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Abstract. Our goal is to automatically detect patterns of crime. Among
a large set of crimes that happen every year in a major city, it is challeng-
ing, time-consuming, and labor-intensive for crime analysts to determine
which ones may have been committed by the same individual(s). If auto-
mated, data-driven tools for crime pattern detection are made available
to assist analysts, these tools could help police to better understand pat-
terns of crime, leading to more precise attribution of past crimes, and
the apprehension of suspects. To do this, we propose a pattern detection
algorithm called Series Finder, that grows a pattern of discovered crimes
from within a database, starting from a “seed” of a few crimes. Series
Finder incorporates both the common characteristics of all patterns and
the unique aspects of each specific pattern, and has had promising re-
sults on a decade’s worth of crime pattern data collected by the Crime
Analysis Unit of the Cambridge Police Department.
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1 Introduction

The goal of crime data mining is to understand patterns in criminal behavior in
order to predict crime, anticipate criminal activity and prevent it (e.g., see [1]).
There is a recent movement in law enforcement towards more empirical, data
driven approaches to predictive policing, and the National Institute of Justice
has recently launched an initiative in support of predictive policing [2]. How-
ever, even with new data-driven approaches to crime prediction, the fundamental
job of crime analysts still remains difficult and often manual; specific patterns
of crime are not necessarily easy to find by way of automated tools, whereas
larger-scale density-based trends comprised mainly of background crime levels
are much easier for data-driven approaches and software to estimate. The most
frequent (and most successful) method to identify specific crime patterns involves
the review of crime reports each day and the comparison of those reports to past
crimes [3], even though this process can be extraordinarily time-consuming. In
making these comparisons, an analyst looks for enough commonalities between
a past crime and a present crime to suggest a pattern. Even though automated
detection of specific crime patterns can be a much more difficult problem than



estimating background crime levels, tools for solving this problem could be ex-
tremely valuable in assisting crime analysts, and could directly lead to actionable
preventative measures. Locating these patterns automatically is a challenge that
machine learning tools and data mining analysis may be able to handle in a way
that directly complements the work of human crime analysts.

In this work, we take a machine learning approach to the problem of detecting
specific patterns of crime that are committed by the same offender or group.
Our learning algorithm processes information similarly to how crime analysts
process information instinctively: the algorithm searches through the database
looking for similarities between crimes in a growing pattern and in the rest of
the database, and tries to identify the modus operandi (M.O.) of the particular
offender. The M.O. is the set of habits that the offender follows, and is a type of
motif used to characterize the pattern. As more crimes are added to the set, the
M.O. becomes more well-defined. Our approach to pattern discovery captures
several important aspects of patterns:

– Each M.O. is different. Criminals are somewhat self-consistent in the way
they commit crimes. However, different criminals can have very different
M.O.’s. Consider the problem of predicting housebreaks (break-ins): Some
offenders operate during weekdays while the residents are at work; some
operate stealthily at night, while the residents are sleeping. Some offenders
favor large apartment buildings, where they can break into multiple units in
one day; others favor single-family houses, where they might be able to steal
more valuable items. Different combinations of crime attributes can be more
important than others for characterizing different M.O’s.

– General commonalities in M.O. do exist. Each pattern is different but, for
instance, similarity in time and space are often important to any pattern and
should generally by weighted highly. Our method incorporates both general
trends in M.O. and also pattern-specific trends.

– Patterns can be dynamic. Sometimes the M.O. shifts during a pattern. For
instance, a novice burglar might initially use bodily force to open a door. As
he gains experience, he might bring a tool with him to pry the door open.
Occasionally, offenders switch entirely from one neighborhood to another.
Methods that consider an M.O. as stationary would not naturally be able to
capture these dynamics.

2 Background and Related Work

In this work, we define a “pattern” as a series of crimes committed by the
same offender or group of offenders. This is different from a “hotspot” which
is a spatially localized area where many crimes occur, whether or not they are
committed by the same offender. It is also different than a “near-repeat” effect
which is localized in time and space, and does not require the crimes to be
committed by the same offender. To identify true patterns, one would need to
consider information beyond simply time and space, but also other features of



the crimes, such as the type of premise and means of entry. An example of a
pattern of crime would be a series of housebreaks over the course of a season
committed by the same person, around different parts of East Cambridge, in
houses whose doors are left unlocked, between noon and 2pm on weekdays.
For this pattern, sometimes the houses are ransacked and sometimes not, and
sometimes the residents are inside and sometimes not. This pattern does not
constitute a “hotspot” as it’s not localized in space. These crimes are not “near-
repeats” as they are not localized in time and space (see [4]).

We know of very few previous works aimed directly at detecting specific pat-
terns of crime. One of these works is that of Dahbur and Muscarello [5],3 who use
a cascaded network of Kohonen neural networks followed by heuristic processing
of the network outputs. However, feature grouping in the first step makes an
implicit assumption that attributes manually selected to group together have
the same importance, which is not necessarily the case: each crime series has
a signature set of factors that are important for that specific series, which is
one of the main points we highlighted in the introduction. Their method has
serious flaws, for instance that crimes occurring before midnight and after mid-
night cannot be grouped together by the neural network regardless of how many
similarities exists between them, hence the need for heuristics. Series Finder has
no such serious modeling defect. Nath [6] uses a semi-supervised clustering algo-
rithm to detect crime patterns. He developed a weighting scheme for attributes,
but the weights are provided by detectives instead of learned from data, similar
to the baseline comparison methods we use. Brown and Hagen [7] and Lin and
Brown [8] use similarity metrics like we do, but do not learn parameters from
past data.

Many classic data mining techniques have been successful for crime analysis
generally, such as association rule mining [7–10], classification [11], and clustering
[6]. We refer to the general overview of Chen et al. [12], in which the authors
present a general framework for crime data mining, where many of these standard
tools are available as part of the COPLINK [13] software package. Much recent
work has focused on locating and studying hotspots, which are localized high-
crime-density areas (e.g., [14–16], and for a review, see [17]).

Algorithmic work on semi-supervised clustering methods (e.g., [18, 19]) is
slightly related to our approach, in the sense that the set of patterns previously
labeled by the police can be used as constraints for learned clusters; on the other
hand, each of our clusters has different properties corresponding to different
M.O.’s, and most of the crimes in our database are not part of a pattern and
do not belong to a cluster. Standard clustering methods that assume all points
in a cluster are close to the cluster center would also not be appropriate for
modeling dynamic patterns of crime. Also not suitable are clustering methods
that use the same distance metric for different clusters, as this would ignore
the pattern’s M.O. Clustering is usually unsupervised, whereas our method is
supervised. Work on (unsupervised) set expansion in information retrieval (e.g.,
[20, 21]) is very relevant to ours. In set expansion, they (like us) start with a

3
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small seed of instances, possess a sea of unlabeled entities (webpages), most of
which are not relevant, and attempt to grow members of the same set as the seed.
The algorithms for set expansion do not adapt to the set as it develops, which
is important for crime pattern detection. The baseline algorithms we compare
with are similar to methods like Bayesian Sets applied in the context of Growing
a List [20,21] in that they use a type of inner product as the distance metric.

3 Series Finder for Pattern Detection

Series Finder is a supervised learning method for detecting patterns of crime.
It has two different types of coefficients: pattern-specific coefficients tηP̂,juj ,

and pattern-general coefficients tλjuj . The attributes of each crime (indexed by
j) capture elements of the M.O. such as the means of entry, time of day, etc.
Patterns of crime are grown sequentially, starting from candidate crimes (the
seed). As the pattern grows, the method adapts the pattern-specific coefficients
in order to better capture the M.O. The algorithm stops when there are no more
crimes within the database that are closely related to the pattern.

The crime-general coefficients are able to capture common characteristics of
all patterns (bullet 2 in the introduction), and the pattern-specific coefficients ad-
just to each pattern’s M.O. (bullet 1 in the introduction). Dynamically changing
patterns (bullet 3 in the introduction) are captured by a similarity S, possessing
a parameter d which controls the “degree of dynamics” of a pattern. We discuss
the details within this section.

Let us define the following:

– C – A set of all crimes.
– P – A set of all patterns.
– P – A single pattern, which is a set of crimes. P � P.
– P̂ – A pattern grown from a seed of pattern P. Ideally, if P is a true pattern

and P̂ is a discovered pattern, then P̂ should equal P when it has been
completed. Crimes in P̂ are represented by C1, C2, ...C|P̂|.

– CP̂ – The set of candidate crimes we will consider when starting from P̂ as
the seed. These are potentially part of pattern P. In practice, CP̂ is usually
a set of crimes occurring within a year of the seed of P. CP̂ � C .

– sjpCi, Ckq – Similarity between crime i and k in attribute j. There are a
total of J attributes. These similarities are calculated from raw data.

– γP̂pCi, Ckq – The overall similarity between crime i and k. It is a weighted
sum of all J attributes, and is pattern-specific.

3.1 Crime-crime similarity

The pairwise similarity γ measures how similar crimes Ci and Ck are in a pattern
set P̂. We model it in the following form:

γP̂pCi, Ckq �
1

ΓP̂

J̧

j�1

λjηP̂,jsjpCi, Ckq,



where two types of coefficients are introduced:

1. λj – pattern-general weights. These weights consider the general importance
of each attribute. They are trained on past patterns of crime that were
previously labeled by crime analysts as discussed in Section 3.4.

2. ηP̂,j – pattern-specific weights. These weights capture characteristics of a

specific pattern. All crimes in pattern P̂ are used to decide ηP̂,j , and further,

the defining characteristics of P̂ are assigned higher values. Specifically:

ηP̂,j �

|P̂ |̧

i�1

|P̂ |̧

k�1

sjpCi, Ckq

ΓP̂ is the normalizing factor ΓP̂ �
°J
j�1 λjηP̂,j . Two crimes have a high γP̂ if

they are similar along attributes that are important specifically to that crime
pattern, and generally to all patterns.

3.2 Pattern-crime similarity

Pattern-crime similarity S measures whether crime C̃ is similar enough to set P̂
that it should be potentially included in P̂. The pattern-crime similarity incorpo-
rates the dynamics in M.O. discussed in the introduction. The dynamic element
is controlled by a parameter d, called the degree of dynamics. The pattern-crime
similarity is defined as follows for pattern P̂ and crime C̃:

SpP̂, C̃q �

�
� 1

|P̂|

|P̂ |̧

i�1

γP̂pC̃, Ciq
d

�


p1{dq

where d ¥ 1. This is a soft-max, that is, an `d norm over i P P̂. Use of the
soft-max allows the pattern P̂ to evolve: crime i needs only be very similar to a
few crimes in P̂ to be considered for inclusion in P̂ when the degree of dynamics
d is large. On the contrary, if d is 1, this forces patterns to be very stable and
stationary, as new crimes would need to be similar to most or all of the crimes
already in P̂ to be included. That is, if d � 1, the dynamics of the pattern are
ignored. For our purpose, d is chosen appropriately to balance between including
the dynamics (d large), and stability and compactness of the pattern (d small).

3.3 Sequential Pattern Building

Starting with the seed, crimes are added iteratively from CP̂ to P̂. At each

iteration, the candidate crime with the highest pattern-crime similarity to P̂
is tentatively added to P̂. Then P̂’s cohesion is evaluated, which measures the
cohesiveness of P̂ as a pattern of crime: CohesionpP̂q � 1

|P̂|

°
iPP̂ SpP̂zCi, Ciq.

While the cohesion is large enough, we will proceed to grow P̂. If P̂’s cohesion
is below a threshold, P̂ stops growing. Here is the formal algorithm:



1: Initialization: P̂ Ð tSeed crimesu
2: repeat
3: Ctentative � arg maxCPpCP̂zP̂q SpP̂, Cq
4: P̂ Ð P̂ Y tCtentativeu
5: Update: ηP̂,j for j P t1, 2, . . . Ju, and CohesionpP̂q
6: until Cohesion(P̂q   cutoff
7: P̂final :� P̂zCtentative

8: return P̂final

3.4 Learning the pattern-general weights λ

The pattern-general weights are trained on past pattern data, by optimizing a
performance measure that is close to the performance measures we will use to
evaluate the quality of the results. Note that an alternative approach would be to
simply ask crime analysts what the optimal weighting should be, which was the
approach taken by Nath [6]. (This simpler method will also be used in Section
5.2 as a baseline for comparison.) We care fundamentally about optimizing the
following measures of quality for our returned results:

– The fraction of the true pattern P returned by the algorithm:

RecallpP, P̂q �
°
CPP 1pC P P̂q

|P|
.

– The fraction of the discovered crimes that are within pattern P:

PrecisionpP, P̂q �
°
CPP̂ 1pC P Pq

|P̂|
.

The training set consists of true patterns P1,P2, ...P`, ...P|P|. For each pat-

tern P` and its corresponding P̂`, we define a gain function gpP̂`,P`,λq contain-
ing both precision and recall. The dependence on λ � tλju

J
j�1 is implicit, as it

was used to construct P̂`.

gpP̂`,P`,λq � RecallpP`, P̂`q � β � PrecisionpP`, P̂`q

where β is the trade-off coefficient between the two quality measures. We wish
to choose λ to maximize the gain over all patterns in the training set.

maximize
λ

Gpλq �
¸
`

gpP̂`,P`,λq

subject to λj ¥ 0, j � 1, . . . , J,

J̧

j�1

λj � 1.

The optimization problem is non-convex and non-linear. However we hypoth-
esize that it is reasonably smooth: small changes in λ translate to small changes



in G. We use coordinate ascent to approximately optimize the objective, starting
from different random initial conditions to avoid returning local minima. The
procedure works as follows:

1: Initialize λ randomly, Converged=0
2: while Converged=0 do
3: for j � 1 Ñ J do
4: λnew

j Ð argmaxλj Gpλq (using a linesearch for the optima)
5: end for
6: if λnew � λ then
7: Converged� 1
8: else
9: λÐ λnew

10: end if
11: end while
12: return λ

We now discuss the definition of each of the J similarity measures.

4 Attribute similarity measures

Each pairwise attribute similarity sj : C � C Ñ r0, 1s compares two crimes along
attribute j. Attributes are either categorical or numerical, and by the nature of
our data, we are required to design similarity measures of both kinds.

4.1 Similarity for categorical attributes

In the Cambridge Police database for housebreaks, categorical attributes include
“type of premise” (apartment, single-family house, etc.), “ransacked” (indicating
whether the house was ransacked) and several others. We wanted a measure of
agreement between crimes for each categorical attribute that includes (i) whether
the two crimes agree on the attribute (ii) how common that attribute is. If the
crimes do not agree, the similarity is zero. If the crimes do agree, and agreement
on that attribute is unusual, the similarity should be given a higher weight.
For example, in residential burglaries, it is unusual for the resident to be at
home during the burglary. Two crimes committed while the resident was in the
home are more similar to each other than two crimes where the resident was not
at home. To do this, we weight the similarity by the probability of the match
occurring, as follows, denoting Cij as the jth attribute for crime Ci:

sjpCi, Ckq �

#
1�

°
qPQ p

2
j pxq if Cij � Ckj � x

0 if Cij � Ckj

where p2
j pxq �

nxpnx�1q
NpN�1q , with nx the number of times x is observed in the

collection of N crimes. This is a simplified version of Goodall’s measure [22].



4.2 Similarity for numerical attributes

Two formats of data exist for numerical attributes, either exact values, such as
time 3:26pm, or a time window, e.g., 9:45am - 4:30pm. Unlike other types of
crime such as assault and street robbery, housebreaks usually happen when the
resident is not present, and thus time windows are typical. In this case, we need
a similarity measure that can handle both exact time information and range-of-
time information. A simple way of dealing with a time window is to take the
midpoint of it (e.g., [15]), which simplifies the problem but may introduce bias.

Time-of-day profiles. We divide the data into two groups: exact data pt1, t2, . . . , tme
q,

and time window data pt̃1, t̃2, . . . , t̃mr
q where each data point is a range, t̃i �

rti,1, ti,2s, i � 1, 2, . . .mr. We first create a profile based only on crimes with ex-
act time data using kernel density estimation: p̂exactptq9

1
me

°me

i�1Kpt�tiq where
the kernel Kp�q is a symmetric function, in our case a gaussian with a chosen
bandwidth (we chose one hour). Then we use this to obtain an approximate
distribution incorporating the time window measurements, as follows:

ppt|t̃1, . . . , t̃mr q 9 pptq � ppt̃1, . . . , t̃mr |tq

� p̂exactptq � p̂prange includes t|tq.

The function p̂prange includes t|tq is a smoothed version of the empirical prob-
ability that the window includes t:

p̂prange includes t|tq9
1

mr

mŗ

i�1

K̃pt, t̃iq

where t̃i � rti,1, ti,2s and K̃pt, t̃iq :�
³
τ
1τPrti,1,ti,2sKpt � τqdτ . K is again a

gaussian with a selected bandwidth. Thus, we define:

p̂rangeptq 9 p̂exactptq �
1

mr

mŗ

i�1

K̃pt, t̃iq.

We combine the exact and range estimates in a weighted linear combination,
weighted according to the amount of data we have from each category:

p̂ptq9
me

me �mr
p̂exactptq �

mr

me �mr
p̂rangeptq.

We used the approach above to construct a time-of-day profile for residential
burglaries in Cambridge, where p̂ptq and p̂exactptq are plotted in Figure 1(a). To
independently verify the result, we compared it with residential burglaries in
Portland between 1996 and 2011 (reproduced from [23]) shown in Figure 1(b).4

The temporal pattern is similar, with a peak at around 1-2pm, a drop centered
around 6-7am, and a smaller drop at around midnight, though the profile differs
slightly in the evening between 6pm-2am.

4 To design this plot for Portland, range-of-time information was incorporated by
distributing the weight of each crime uniformly over its time window.



(a) Cambridge, from year 1997 to 2012 (b) Portland, from year 1996 to 2011

Fig. 1. Time of day profiling for house breaks in two different cities

A unified similarity measure for numeric attributes. We propose a similarity
measure that is consistent for exact and range numerical data. The similarity
decays exponentially with the distance between two data values, for either exact
or range data. We use the expected average distance over the two ranges as the
distance measure. For example, let crime i happen within ti :� rti,1, ti,2s and
crime k happen within tk :� rtk,1, tk,2s. Then

d̃pti, tkq �

» ti,2
ti,1

» tk,2

tk,1

p̂pτi|tiqp̂pτk|tkqdpτi, τkqdτidτk

where p̂ was estimated in the previous subsection for times of the day, and
dpτi, τkq is the difference in time between τi and τk. The conditional probability
is obtained by renormalizing p̂pτi|tiq to the interval (or exact value) ti. The
distance measure for exact numerical data can be viewed as a special case of this
expected average distance where the conditional probability p̂pτi|tiq is 1.

The general similarity measure is thus:

sjpCi, Ckq :� exp
�
�d̃pzi, zkq{Υj

	
where Υj is a scaling factor (e.g, we chose Υj � 120 minutes in the experiment),
and zi, zk are values of attribute j for crimes i and k, which could be either
exact values or ranges of values. We applied this form of similarity measure for
all numerical (non-categorical) crime attributes.

5 Experiments

We used data from 4855 housebreaks in Cambridge between 1997 and 2006
recorded by the Crime Analysis Unit of the Cambridge Police Department. Crime
attributes include geographic location, date, day of the week, time frame, loca-
tion of entry, means of entry, an indicator for “ransacked,” type of premise, an
indicator for whether residents were present, and suspect and victim informa-
tion. We also have 51 patterns collected over the same period of time that were
curated and hand-labeled by crime analysts.



5.1 Evaluation Metrics

The evaluation metrics used for the experimental results are average precision
and reciprocal rank. Denoting P̂i as the first i crimes in the discovered pattern,
and ∆RecallpP, P̂iq as the change in recall from i� 1 to i:

AvePpP, P̂q :�

|P̂ |̧

i�1

PrecisionpP, P̂iq∆RecallpP, P̂iq.

To calculate reciprocal rank, again we index the crimes in P̂ by the order in
which they were discovered, and compute

RRpP, P̂q :�
1�°|P̂|
r�1

1
r

	 ¸
CiPP

1

RankpCi, P̂q
,

where RankpCi, P̂q is the order in which Ci was added to P̂. If Ci was never
added to P̂, then RankpCi, P̂q is infinity and the term in the sum is zero.

5.2 Competing models and baselines

We compare with hierarchical agglomerative clustering and an iterative nearest
neighbor approach as competing baseline methods. For each method, we use
several different schemes to iteratively add discovered crimes, starting from the
same seed given to Series Finder. The pairwise similarity γ is a weighted sum of
the attribute similarities:

γpCi, Ckq �
J̧

j�1

λ̂jsjpCi, Ckq.

where the similarity metrics sjpCi, Ckq are the same as Series Finder used. The

weights λ̂ were provided by the Crime Analysis Unit of the Cambridge Police
Department based on their experience. This will allow us to see the specific
advantage of Series Finder, where the weights were learned from past data.

Hierarchical agglomerative clustering (HAC) begins with each crime as a
singleton cluster. At each step, the most similar (according to the similarity cri-
terion) two clusters are merged into a single cluster, producing one less cluster at
the next level. Iterative nearest neighbor classification (NN) begins with the seed
set. At each step, the nearest neighbor (according to the similarity criterion) of
the set is added to the pattern, until the nearest neighbor is no longer sufficiently
similar. HAC and NN were used with three different criteria for cluster-cluster or
cluster-crime similarity: Single Linkage (SL), which considers the most similar
pair of crimes; Complete Linkage (CL), which considers the most dissimilar pair
of crimes, and Group Average (GA), which uses the averaged pairwise similar-
ity [24]. The incremental nearest neighbor algorithm using the SGA measure,
with the weights provided by the crime analysts, becomes similar in spirit to



(a) (b)

Fig. 2. Boxplot of evaluation metrics for out-of-sample patterns

the Bayesian Sets algorithm [20] and how it is used in information retrieval
applications [21].

SSLpR, T q :� max
CiPR,CkPT

γpCi, Ckq

SCLpR, T q :� min
CiPR,CkPT

γpCi, Ckq

SGApR, T q :�
1

|R||T |

¸
CiPR

¸
CkPT

γpCi, Ckq.

5.3 Testing

We trained our models on two-thirds of the patterns from the Cambridge Police
Department and tested the results on the remaining third. For all methods,
pattern P̂` was grown until all crimes in P` were discovered. Boxplots of the
distribution of average precision and reciprocal ranks over the test patterns for
Series Finder and six baselines are shown in Figure 2(a) and Figure 2(b). We
remark that Series Finder has several advantages over the competing models: (i)
Hierarchical agglomerative clustering does not use the similarity between seed
crimes. Each seed grows a pattern independently, with possibly no interaction
between seeds. (ii) The competing models do not have pattern-specific weights.
One set of weights, which is pattern-general, is used for all patterns. (iii) The
weights used by the competing models are provided by detectives based on their
experience, while the weights of Series Finder are learned from data.

Since Series Finder’s performance depends on pattern-specific weights that
are calculated from seed crimes, we would like to understand how much each
additional crime within the seed generally contributes to performance. The av-
erage precision and reciprocal rank for the 16 testing patterns grown from 2, 3
and 4 seeds are plotted in Figure 3(a) and Figure 3(b). For both performance
measures, the quality of the predictions increases consistently with the number
of seed crimes. The additional crimes in the seed help to clarify the M.O.
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Fig. 3. Performance of Series Finder with 2, 3 and 4 seeds.

5.4 Model Convergence and Sensitivity Analysis

In Section 3, when discussing the optimization procedure for learning the weights,
we hypothesized that small changes in λ generally translate to small changes in
the objective Gpλq. Our observations about convergence have been consistent
with this hypothesis, in that the objective seems to change smoothly over the
course of the optimization procedure. Figure 4(a) shows the optimal objective
value at each iteration of training the algorithm on patterns collected by the
Cambridge Police Department. In this run, convergence was achieved after 14
coordinate ascent iterations. This was the fastest converging run over the ran-
domly chosen initial conditions used for the optimization procedure.
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40
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Optimal G(λ)−−Iterations

(a) Convergence of Gpλq (b) Sensitivity analysis

Fig. 4. Performance analysis

We also performed a sensitivity analysis for the optimum. We varied each of
the J coefficients λj from 65% to 135%, of its value at the optimum. As each
coefficient was varied, the others were kept fixed. We recorded the value of Gpλq
at several points along this spectrum of percentages between 65% and 135%,
for each of the λj ’s. This allows us to understand the sensitivity of Gpλq to
movement along any one of the axes of the J-dimensional space. We created
box plots of Gpλq at every 5th percentage between between 65% and 135%,
shown in Figure 4(b). The number of elements in each box plot is the number of



dimensions J . These plots provide additional evidence that the objective Gpλq
is somewhat smooth in λ; for instance the objective value varies by a maximum
of approximately 5-6% when one of the λj ’s changes by 10-15%.

6 Expert validation and case study

We wanted to see whether our data mining efforts could help crime analysts
identify crimes within a pattern that they did not yet know about, or exclude
crimes that were misidentified as part of a pattern. To do this, Series Finder
was trained on all existing crime patterns from the database to get the pattern-
general weights λ. Next, using two crimes in each pattern as a seed, Series Finder
iteratively added candidate crimes to the pattern until the pattern cohesion
dropped below 0.8 of the seed cohesion. Crime analysts then provided feedback
on Series Finder’s results for nine patterns.

There are now three versions of each pattern: P which is the original pattern
in the database, P̂ which was discovered using Series Finder from two crimes
in the pattern, and Pverified which came from crime experts after they viewed
the union of P̂ and P. Based on these, we counted different types of successes
and failures for the 9 patterns, shown in Table 1. The mathematical definition
of them is represented by the first 4 columns. For example, correct finds refer
to crimes that are not in P, but that are in P̂, and were verified by experts as
belonging to the pattern, in Pverified.

Type of crimes P P̂ Pverified P1 P2 P3 P4 P5 P6 P7 P8 P9

Correct hits � � � 6 5 6 3 8 5 7 2 10

Correct finds � � � 2 1 0 1 0 1 2 2 0

Correct exclusions � � � 0 0 4 1 0 2 1 0 0

Incorrect exclusions � � � 0 0 1 0 1 0 0 0 1

False hits � � � 2 0 0 0 2 2 0 0 0

Table 1. Expert validation study results.

Correct hits, correct finds and correct exclusions count successes for Series
Finder. Specifically, correct finds and correct exclusions capture Series Finder’s
improvements over the original database. Series Finder was able to discover 9
crimes that analysts had not previously matched to a pattern (the sum of the
correct finds) and exclude 8 crimes that analysts agreed should be excluded (the
sum of correct exclusions). Incorrect exclusions and false hits are not successes.
On the other hand, false hits that are similar to the crimes within the pattern
may still be useful for crime analysts to consider when determining the M.O.

We now discuss a pattern in detail to demonstrate the type of result that Se-
ries Finder is producing. The example provided is Pattern 7 in Table 1, which is a
series from 2004 in Mid-Cambridge covering a time range of two months. Crimes



Table 2. Example: A 2004 Series

NO Cri type Date Loc of entry Mns of entry Premises Rans Resid Time of day Day Suspect Victim

1 Seed 1/7/04 Front door Pried Aptment No Not in 8:45 Wed null White F

2 Corr hit 1/18/04 Rear door Pried Aptment Yes Not in 12:00 Sun White M White F

3 Corr hit 1/26/04 Grd window Removed Res Unk No Not in 7:30-12:15 Mon null Hisp F

4 Seed 1/27/04 Rear door Popped Lock Aptment No Not in 8:30-18:00 Tues null null

5 Corr exclu 1/31/04 Grd window Pried Res Unk No Not in 13:21 Sat Black M null

6 Corr hit 2/11/04 Front door Pried Aptment No Not in 8:30-12:30 Wed null Asian M

7 Corr hit 2/11/04 Front door Pried Aptment No Not in 8:00-14:10 Wed null null

8 Corr hit 2/17/04 Grd window Unknown Aptment No Not in 0:35 Tues null null

9 Corr find 2/19/04 Door: unkn Pried Aptment No Not in 10:00-16:10 Thur null White M

10 Corr find 2/19/04 Door: unkn Pried Aptment No Not in 7:30-16:10 Thur null White M

11 Corr hit 2/20/04 Front door Broke Aptment No Not in 8:00-17:55 Fri null null

12 Corr hit 2/25/04 Front door Pried Aptment Yes Not in 14:00 Wed null null

(a) Locations of crimes (b) λ and 1
ΓP̂
λ � η for a pattern in 2004

Fig. 5. An example pattern in 2004

were usually committed on weekdays during working hours. The premises are
all apartments (except two unknowns). Figure 5(a) shows geographically where
these crimes were located. In Figure 5(a), four categories of crime within the
2004 pattern are marked with different colored dots: seed crimes are represented
with blue dots, correct hits are represented with orange dots, the correct exclu-
sion is represented with a red dot and the two correct finds are represented with
green dots. Table 2 provides some details about the crimes within the series.

We visualize the M.O. of the pattern by displaying the weights in Figure 5(b).
The red bars represent the pattern-general weights λ and the blue bars repre-
sent the total normalized weights obtained from the product of pattern-general
weights and pattern-specific weights for this 2004 pattern. Notable observations
about this pattern are that: the time between crimes is a (relatively) more im-
portant characteristic for this pattern than for general patterns, as the crimes
in the pattern happen almost every week; the means and location of entry are
relatively less important as they are not consistent; and the suspect information
is also relatively less important. The suspect information is only present in one
of the crimes found by Series Finder (a white male). Geographic closeness is less
important for this series, as the crimes in the series are spread over a relatively
large geographic distance.

Series Finder made a contribution to this pattern, in the sense that it detected
two crimes that analysts had not previously considered as belonging to this



pattern. It also correctly excluded one crime from the series. In this case, the
correct exclusion is valuable since it had suspect information, which in this case
could be very misleading. This exclusion of this crime indicates that the offender
is a white male, rather than a black male.

7 Conclusion

Series Finder is designed to detect patterns of crime committed by the same
individual(s). In Cambridge, it has been able to correctly match several crimes
to patterns that were originally missed by analysts. The designer of the near-
repeat calculator, Ratcliffe, has stated that the near-repeat calculator is not a
“silver bullet” [25]. Series Finder also is not a magic bullet. On the other hand,
Series Finder can be a useful tool: by using very detailed information about the
crimes, and by tailoring the weights of the attributes to the specific M.O. of the
pattern, we are able to correctly pinpoint patterns more accurately than similar
methods. As we have shown through examples, the extensive data processing
and learning that goes into characterizing the M.O. of each pattern leads to
richer insights that were not available previously. Some analysts spend hours
each day searching for crime series manually. By replicating the cumbersome
process that analysts currently use to find patterns, Series Finder could have
enormous implications for time management, and may allow analysts to find
patterns that they would not otherwise be able to find.
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