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Abstract. Real-world problems usually exhibit dual-heterogeneity, i.e.,
every task in the problem has features from multiple views, and multi-
ple tasks are related with each other through one or more shared views.
To solve these multi-task problems with multiple views, we propose a
shared structure learning framework, which can learn shared predictive
structures on common views from multiple related tasks, and use the con-
sistency among different views to improve the performance. An alternat-
ing optimization algorithm is derived to solve the proposed framework.
Moreover, the computation load can be dealt with locally in each task
during the optimization, through only sharing some statistics, which sig-
nificantly reduces the time complexity and space complexity. Experimen-
tal studies on four real-world data sets demonstrate that our framework
significantly outperforms the state-of-the-art baselines.

Keywords: Multi-task Learning, Multi-view Learning, Alternating Op-
timization.

1 Introduction

In many practical situations, people need to solve a number of related tasks,
and multi-task learning (MTL) [5-7,20] is a good choice for these problems.
It learns multiple related tasks together so as to improve the performance of
each task relative to learning them separately. Besides, many problems contain
different “kinds” of information, that is, they include multi-view data. Multi-view
learning (MVL) [3,8,19] can make better use of these different views and get
improved results. However, many real-world problems exhibit dual-heterogeneity
[14]. To be specific, a single learning task might have features in multiple views
(i.e., feature heterogeneity); different learning tasks might be related with each
other through one or more shared views (features) (i.e., task heterogeneity).
One example is the web page classification problem. If people want to identify
whether the web pages from different universities are course home pages, then
classifying each university can be seen as a task. Meanwhile, every web page
has different kinds of features, one kind is the content of the web page, and the
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other kind is the anchor text attached to hyperlinks pointing to this page, from
other pages on the web. Such problem type is Multi-task learning with Multiple
Views (MTMV). However, traditional multi-task learning or multi-view learning
methods are not very suitable as they cannot use all the information contained
in the problem.

In supervised learning, given a labeled training set and hypothesis space H,
the goal of empirical risk minimization (ERM) is to find a predictor f € H that
minimizes empirical error. The error of the best predictor learned from finite
sample is called the estimation error. The error of using a restricted H is of-
ten referred to as the approzimation error, from the structure risk minimization
theory [21]. One needs to select the size of H to balance the trade-off between
approximation error and estimation error. This is typically done through model
selection, which learns a set of predictors from a set of candidate hypothesis
spaces Hyg, and then chooses the best one. When multiple related tasks are given,
learning the structure parameter © in the predictor space becomes easier [1, 6].
Also, different tasks can share information through the structure parameter O,
i.e., for each task ¢, f; € H; 0. MTMV learning methods that can make full use of
information contained in multiple tasks and multiple views are proposed [14, 25].
The transductive algorithm IteM? [14] can only deal with nonnegative feature
values. regM VMT algorithm [25] shares the label information among different
tasks by minimizing the difference of the prediction models for different tasks.
Without prior knowledge, simply restricting all the tasks are similar seems in-
appropriate. This paper assumes that multiple tasks share a common predictive
structure, and they can do model selection collectively. Compared to other meth-
ods to learn good predictive structures, such as data-manifold methods based
on graph structure, our method can learn some underlying predictive functional
structures in hypothesis space, which can characterize better predictors.

To facilitate information sharing among different tasks on multi-view repre-
sentation, in this paper, we propose an efficient inductive convex shared struc-
ture learning for MTMV problem (CSL-MTMYV). Our method learns shared
predictive structures on hypothesis spaces from multiple related tasks that have
common views; consequently, all tasks can share information through the shared
structures. In this way, the strict assumption in the previous MTMV methods
that all the tasks should be similar can be discarded. We assumed that the under-
lying structure is a shared low-dimensional subspace, and a linear form of feature
map is considered for simplicity. Furthermore, it uses the prediction consistency
among different views to improve the performance. Besides, some tasks may not
have all the views in many real applications. To deal with missing views, a direct
extension of our algorithm is provided. Our method is more flexible than pre-
vious inductive MTMV algorithm regM VMT [25]. Specifically, regM VM T can
be seen as a special case of CSL-MTMYV, which means our approach is more
generalized and has a potential to get better results. In addition, different from
regM VMT, our method decouples different tasks during the model optimization,
which significantly reduces the time complexity and space complexity. Therefore,
our method is more scalable for problems with large number of tasks.
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The rest of this paper is organized as follows. A brief review of related work
is given in Section 2. The MTMV problem definition and some preliminary
works are presented in Section 3. Our shared structure learning framework for
MTMYV problem and a convex relaxation algorithm are described in Section 4.
To demonstrate the effectiveness of our algorithm, some experimental results are
shown in Section 5. Conclusion is provided in Section 6.

2 Related Work

Currently, there are only a few researches on multi-task problem with multi-
view data (MTMV). The traditional multi-task learning and multi-view learning
methods also provide some insights for the MTMV problem. In the following, a
brief description of these methods is given.

Multi-task learning (MTL). Multi-task learning conducts multiple re-
lated learning tasks simultaneously so that the label information in one task can
be used for other tasks. The earliest MTL method [5] learns a shared hidden
layer representation for different tasks. Supposing that all the tasks are similar,
a regularization formulation is proposed for MTL [11]. MTL can be modeled by
stochastic process methods, such as [20, 24]. Multi-task feature learning learns a
low-dimensional representation which is shared across a set of multiple related
tasks [2,15]. To deal with outlier tasks, a robust multi-task learning algorithm
is proposed [7]. The methods to learn predictive structures on hypothesis spaces
from multiple learning tasks are also proposed [1, 6].

Multi-view learning (MVL). The basic idea of MVL is making use of
the consistency among different views to achieve better performance. One of
the earliest works on multi-view learning is co-training algorithm [3], which
uses one view’s predictor to enlarge the training set for other views. Nigam
and Ghani compared co-training, EM and co-EM methods, and showed that
co-EM algorithm is the best among the three approaches [17]. Some improve-
ments of co-training algorithm are also proposed [16,23]. Other methods are
based on co-regularization framework. Sindhwani et al. [18] proposed a learn-
ing framework for multi-view regularization. SVM-2K [12] is a method which
uses kernels for two views learning. Sindhwani and Rosenberg [19] constructed a
single Reproducing Kernel Hilbert Spaces (RKHSs) with a data-dependent “co-
regularization” norm that reduces MVL to standard supervised learning. Chen
et al. [8] presented a large-margin learning framework to discover a predictive
latent subspace representation shared by multiple views.

Multi-task learning with multiple views (MTMYV). He and Lawrence
[14] proposed a graph-based framework which takes full advantage of information
among multiple tasks and multiple views, and an iterative algorithm (IteM?) is
proposed to optimize the model. The framework is transductive which cannot
predict the unseen samples. It can only deal with problems with nonnegative
feature values. regM VMT [25] uses co-regularization to obtain functions that
are consistent with each other on the unlabeled samples for different views.
Across different tasks, additional regularization functions are utilized to ensure



4 X. Jin et al.

the learned functions are similar. The assumption that all the tasks are sim-
ilar to each other may not be appropriate. Different tasks are coupled in the
computation process of regM VMT algorithm, making the model becoming more
complex and requires more memory to store the data.

3 Preliminaries

3.1 MTMYV Problem Definition

Notations. In this paper, [m : n] (n > m) denotes a set of integers in the range
of m to n inclusively. Let S; be the subset of positive semidefinite matrices.
Denote A < B if and only if B — A is positive semidefinite. Let tr(X) be the
trace of X, and X ~! be the inverse of matrix X. ||| denotes £ norm of a vector.
Unless specified otherwise, all vectors are column vectors.

In this part, a formal introduction of MTMYV problem is given. The problem
definition is very similar to [25, 14]. Suppose that the problem includes T tasks
and V views in total. Also, N labeled and M unlabeled data samples are given.
Usually, the labeled examples are insufficient while the unlabeled samples are
abundant, i.e. M > N. For each task ¢ € [1 : T}, there are n; and m; labeled
and unlabeled examples, thus we have N = >, n, and M = ), m;. Let d, be
the number of features in the view v € [1: V], and denote D =} d,.

The feature matrix X7 € R™*9% is used to denote the labeled samples in
task ¢ for view v, the corresponding unlabeled examples is denoted Py € R™*dv,
Let y; € {1,—1}"*! be the label vector of the labeled examples in the task .
Xy = (X} X2,..., X)), and P, = (P}, P2,...,PY) are concatenated feature
matrices of the labeled and unlabeled examples for task ¢, respectively. It is
common that in some applications not all tasks have features available from all
the V views, so an indicator matrix I;3 € {1,0}7*" is used to mark which view
is missing from which task, i.e. I;4(¢,v) = 0 if the task ¢ does not contain v-th
view, and = 1 otherwise. This notation can only handle “structured” missing
views [25] in the sense that if a view is present in a task, it is present in all
the samples in the task; if a view is missing from a task, it is missing in all the
samples in the task. Throughout the paper we use subscripts to denote tasks
and superscripts to denote views. So the goal of this paper is to leverage the
label information from all the tasks to help classify the unlabeled examples in
each task, as well as use the consistency among different views of a single task
to improve the performance.

3.2 Shared Structure Learning for MTL

Shared structure learning has been successfully used in single view multi-task
learning (MTL) problems [1, 6], that is, V' = 1 in the MTMV problem described
in Section 3.1. In MTL, suppose the dimension of the feature space is d, and the
objective is to learn linear predictors f;(z) = u/ z, for t € [1 : T], where u; is
the weight vector for the t-th task. For shared structure learning, it is assumed
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that the underlying structure is a shared low-dimensional subspace, and a linear
form of feature map is considered for simplicity. The predictors {f;}7 ; can
be learned simultaneously by exploiting a shared feature space. Formally, the
prediction function f; can be expressed as:

fi(x) =ulz=w/z+ 2] Ox (1)

where the structure parameter @ takes the form of an h x d matrix with or-
thonormal rows, i.e., 0T = I.

In [6], an improved alternating structure optimization (1ASO) formulation is
given:

{ut,2¢},00T=I — Tt 3

T Nne
. 1
min Y ( S L (filwei) i) + gr(us, 21, @)) (2)
=1
where g;(u¢, 2¢, ©) is the regularization function defined as:
9e(ue, 24, 0) = alluy — O Tz ||* + Blui|*. 3)

The regularization function in Eq.(3) controls the task relatedness (via the first
component) as well as the complexity of the predictor functions (via the sec-
ond component) as commonly used in traditional regularized risk minimization
formulation for supervised learning. o and (3 are pre-specified coefficients, in-
dicating the importance of the corresponding regularization component. This
formulation provides the foundation for our MTMV learning methods.

4 Shared Structure Learning for MTMYV Problem

4.1 Shared Structure Learning Framework for MTMYV Problem

A straightforward way to use the single view multi-task learning (MTL) methods
described in Section 3.2 is as follows. First, the prediction model for each view
data is learned individually, so the MTMYV problem can be divided into V' MTL
problems. Then, a model for each view v in each task t is acquired, represented
by f¢(z}) with the following formulation:

f)) = uy ey = wy Ty + 2 OV}, (4)

where u}, wy and 2z} have similar meanings as in Eq.(1), structure parameter
O represents the low-dimensional feature map for view v across different tasks.
The basic assumption underlying multi-view learning for a single task is that the
multiple views are conditionally independent and the predictive model of each
view can be used to make predictions on data examples, then the final models
are obtained according to these models. Without prior knowledge on which view
contributes more to the final models than other views, it is often assumed that
all views contribute equally, as described in [19]. The final model for task ¢ in
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MTMYV problem is obtained by averaging the prediction results from all view
functions as follows:

v
1
flwe) = 3 D f @), ()
v=1
where x; = [:v%T, xfT, e w,YT]T is the concatenated feature vector of the sam-

ples for task t¢.

However, in MTMV problem, it is worthwhile to make better use of the
information contained in different views, not just only decompose into separate
MTL problems. The models built on each single view will agree with one another
as much as possible on unlabeled examples. Co-regularization is a technique
to enforce such model agreement on unlabeled examples. Adding this into the
model, we obtain the following formulation :

T V ne
i 1 V(U v, v U v
e ZZ (m ZL (fE (@) yes) + 97 (uf, 27, 0Y)

{up,zp.00) Ov (O T)=1 I “=t \ny &
1 S 'Ul 'Ul v (% 2
> S () - £08,)°) O
Jj=1lv'#v

where L is the empirical loss function, xy,; is the feature representation for the

v-th view of ¢-th labeled sample in task ¢, py ; ( pf'J) is the feature representation
for the v-th (v/-th) view of j-th unlabeled sample in task ¢, g¥ (u?, z¥, ©") is the
regularization function defined as:

g¢ (uf, 2, 0") = allui — 0" 7P + Blluf|?, (7)

where the structure parameter @ is a h x d,, matrix. The regularization function
in Eq.(7) controls the task relatedness as well as the complexity of the predictor
models. So, the optimization problem described in Eq.(6) can take advantage of
multiple views and multiple tasks simultaneously.

4.2 A Relaxed Convex Formulation

The problem in Eq.(6) is non-convex and difficult to solve due to its orthonormal
constraints and the regularization in terms of u}, 2z} and ©V (suppose L is
convex loss function). Converting it into a convex formulation is desirable. The
optimal {z}} for the problem in Eq.(6) can be expressed as z; = O%uy. Let
UY =[ul,ul,...,usle R&W*T and Zv =[2¥,23,...,2%]€ RM*T so Z¥ = OU".
Then we denote:

T

Go(U", ") =min > g7 (uf, 2,0") = atr (U T (1L 4+n)[ -6 T6")U") (8)
t=1

where n = 8/a > 0. Eq.(8) can be reformulated into an equivalent form given

by
G1(U",6") = an(1 +n)tr (U7 (nI + 6T 6")7'0"). 9)
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The orthonormality constraint on @Y is non-convex, which makes the optimiza-
tion problem non-convex. One method is to relax the feasible domain of it into
a convex set. Let M = ©YT O, using a similar derivation as in [6], the feasible
domain of the optimization problem can be relaxed into a convex set, and a
convex formulation of the problem in Eq.(6) can be defined as follows:

: T V 1 G v v 1 S ’UI ’UI v U
{ur;l}\?}zz <nt ;L (ft (xt,i)>yt,i) JF’YE Z Z (ft (pt,j) - I (pt,j))2)

t=1v=1 j=1v'#v
14
+> Go(U",M"),  subject to: tr(M")=h,M"<I,M" €Sy, (10)
v=1

where Go(U?, M?) is defined as:
Go(U?, M?) = an(1 + n)tr (U”T(nl—i—M”)_lU“). (11)

Note that the problem in Eq.(10) is a convex relaxation of that in Eq.(6). The
optimal @V to Eq.(6) can be approximated using the top h eigenvectors (corre-
sponding to the largest h eigenvalues) of the optimal M computed from Eq.(10).

4.3 Convex Shared Structure Learning Algorithm

The optimization problem in Eq.(10) is convex, so the globally optimal solution
can be obtained. In this section, a convex shared structure learning algorithm for
MTMYV problem (CSL-MTMYV) is presented. In CSL-MTMYV algorithm, the two
optimization variables are optimized alternately, that is, one variable is fixed,
while the other one can be optimized according to the fixed one. The methods
are described in the following, and the final algorithm is in Algorithm 1.

Computation of {U"} for Given {Mv}. In Eq.(10), if {M"} are given,
it can be easily found that the computation of u; for different tasks can be
decoupled, that is, different tasks’ weight vectors can be computed separately.
Suppose the least square loss function is used where:

L(ff (), yei) = (uf "y = yea)®. (12)

We denote the objective function in Eq.(10) as F', and the derivative regarding
to each uy is:

oF 2 Ent ( vT v ) vy 2 Emt E vT, v o 1Y v
= U xa'iyt’lxvl e (U pvliu p7'>p74
au? ne P t t,i VAl X my = t t,J t t,j t,J (13)

+2am(1 +n)(nl + MY) " uf
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For convenience, the following notations are given:
2 2
A} = ZXPTXY Ay (V= )P TR 4 2an(1+ ) (n] + M)
Nt me (14)
va' _ 2 PUTPv' oV = 2 X’UT
t—’Ymtt t o t_nttyt
where X7, PY and y; are described in Section 3.1. By setting Eq.(13) to zero
and rearranging the terms, the following equation can be obtained:

Ay + Y By =y (15)
v'#v

From Eq.(15), uy is correlated with other uf/ for the same task ¢, i.e., the views
of the same task are correlated. uy and uy, from different tasks are not correlated.
Therefore, the u of different tasks can be computed separately, while the differ-
ent views for the same task must be solved together. Note that such an equation
can be obtained for each view v in task ¢. By combining these equations, the
following linear equation system can be obtained for each task ¢:

,CtWt = Rt (16)

where £; € RP*P is a symmetric block matrix with V x V blocks. The specific
forms of the symbols in Eq.(16) are as follows:

AL BE Bl
P
BB Ay
Wi = Vee (faf ool D). Ry = Ve (61 .-+ .CY)

where Vec() denotes the function stacking the column vectors in a matrix to a
single column vector. For each task ¢, an equation system described in Eq.(16)
is constructed and solved. The optimal solution of {u}} can be easily obtained
by left multiplication of the (pseudo-) inverse of matrix L;.

Computation of {M"} for Given {U"}. For given {U"}, in Eq.(10), differ-
ent M" are not correlated, they can be computed separately. For each view v,
the following problem can be obtained:

HI\}[igltI‘ (U”T(nl—l—M”)_lU”) ,subject to : tr(M") = h, M* X I,M" € S, (18)

This problem is a semidefinite program (SDP), where direct optimization is
computationally expensive. An efficient approach to solve it is described in the
following. Let U" = P, XP, be its singular value decomposition (SVD), where
P, € R*>Xdv and P, € RT*T are column-wise orthogonal, and rank(U") = ¢. In
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general, ¢ < T < d,, we also suppose that the dimension h of the shared feature
space for the T tasks satisfies h < g. Then,

¥ = diag(oy,--- ,01) € R**T 01> - >0,>0=0401 = =0p. (19)

Consider the following optimization problem:

q 2 q
o
min . subject to : Y =h,0 <~ <1, Ve, 20

where {o;} are the singular values of U" defined in Eq.(19), this optimization
problem is convex [4]. The problem in Eq.(20) can be solved via many existing
algorithms such as the projected gradient descent method [4].

Chen et al. [6] show that how to transform the SDP problem in Eq.(18) into
the convex optimization problem in Eq.(20). Specifically, let {7/} be optimal
to Eq.(20) and denote A* = diag(v;,--- ,7;,0)€ RY>Xd Let P, € R% > be
orthogonal consisting of the left singular vectors of U?. Then M"* = P A*P]' is
an optimal solution to Eq.(18). In addition, by solving the problem in Eq.(20)
we obtain the same optimal solution and objective value as Eq.(18).

Algorithm 1 Convex shared structure learning algorithm for MTMV problem
(CSL-MTMYV)
Input:
{yt};TZD {Xf}?:17 {Pt}?:17 a, B, Y5 h
Output:
(U, {21, (67
Method:
1: Initialize {M"}'_; that satisfy the constraints in Eq.(18);
2: repeat
3: fort=1toT do

4: Construct A, B,}”’/, C? defined in Eq.(14);

5: Construct £, R; defined in Eq.(17);

6: Compute Wy = ﬁ[l’Rt;

7:  end for

8 forv=1toV do

9: Compute the SVD of U¥ = PLXP, ;

10: Compute the optimal values of {v; } for problem in Eq.(20);
11: Denote A™ = diag(y7,--- ,74,0), and compute M" = P AP
12: end for

13: until convergence criterion is satisfied.

14: For each v, construct ©Y using the top h eigenvectors of M7
15: Compute Z¥ = ©°U",

16: return {U°}V_,, {Z°V_4, {©°}V ;.
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4.4 Dealing with Missing-view Data

In the previous sections, we only consider the ideal case that all tasks in a
data set have complete data. When incomplete data is involved in the MTMV
learning, the problem becomes more challenging. We aim to handle the case of
“structured” missing views as described in [25]. That is, if a view is missing from
a task, it is missing in all the samples in the task. Of course, partially observed
views (i.e. some views are missing only in a part of samples in a task) are more
difficult to deal with, which is beyond the scope of this paper.

In our MTMYV learning framework, it is easy dealing with structured missing
views. Let V; < V denote the real number of views contained in task ¢t and
T, < T denote the number of tasks contain view v. When computing {U"} for
given {M"}, if view v is missing from task ¢, the variables related to view v in
Eq.(16) are all useless, including u? in W;, C? in Ry, B’ in £;, and the v-th
block row and block column in matrix £;. After removing these variables, and
replace V, T using V;, T, in the corresponding equations, a problem with smaller
size can be obtained:

,C/tW/t - th (21)

When computing { MV} for given {U"}, if view v is missing from task ¢, then in
Eq.(18), the t-th column of matrix {U"} (i.e. u}) does not exist. After removing
this column and replace V,T using V;,T, in the corresponding equations, a
similar optimization problem can be obtained.

Furthermore, if for a view v, T, = 1, i.e., there is only one task that contains
view v, the algorithm can still be improved. As stated above, the shared structure
among multiple tasks is learned based on the relationships of these tasks, if
only one task exists for a view, then there is no need to learn the shared low
dimensional feature space for this view. Specifically, if only task ¢ contains view
v, then the prediction model for this view is as follows:

() =uj "y (22)

In the optimization problem in Eq.(6), for this view, the regularization function
gt (uy, 2¢,0Y) is replaced with g¥ (u?) = B]|u?||?. After some direct derivation, it
can be found that the A} in Eq.(17) should have the new form as:

2

AV = ZXPT XY 4281 (23)
Ny

For this view, there is no need to compute M" or @Y in every iteration.

4.5 Complexity Analysis of the Algorithm

To analyze the complexity of CSL-MTMYV algorithm, we consider the worst case
that all the tasks in the problem have features from all the views. In the algo-
rithm, we need to construct L, Wy, R; defined in Eq.(17), compute the inverse
of matrix £, and compute {M"}. It can be found that the speed bottleneck is
computation of 7" inverse of matrices £;, where the time complexity is O(T'D?).
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The space requirement of the algorithm mainly depends on the size of matrix £,
with O(D?). The time complexity of regM VMT algorithm [25] is O(T3D?) and
space complexity is O(T'D? + T(T — 1)D). It can be easily found that through
decoupling different tasks in the computation process, CSL-MTMYV can signifi-
cantly reduce the time and space complexity.

4.6 Relationship with regM VMT Algorithm

The regMVMT algorithm [25] can be seen as a special case of our algorithm.
T,

Specifically, in Eq.(6), we set OV = I, z} = T%Ziil u, and do not use the
weighting factors mit and n% to compensate for the tasks with different sample
numbers. With this setting, our model is transformed into the regM VM T problem
definition in Eq.(5) in [25]. Therefore, the problem formulation in this paper is
more generalized and flexible, which is able to find good solutions with more
chance. In fact, regM VMT requires that the model parameters of all the tasks
are similar, which is too rigorous for problems with outlier tasks. In this paper,
the common structures between different tasks are learned and different tasks
share information using these structures. Compared with other state-of-the-art
methods, such as data-manifold methods based on graph structure, our method
can learn some underlying predictive functional structures in hypothesis space,

which better characterizes a set of good predictors.

5 Experiments

In this section, we conduct the experiments on four real-world data sets to vali-
date the effectiveness of the proposed algorithm CSL-MTMYV.

5.1 Data Sets

All the four data sets have multiple tasks with multiple views, and some statistics
of them are summarized in Table 1, where N, and N, denote the number of
positive and negative samples in each task, respectively. The first two data sets
are with complete views, and the rest two are with missing views.

- The first one is the NUS-WIDE Object web image database [9] where each
image is annotated by objects such as “boat”,“bird”, and etc. We take block-
wise color moments as one view and the rest features as the other one. In this
data set, we remove the images associated with zero or only one object, and
those tasks with too few positive or negative examples. Finally, a two-view
data set with 11 tasks are obtained.

- The second one is the Leaves data set [13]. It includes leaves from one hun-
dred plant species that are divided into 32 different genuses, and 16 samples
of leaves for each plant species are presented. For each sample, a shape de-
scriptor, fine scale margin and texture histogram are given. By selecting one
species from each of the 32 different genuses, 32 tasks with three views are
obtained.
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- The third one is constructed from 20 Newsgroups 3, which includes 20 cat-
egories. 200 documents are randomly selected from each category. For each
task, the documents from one category are regarded as positive samples,
and from another different category are negative ones. We take the words
appearing in all 20 tasks as the common view, and the words existing only
in each task as specified view. Finally, we construct 20 tasks with totally 21
views, while each task with 19 views missing. The tf-idf weighting scheme
is adopted, and the principal component analysis [22] is used to reduce the
dimension of features to 300 for each view.

- The last one is NIST Topic Detection and Tracking (TDT2) corpus [10]. In
this data set, only the largest 20 categories are selected, and for the categories
containing more than 200 documents, we randomly selected 200 documents
from each category. The tasks and views are similarly constructed as 20
Newsgroups. We also have 20 tasks with totally 21 views, and each task
with 19 views missing.

Table 1. Description of the data sets

Data set T V N, Nn View Missing?
NUS-WIDE Object 11 2 310 ~ 1220 2438 ~ 3348 No
leaves 32 3 16 496 No
20 Newsgroups 20 21 200 200 Yes
TDT2 20 21 98 ~ 200 200 Yes

5.2 Baselines

We compare CSL-MTMYV with the following baselines, which can handle multi-
task problems with multiple views:

o IteM?: IteM? algorithm [14] is a transductive algorithm, and it can only
handle nonnegative feature values. When applying IteM? algorithm to some of
our data sets that have negative feature values, we add a positive constant to
the feature values to guarantee its nonnegativity.

o regMVMT: regMVMT algorithm [25] is an inductive algorithm, which
assumes all tasks should be similar to achieve good performance.

5.3 Experiment Setting and Evaluation Metric

Experiment Setting. In each data set, we randomly select n labeled samples
and m unlabeled samples for each task as training set. The value of n is set
according to the complexity of the learning problem, and m is generally 2 ~ 4
times of n. We apply five-fold cross validation on the training set to optimize
the parameters for the algorithms CSL-MTMYV (including «, § and +.) and reg-
MVMT (including A, g and 7). The parameters of IteM? are set the same as
their original paper. For CSL-MTMYV, the number of iteration is set to 20, and
number of dimensionality h as |(T"—1)/5] x 5 in our experiments.

3 http://people.csail.mit.edu/jrennie/20Newsgroups/
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Evaluation Metric. The F; measure is adopted to evaluate all the algorithms,
since the accuracy measure may be vulnerable to the class unbalance, which just
exists in some of our data sets. Let tp, fp and fn denote the numbers of true
positive samples, false positive samples and false negative samples, respectively,
then Precision = tp/(tp + fp), Recall = tp/(tp + fn).

2 x Precision x Recall

F = . 24
! Precision + Recall (24)

FEach experiment is repeated 10 times, and each time we randomly select n
labeled samples and m unlabeled samples for each task as training set. Finally,
the average value of F is recorded.

5.4 Experiment Results

Learning with Complete-view Data. The first two data sets in Table 1 are
with complete views.

For NUS-WIDE Object data set, different number of labeled samples are
chosen as training set to test the performance of these algorithms, i.e., the num-
ber of labeled samples are selected in the range [100, 700] with interval of 100.
All the results are shown in Table 2, which can be observed that, the value of F;
increases with the increasing of the number of labeled samples, and CSL-MTMV
achieves the best results under various cases.

For the leaves data set, there are only 16 positive samples for each task, so
the number of labeled samples is fixed as 50, among which the number of positive
samples is set to {1,2,3,4,5,6,7} separately. The experiment results are shown in
Table 3, where the first line gives the numbers of positive samples. Similar results
can be obtained, i.e., CSL-MTMYV performs the best under different numbers of
labeled positive samples.

Table 2. Experimental results on NUS-WIDE Object data set

samples # 100 200 300 400 500 600 700
TteM? 0.1539 0.1529 0.1526 0.1534 0.1546 0.1522 0.1512
regMVMT 0.3695 0.3822 0.3875 0.3918 0.4036 0.4102 0.4159
CSL-MTMV 0.3930 0.4075 0.4104 0.4178 0.4193 0.4211 0.4263

Table 3. Experimental results on leaves data set

positive samples # 1 2 3 4 5 6 7
TteM? 0.0289 0.0341 0.0397 0.0390 0.0373 0.0371 0.0392
regMVMT 0.0598 0.0981 0.1611 0.2637 0.3573 0.4623 0.5644
CSL-MTMV  0.0802 0.1072 0.1905 0.3017 0.4045 0.5229 0.6128

Learning with Missing-view Data. In real-world problems, some tasks
may not share all the views, so the problems with missing views are also consid-
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ered. In the experiments, the last two data sets, 20 Newsgroups and TDT2, are
with missing views.

Different number of labeled samples are also selected as training set to test
the performance of these compared algorithms. The number is sampled in the
range [10, 70] with interval of 10, and the results are recorded in Table 4 and 5.
We can observe the similar results as the first two data sets. Again, CSL-MTMV
gives the best performance.

Table 4. Experimental results on 20 Newsgroups data set

samples # 10 20 30 40 50 60 70
IteM” 0.4880 0.4879 0.4912 0.4776 0.4866 0.5068 0.5247
regMVMT 0.8570 0.9144 0.9330 0.9500 0.9566 0.9629 0.9651
CSL-MTMV 0.8733 0.9256 0.9406 0.9540 0.9597 0.9652 0.9667

Table 5. Experimental results on TDT2 data set

samples # 10 20 30 40 50 60 70
TteM? 0.4922 0.4897 0.5142 0.5101 0.5159 0.5069 0.5160
regMVMT 0.9742 0.9903 0.9930 0.9941 0.9949 0.9947 0.9947
CSL-MTMV 0.9825 0.9936 0.9946 0.9956 0.9957 0.9962 0.9958

It is worth mentioning that, we find IteM? can not perform well on these four
data sets. We conjecture there may be two reasons, 1) IteM? can only handle
the data sets with non-negative values of features. 2) IteM? assumes the test set
should have the same proportion of positive samples as the training set, which
might also degrade classification performance.

6 Conclusions

To deal with the MTMYV problems, a shared structure learning framework called
CSL-MTMYV is proposed in this paper, in which both the shared predictive struc-
ture among multiple tasks and prediction consistence among different views
within a single task are considered. We also convert the optimization prob-
lem to a convex one, and develop an alternating optimization algorithm to
solve it. The algorithm can decouple different tasks in the computation process,
which significantly reduces the time complexity and space complexity. More-
over, CSL-MTMYV is a general framework, since the recently proposed algorithm
regM VMT can be regarded as a special case of ours. The experiments on four
real-world data sets demonstrate the effectiveness of the proposed framework.
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