; l: the 
number of attribute; MLE and GE 
for nominal and continuous 
attributes

3 � = min(p(c0|xi, r�m) in (4.2)
4 �̂ = max{p(c0|xi}, i = 0,…,m-1
5 return OCNB(p(aj|c0), p(c0), �,

�̂ ), j = 0,…, k-1,
end OCNB
Proc test(x)
6 get p(x|c0), p(c0) from 

p(ak|c0) in OCNB
7 calculate )|(ˆ 0 xcp , )|(ˆ 1 xcp =1-

)|(ˆ 0 xcp , according to (4.1)
8 return cj = )|(ˆmaxarg xcp j

j
,j=0,1

end test

OneClassBayesNet algorithm
Input D: training set

r: target rejection rate
Output OCBN: OneClassNaiveBayes 
classifier

1 assuming c0: target class, c1:
the negative class

2 learning Bayesian Nework 
structure

3 calculate p(ak|Pk,c0), p(c0),
where k = 0,…,l-1; l: the 
number of attribute; Pk is the 
parents of ak

4 � = min(p(c0|xi, r�m) in (4.2)
5 �̂ = max{p(c0|xi)}, i = 0,…,m-1
6 return OCBN(p(ak|Pk,c0), p(c0),

�, �̂ ), k = 0,…, l-1,
end OCBN
Proc test(x)
7 get p(x|c0), p(c0) from p(ak|Pk,

c0) in OCBN
8 calculate )|(ˆ 0 xcp , )|(ˆ 1 xcp =1-

)|(ˆ 0 xcp , according to (4.1)
9 return cj = )|(ˆmaxarg xcp j

j
,j=0,1

end test
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except two additional parameters described as above. OCBN and OCBN will learn two 
additional parameters: � and �̂ , as defined in Steps 3, 4 of the OCNB algorithm and Steps 
4, 5 of the OCBN algorithm, and use the proposed method for probability estimation in 
their test procedures.

As in the original Naive Bayes, the parameters of OCNB can be calculated by Gaussian 
estimator or Parzen-window density estimator for continuous attributes. It can be also 
built by discretizing continuous attributes. Further, as in the original BN, OCBN can be 
also built by a hill climbing algorithm with a restricted order on attributes for searching its 
network structure [6], or by learning a maximum weight span tree for the structure [15].

The main concern is that the discretization cannot be achieved by using the supervised 
method based on entropy [14] because no negative examples are available. Therefore, the 
10-bined unsupervised method is used for discretization in the discrete OCBN. 

6. EXPERIMENTS

6.1   Datasets
We chose 30 benchmark datasets from the UCI repository [17], and two real datasets: 
Ozone Level Detection [1][33] and OttawaRPB for ozone level detection and the 
environment radiation monitoring, respectively. Because the benchmark datasets have 
been built in high quality for supervised learning, and they often contain continuous and 
nominal attributes, this provides us to evaluate the new method for one-class Bayes 
learning on various domains. The characteristics of all datasets are described in Table 1. 

Ozone Level Detection datasets (the eight hour peak set and one hour peak set) were 
collected from 1998 to 2004 at the Houston, Galveston, and Brazoria area. One hour peak 
set (Ozone in Table 1) is chosen by ignoring the date in our experiment. In the dataset, the 
72 continuous attributes contains various measures of air pollutant and meteorological 
information for detecting ozone days. There are 73 ozone days labeled as the negative 
class in the class attribute in the dataset while the majority class consists of positive 
examples.

The OttawaRPB for the environmental radiation monitoring data is a complex domain 
consisting of 512 continuous attributes, the class attribute, and 2914 labeled instances with 
only 129 negative examples. OttawaRPB is described in Section 2.

For experiments on the benchmark datasets, each dataset was transformed into a 
binary domain consisting of the majority class and the rest of the data in advance of 
training time. 

All missing values were replaced with their modes and means for nominal attributes 
and continuous attributes, respectively, by using the unsupervised ReplaceMissingValues 
method in Weka [27] ahead of training. During training, each one-class classifier is built 
on only the majority class as the positive class (target class) of the binary domain. The 
majority class in the binary domain might be different from that one in the original 
dataset. Therefore, the positive class is always larger than the negative class, as shown in 
Table 1. As we can see, they are generally class imbalanced. The largest ratio of the positive 
class to the negative class is 33.74:1 in the Ozone case.

6.2   Algorithms for comparison
We used the Weka data mining and machine learning package [27] to implement two one-
class Bayes algorithms: one-class Naïve Bayes (OCNB) and one-class Bayesian Network 
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(OCBN) by improving the previous one-class Naïve Bayes approaches such as NBPC and 
the simple one-class NB for probability estimation. The improved OCNBs and improved 
OCBNs can be adapted with various settings for OCL, as described in Table 2. 
Table 1. Datasets in our experiments. The 30 benchmark datasets from the UCI repository, and two 
real datasets: ozone level detection (Ozone) and ottawaRPB for practical applications. #maj: the size 
of the majority class in the original dataset; #pos is the size of the majority class in the binary class; 
the ratio is given by #pos / (#ins-#pos).

Datasets #attr #ins #c #maj #pos ratio Datasets #attr #ins #c #maj #pos ratio
Anneal 39 898 6 684 684 3.20 Letter 17 20000 26 813 19187 23.60

Audiology 70 226 24 57 169 2.96 Lymph 19 148 4 81 81 1.21
Autos 26 205 6 67 138 2.06 Mushroom 23 8124 2 4208 4208 1.07

Balance-s 5 625 3 288 337 1.17 P-tumor 18 339 21 84 255 3.04
Breast-w 10 699 2 458 458 1.90 Segment 20 2310 7 330 1980 6.00

Colic 23 368 2 232 232 1.71 Sick 30 3772 2 3541 3541 15.33
Credit-a 16 690 2 383 383 1.25 Sonar 61 208 2 111 111 1.14
Diabetes 9 768 2 500 500 1.87 Soybean 36 683 18 92 591 6.42

Glass 10 214 6 76 138 1.82 Splice 62 3190 3 1655 1655 1.08
Heart-s 14 270 2 150 150 1.25 Vehicle 19 846 4 218 628 2.88

Hepatitis 20 155 2 123 123 3.84 Vote 17 435 2 267 267 1.59
Hypothyroid 30 3772 4 3481 3481 11.96 Vowel 14 990 11 90 900 10.00
Ionosphere 35 351 2 225 225 1.79 Waveform 41 5000 3 1692 3308 1.96

Iris 5 150 3 50 100 2.00 Zoo 18 101 7 41 60 1.46
Kr-vs-kp 37 3196 2 1669 1669 1.09 Ozone 73 2536 2 2463 2463 33.74

Labor 17 57 2 37 37 1.85 OttawaRPB 513 2941 2 2812 2812 21.80
For example, OCNB-Parzen is an improved OCNB with the Parzen-window density 

estimator. OCNB-SimpleGaussian, OCNB-SimpleParzen, and OCNB-SimpleDiscretize are 
actually the traditional supervised Naïve Bayes classifiers directly built on the positive 
class only. They perform as the simple one-class Naïve Bayes with different settings. Note
that the improved OCNB or the simple OCNB with different settings produces the same 
results on nominal domains. In the OCBN-K2, the Bayesian structure is learned by using a 
hill climbing algorithm with a restricted order of variables [6], and the conditional 
probability tables are directly estimated from data. Our purpose is to compare the 
improved OCNB and improved OCBN with simple Bayesian learning methods for one-
class learning. Finally, we also show two the original Naïve Bayes and Bayesian Network 
for supervised learning on the two practical applications. 

The most parameters in OCNB or OCBN are the same as those of NB or BN, 
respectively, except the target rejection rate (TRR). The improved OCNB and the 
improved OCBN need to adjust the TRR for training the related minimum probability 
score �. On the other hand, OCBN and BN have two main parameters for training: the 
estimator for conditional probability tables (CPTs) and the search algorithm for the 
network structure. The simple estimator is chosen for estimating the CPTs directly from 
data while several typical search algorithms such as K2, Hill Climbing, and TAN [15] are 
set in our experiments, as described in Table 2.

For experiments over the 30 benchmark datasets with small feature space (� 70), OCNB 
and OCBN are set with a default for TRR = 0.0, i.e., all the positive examples are accepted 
as true positive cases. For experiments over the two large datasets with large feature space
(> 70), we conducted experiments with different TRR settings for optimization.
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Table 2. Algorithms used in experiments: One-class Naïve Bayes (OCNB), one-class Bayesian 
Network (OCBN) with various settings for one-class Bayes learning; Naïve Bayes (NB) and 
Bayesian Network (BN) with defaults in Weka for supervised learning.

Algorithms Descriptions
OCNB-Gaussian Improved one-class Naïve Bayes with Gaussian estimator
OCNB-Parzen Improved one-class Naïve Bayes with Parzen-window density estimator
OCNB-Discretize Improved one-class Naïve Bayes with discretization
OCNB-SimpleGaussian Naïve Bayes with Gaussian Estimator for OCL
OCNB-SimpleParzen Naïve Bayes with Parzen-window density estimator for OCL
OCNB-SimpleDiscretize Naïve Bayes with discretization for OCL
OCBN-K2 Improved one-class Bayesian Network with a restricted order of variables
OCBN-Hill Improved one-class Bayesian Network with Hill climbing search
OCBN-TAN Improved one-class Bayesian network with TAN search
OCBN-SimpleK2 Bayesian Network with a restricted order of variables for OCL
OCBN-SimpleHill Bayesian Network with Hill climbing search for OCL
OCBN-SimpleTAN Bayesian Network with TAN search [15] for OCL
NB Naïve Bayes with default Gaussian estimator
BN Bayesian Network with default K2 search

6.3   Results
Our experiments were conducted by running 10 times the 10-cross validations. In each 
run, the dataset is separated into 10 fold by stratified sampling. In turn, one fold is held 
out for test, other folds are used for training. However, one-class classifiers were built on 
only the positive class in the training set while two-class classifiers were built on the whole 
training set containing the positive class and negative class. Therefore, the simple OCNB 
and the simple OCBN are built on the different portion of the training set as compared 
with the supervised NB and BN. The resulting classifiers were tested on the test set. 

The area under ROC curve (AUC) [16] is used for evaluation in our experiments. The 
AUC of a classifier is equivalent to the probability that the classifier will rank a randomly 
chosen positive instance higher than a randomly chosen negative instance [12][16]. The 
AUC’s salient advantage is to evaluate performance without specifying a threshold. It has 
been suggested as the preferred metric rather than the misclassification rate to evaluate a 
model [12]. In our experiments, the AUCs obtained in the 10-cross validations are averaged 
for evaluation.

To evaluate the proposed method for probability estimation in one-class Bayes 
learning, we first analyze relative performance with respect to AUC between the improved 
OCNBs and the simple OCNBs. This can be done first by using the ratio of OCNB-
SimpleDiscretize’s AUC to OCNB-Parzen’s AUC, as shown in Figure 1, where the diagonal 
line reflects the relative performance of OCNB-SimpleDiscretize against the compared 
algorithm; the vertical dotted line at x = 1.0 reflects the relative performance of OCNB-
SimpleDiscretize against OCNB-Parzen; the horizontal dotted line at y = 1.0 reflects the 
relative performance of OCNB-Parzen against the compared algorithm.

The vertical dotted lines at x = 1.0 from (a) to (d) in Figure 1 only reflects the relative 
performance of OCNB-SimpleDiscretize against OCNB-Parzen. As we can see, OCNB-
Parzen outperforms OCNB-SimpleDiscretize in most cases because most points are 
located at the left side of the vertical line. The horizontal dotted lines at y = 1.0 from (a) to 
(d) reflect the relative performance of OCNB-Parzen against the compared algorithm. As 
we can see, the OCNB-Parzen outperforms other OCNB in most cases because most 
points are below these horizontal lines. In particular, the improved OCNB-Parzen is much 
more successful than the OCNB-SimpleParzen for one-class Bayes learning over various 
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domains, as show in (d). In addition, the improved OCNB-Gaussian is better than the 
OCNB-SimpleGaussian on average according to (a) and (c) because more points are below 
the horizontal dotted line at y = 1.0 in (c) than in (a); according to (b), OCNB-Discretize is 
competitive with OCNB-SimpleDiscretize in most cases because most points lie on the 
diagonal line. In a word, the improved OCNB is more successful than simple OCNB for 
one-class learning over various domains, and the improved OCNB-Parzen is best among 
all OCNB.

Similarly, we show the relative performance between the improved OCBNs and simple 
OCBNs by using the ratio of OCBN-SimpleTAN’s AUC to OCBN-TAN’s AUC in Figure 2. 
From the vertical dotted lines at x = 1.0, OCBN-SimpleTAN are tied with OCBN-TAN in 
most cases because most points lie on the vertical lines. However, OCBN-TAN 
outperforms other improved OCBNs and other simple OCBNs because most points are 
below the horizontal lines at y = 1.0 from (a) to (d). In addition, because most points
crossing those diagonal lines are located toward the right-bottom corner, this shows that 
the OCBN-SimpleTAN is superior to other OCBNs in most cases except the improved 
OCBN-TAN. In a word, the improved OCBN-TAN and OCBN-SimpleTAN are better than 
other OCBN while both are tied with each other in most cases. 

Experimental results for the comparison between two one-class Bayes methods: OCNB 
and OCBN are shown in Figure 3 by their relative performances between OCBN-TAN and 
OCNB-Parzen, OCBN-TAN and other OCNB classifiers. It is easy to see that OCBN 
outperforms OCNB in most cases from the 30 benchmark datasets in the current settings. 

We conducted the paired t-test for comparison between the improved one-class Bayes 
learning methods and all simply one-class Bayes learning methods. The results were 
summarized in Table 3.  As a result, the improved OCBN-TAN seems not to exhibit super 
performance as compared with the simple OCBN-TAN while OCNB-Parzen and OCBN-
TAN are better than other related simple one-class Bayes learning methods, as shown in 

Figure 1. Relative perormance between OCNB-Parzen and other one-class Naïve Bayes classifiers.

(a) (b)

(c) (d)
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Figure 2. Relative performance between OCBN-TAN and other one-class Bayesian Network.

Figure 3. Relative peformance between improved OCBN-TAN and improved OCNBs (OCNB-Gaussian, 
OCNB-Parzen, and OCNB-Discretize).

Table 3. Summary of results for statistical tests between the improved OCNB-Parzen
and all simple OCNB methods, and between the improved OCBN-TAN and all simple 
OCBN methods; the numbers in the string “.\.\” represent the chances of wins, ties, and 
loses of the improve one-class Bayes methods against the compared simple one-class 
Bayes methods.

OCNB-SimpleGaussian OCNB-SimpleDiscrete OCNB-SimpleParzen NB (Gaussian)
OCNB-Parzen 19\13\0 13\17\2 19\13\0 1\3\28

OCBN-SimpleK2 OCBN-SimpleHill OCNB-SimpleTAN BN-K2
OCBN-TAN 16\12\4 18\10\4 1\30\1 1\5\26

Table 3. The same empirical result between the OCNB-Discrete and the OCNB-
SimpleDiscrete can be found in (b) of Figure 2. The assumption in simple OCBNs might 
help one-class Bayes learning in nominal cases. 

(c) (d)

(a) (b)
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Our main observation is that the default TRR in the improved OCNB and the improved 
OCBN might not be proper in a noise circumstance. Tuning TRR can help learn an 
optimal one-class Bayes classifier. Instead of tuning TRR for training optimal OCNB and 
OCBN over the 30 benchmark datasets, we show experimental results on two real datasets: 
Ozone and OttawaRPB by tuning the TRR in Figure 4, where from (a) to (c) we drawn 
ROC curves for OCNB-Parzen, OCNB-SimpleDisretize (OCNB-S-D), OCBN-TAN, OCBN-
SimpleTAN (OCBN-S-TAN), NB, and BN, which were built on Ozone. 

In an ROC space, the point (0, 1) is denoted as the best performance while the diagonal 
line from the left bottom to the top right corners is denoted as a random classifier. The 
closer the curve is to the upper left corner, the better the classifier performs. 

As we can see, when the TRR is set to the default 0.0 in (a) of Figure 4, two improved 
one-class Bayes classifiers: OCNB-Parzen and OCBN-TAN do not exhibit super 
performance while OCBN-S-D is worse than a random classifier. When TRR is set from 0.1 
to 0.5, OCNB-Parzen is much optimized while OCBN-TAN unexpectedly degrades, and 
OCNB-S-D remains as the worst case and OCBN-S-TAN remains as a random classifier
(no TRR). Further, experimental results on OttawaRPB by tuning optimal TRR is shown 
from (d) to (f) of Figure 4, where two improved one-class Bayes learning methods: OCNB-
Parzen and OCBN-TAN are quite improved while two simple one-class Bayes learning 
methods: OCNB-S-D and OCBN-S-TAN perform as random classifiers (no TRR). 

These observations show that the assumption of simple one-class Bayes learning has a 
restricted benefit for one-class learning. The improved method (e.g., OCBN-Parzen) can 
be better than the previously proposed simple one-class Bayes learning for probability 
estimation (e.g., OCBN-S-D) by tuning the TRR. However, from Figure 4, one-class Bayes 
classifiers such as OCNB-Parzen and OCBN-TAN are still inferior to the corresponding 
supervised learning methods, i.e., NB and BN, in two practical applications. 

7. CONCLUSION AND FUTURE WORK
One-class Bayes learning consists of one-class Naïve Bayes and one-class Bayesian 
Network. It has been recognized that previously proposed one-class Bayes learning 
methods such as the simple one-class Naïve Bayes suffer from some limitations with the 
assumption that each nominal attribute value occurs at least one time in the underlying 
negative class distribution for probability estimation. We claim that it is ineffective on the 
domains with continuous attributes, and it is insufficient for probability estimation if the 
negative class distribution behaves complex, and the dependence on the negative class 
distribution is unreliable when the negative examples are unavailable. Further, the 
previous one-class Bayes method NBPC does not perform the probability estimation. 

In this paper, we improve one-class Bayes learning by developing a new method for the 
probability calibration. The method learns the minimum probability score according to 
the target rejection rate, and the maximum probability score during the training time to 
help the probability estimation. The main advantages behind this new method are that it 
is independent of the negative class distribution and effective on various domains 
containing either nominal attributes or continuous attributes. 

Our experimental results show that improved methods exhibit higher performance 
than simple methods on various domains containing nominal attribute and continuous 
attributes in most cases. In particular, in two practical applications, the improved one-
class Bayes learning method is superior to simple one-class Bayes methods. This justifies 
the new probability calibration method for one-class Bayes learning. 
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When the improved one-class Bayes methods exhibit more successes than the previous 
one-class Bayes classifiers in practical applications, the main issue is that the current one-
class Bayes learning methods cannot address a complex domain if there is a mixture 
probability model in the domain because they only build single classifier on the domain. 
Our study makes it possible to further improve one-class Bayes learning by assuming a 
possible Meta learning technique (like E2, an ensemble of positive example-based learning 
[26] or combining one-class classifiers [24]) such that one-class Bayes classifiers can be 
competitive with the traditional supervised learning methods for anomaly detection.
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Figure 4. ROC curves of two improved Bayes classifiers: OCNB-Parzen and OCBN-TAN, and two 
simple one-class Bayes classifiers: OCNB-S-D and OCBN-S-TAN, and two supervised Bayes classifiers: 
NB and BN on Ozone and OttawaRPB. The figures from (a) to (c) are ROC curves of the classifiers 
built on Ozone with different TRRs; the figures from (d) to (f) are ROC curves of the classifiers built 
on OttawaRPB with different TRRs.
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