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Abstract. Drug repositioning helps identify new indications for marketed drugs 
and clinical candidates. In this study, we proposed an integrative computational 
framework to predict novel drug indications for both approved drugs and 
clinical molecules by integrating chemical, biological and phenotypic data 
sources. We defined different similarity measures for each of these data sources 
and utilized a weighted k-nearest neighbor algorithm to transfer similarities of 
nearest neighbors to prediction scores for a given compound. A large margin 
method was used to combine individual metrics from multiple sources into a 
global metric. A large-scale study was conducted to repurpose 1007 drugs 
against 719 diseases. Experimental results showed that the proposed algorithm 
outperformed similar previously developed computational drug repositioning 
approaches. Moreover, the new algorithm also ranked drug information sources 
based on their contributions to the prediction, thus paving the way for 
prioritizing multiple data sources and building more reliable drug repositioning 
models. 
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1 Introduction 

In response to the high cost and risk in traditional de novo drug discovery, discovering 
potential uses for existing drugs, also known as drug repositioning, has attracted 
increasing interests from both the pharmaceutical industry and the research 
community [1]. Drug repositioning can reduce drug discovery and development time 
from 10-17 years to potentially 3-12 years [2]. 

Candidates for repositioning are usually either market drugs or drugs that have 
been discontinued in clinical trials for reasons other than safety concerns. Because the 
safety profiles of these drugs are known, clinical trials for alternative indications are 
cheaper, potentially faster and carry less risk than de novo drug development. Then, 
any newly identified indications can be quickly evaluated from phase II clinical trials. 
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Among the 51 new medicines and vaccines that were brought to market in 2009, new 
indications, new formulations, and new combinations of previously marketed 
products accounted for more than 30% [3]. Drug repositioning has drawn widespread 
attention from the pharmaceutical industry, government agencies, and academic 
institutes. However, current successes in drug repositioning have primarily been the 
result of serendipity or clinical observation. Systematic approaches are urgently 
needed to explore repositioning opportunities. 

A reasonable systematic method for drug repositioning is the application of 
phenotypic screens by testing compounds with biomedical and cellular assays. 
However, this method also requires the additional wet bench work of developing 
appropriate screening assays for each disease being investigated, and it thus remains 
challenging in terms of cost and efficiency. Data mining and machine learning offer 
an unprecedented opportunity to develop computational methods to predict all 
possible drug repositioning using available data sources. Most of these methods have 
used chemical structure, protein targets, or phenotypic information (e.g., side-effect 
profiles, gene expression profiles) to build predictive models and some have shown 
promising results [4-11]. 

In this study, we proposed a new drug repositioning framework: Similarity-based 
LArge-margin learning of Multiple Sources (SLAMS), which ranks and integrates 
multiple drug information sources to facilitate the prediction task. In the experiment, 
we investigated three types of drug information: (1) chemical properties - compound 
fingerprints; (2) biological properties - protein targets; (3) phenotypic properties - 
side-effect profiles. The proposed framework is also extensible, and thus the SLAMS 
algorithm can incorporate additional types of drug information sources. 

The rest of the paper is organized as follows. Section 2 presents the related work. 
Section 3 describes our SLAMS algorithm. Section 4 presents the conducted 
experiment and the achieved results. Finally, section 5 concludes the paper. 

2 Related Work 

Recent research has shown that computational approaches have the potential to offer 
systematic insights into the complex relationships among drugs, targets, and diseases 
for successful repositioning. Currently, there are five typical computational methods 
in drug repositioning: (1) predicting new drug indications on the basis of the chemical 
structure of the drug [4]; (2) inferring drug indications from protein targets interaction 
networks [5, 6]; (3) identifying relationships between drugs based on the similarity of 
their side-effects [7, 8]; (4) analyzing gene expression following drug treatment to 
infer new indications [9, 10]; (5) building a background chemical-protein interactome 
(CPI) using molecular docking [11]. All of these methods only focus on different 
aspects of drug-like activities and therefore result in biases in their predictions. Also, 
these methods suffer according to the noise in the given drug information source.  

Li and Lu [12] developed a method for mining potential new drug indications by 
exploring both chemical and bipartite-graph-boosted molecular features in similar 
drugs. Gottlieb et al. [13] developed a method called PREDICT where the drug 
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pairwise similarity was measured by similarities of chemical structures, side effects, 
and drug targets. These computed similarities were then used as features of a logistic 
regression classifier for predicting the novel associations between drugs and diseases. 

This paper differs from the related studies in the following aspects:  

1. We consider multiple chemical properties, biological properties, and 
phenotypic properties at the same time, unlike references [4-11]. Our 
SLAMS algorithm can also incorporate additional types of drug properties.  

2. Li and Lu [12], tried all representative weights for multiple data sources in a 
brute-force way, but SLAMS assigns weights to all data sources without 
manual tuning. 

3. We use a large margin method (i.e., minimize hinge-rank-loss) to integrate 
multiple sources, which is usually more optimal than a logistic regression 
method (i.e., minimize log-loss) [13] from the machine learning theory 
perspective. Also, the weight vector derived from a large margin method is 
more interpretable. 

4. We use canonical correlation analysis (CCA) [14] to impute missing values 
of side-effect profiles. Then, we augmented known side-effect profiles with 
predicted side-effect profiles to build a new side-effect source. 

5. We use multiple measures (e.g., precision, recall, F-score) to evaluate the 
results of drug repositioning experiments. Many previous methods used only 
area under the ROC curve (AUC) to evaluate their performance, but a high 
AUC score does not mean much in a highly imbalanced classification task 
[15] and unfortunately drug repositioning is such a task. 

3 Method 

In this section, we present the SLAMS algorithm for drug repositioning by integrating 
multiple data sources. First, we present the algorithmic framework. Second, we 
present a similarity-based scoring component for each data source. We also introduce 
the CCA to imputing missing side-effect profiles. Third, we present a large margin 
method to integrate multiple scoring components.  

3.1 Algorithm Overview 

The SLAMS algorithm is based on the observation that similar drugs are indicated for 
similar diseases. In this study, we identify a target drug dx's potential new indications 
through similar drugs (e.g., dy) as follows: If two drugs dx and dy are found to be 
similar, and dy is used for treating disease s, then dx is a repositioning candidate for 
disease s treatment. There are multiple metrics to measure the similarity between two 
drugs from different aspects of drug-like activities. The objective of SLAMS is to 
integrate individual metrics from multiple sources into a global metric. 

The SLAMS process framework is illustrated in Fig. 1, where m data sources are 
involved in the integration process. Each candidate drug dx queries i-th (i=1,…,m) 
data source and gets the prediction score for indicated disease s as f i(dx,s). Then m 
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prediction scores from multiple data sources are combined into a single, final score 
fE(dx,s). The details of scoring a single data source via k-nearest neighbor classifier 
and integrating multiple prediction scores via large margin method will be presented 
next. 

 

Fig. 1. Illustration of SLAMS Framework 

3.2 Similarity Measures  

A drug's chemical structure, protein targets, and side-effect profiles are important 
features in drug design, and evidently associated with its therapeutic use. Also these 
features are orthogonal to each other and so we consider them in the study. 

Computing Similarity of Drug Chemical Structures. Our method for calculating 
the pairwise similarity simchem(dx,dy) is based on the 2D chemical fingerprint 
descriptor of each drug’s chemical structure in PubChem [16]. We used chemistry 
development kit 1 (CDK) [17] to encode each chemical component into an 881-
dimensional chemical substructure vector defined in PubChem. That is, each drug d is 
represented by a binary fingerprint h(d) in which each bit indicates the presence of a 
predefined chemical structure fragment. The pairwise chemical similarity between 
two drugs dx and dy is computed as the Tanimoto coefficient of their fingerprints: 

( ) ( )
( , )

| ( ) | | ( ) | ( ) ( )
x y

chem x y
x y x y

h d h d
sim d d

h d h d h d h d

•
=

+ − •
 

where |h(dx)| and |h(dy)| are the counts of structure fragments in drugs dx and dy 
respectively. The dot product h(dx)h(dy) represents the number of structure fragments 
shared by two drugs. The simchem score is in the [0, 1] range. 

                                                           
1  Available at http://sourceforge.net/projects/cdk/. 
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Computing Similarity of Drug Protein Targets. A drug target is the protein in the 
human body whose activity is modified by a drug resulting in a desirable therapeutic 
effect. Our method for calculating the pairwise similarity simtarget(dx,dy) is based on 
the average of sequence similarities of the two target protein sets: 

| ( )|| ( )|

target
1 1

1
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P dP d

x y i x j y
i jx y
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where given a drug d, we present its target protein set as P(d); then | P(d)| is the size 
of the target protein set of drug d. The sequence similarity function of two proteins g 
is calculated as a Smith-Waterman sequence alignment score [18]. The simtarget score 
is in the [0, 1] range. 

Computing Similarity of Drug Side-Effect Profiles. Clinical side effects provide a 
human phenotypic profile for the drug, and this profile can suggest additional drug 
indications. In this subsection, we define the side-effect similarity first. Then, we 
introduce a method to predict drug side-effect profiles from chemical structure. There 
are two reasons for this: (1) the current side-effect dataset doesn’t cover all drugs. By 
imputing missing side-effect profiles and using the predicted side-effect profiles with 
other known data sources, we have more data to train a predictive drug repositioning 
model; (2) in a real drug discovery pipeline, side-effect information is collected from 
phase I all the way through phase IV. The candidate drugs for repositioning may not 
have completed side-effect profiles in the early phases. It is easier to apply the 
predictive model to the candidate drug with predicted side-effect profiles with other 
known information. 

Definition of Side-effect Similarity. Side-effect keywords were obtained from the 
SIDER database, which contains information about marketed medicines and their 
recorded adverse drug reactions [19]. Each drug d was represented by 1385-
dimensional binary side-effect profile e(d) whose elements encode for the presence or 
absence of each of the side-effect key words by 1 or 0 respectively. The pairwise side-
effect similarity between two drugs dx and dy is computed as the Tanimoto coefficient 
of their fingerprints: 
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where |e(dx)| and |e(dy)| are the counts of side-effect keywords for drugs dx and dy 
respectively. The dot product e(dx)e(dy) represents the number of side effects shared 
by two drugs. The simse score is in the [0, 1] range. 

Predicting drug side-effect profiles. Suppose that we have a set of n drugs with p 
substructure features and q side-effect features. Each drug is represented by a 
chemical substructure feature vector x=(x1,…,xp)

T, and by a side-effect feature vector 
y=(y1,…,yq)

T. Consider two linear combinations for chemical substructures and side 
effects as ui=αTxi and vi=βTyi (i=1,2,…,n), where α=(α1,…, αp)

T and β=(β1,…, βq)
T are 
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weight vectors. The goal of canonical correlation analysis is to find weight vectors α 
and β which maximize the following canonical correlation coefficient [14]: 

1

2 2
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i ii i
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Let X denote the n×p matrix as X=[x1,…,xn]
T, and Y denote the n×q matrix as 

Y=[y1,…,yn]
T. Then consider the following optimization problem:  

max{ }T TX Yα β  subject to 2 2
2 2|| || 1,|| || 1α β≤ ≤  

Solving the problem, we obtain m pairs of weight vectors α1,…, αm and β1,…, βm (m is 
the counts of canonical components). 

Given the profile of chemical substructure xnew for a drug of unknown side effects, 
we use the following prediction score for its potential side-effect profile ynew as: 

1

m
T T

new k k k new new
k

B Aβ ρ α
=

= = Λy x x  

where A=[α1,…, αm], B=[β1,…, βm] and Λ is the diagonal matrix whose elements are 
canonical correlation coefficients. If the j-th element in ynew has a high score, the new 
drug is predicted to have the j-th side-effect (j=1,2,…,q). 

CCA was showed to be accurate and computationally efficient in prediction of the 
drug side-effect profiles [20]. Using CCA we augmented the drug-side-effect 
relationship list with side-effect predictions for drugs that are not included in SIDER, 
based on their chemical properties. We can use the similarity metric defined in the last 
subsection to calculate the side-effect similarity. 

Computing Prediction Score from a Single Data Source. To calculate the likelihood 
that drug dx has the indication s, we use a weighted variant of the k-nearest neighbor (k-
NN) algorithm. The optimization of the model parameter k was done in a cross 
validation setting (k=20 in the study). For the i-th data source, the prediction score f of 
an indication s for the drug dx is calculated as: 

( )

( , ) ( , ) ( ( ))
y k x

i i
x x y y

d N d

f d s sim d d C s indications d
∈

= ⋅ ∈  

where simi(dx,dy) denotes the similarity score between two drugs dx and dy from the i-
th source, C is a characteristic function that return 1 if dy has an indication s and 0 
otherwise, and Nk(dx) are the k nearest neighbors of drug dx according to the metric 
simi which is determined by the type of i-th data source. The metric simi can be one of 
the similarities defined in the previous subsections (i.e., chemical structure, protein 
targets, and side effects), or any additional types of drug information sources. Thus, 
our SLAMS algorithm is extensible. We propose a k-NN scoring component for drug 
repositioning tasks due to its simplicity of implementation on multiple data sources, 
straightforward use of multiple scores, and its competitive accuracy with more 
complex algorithms [21]. 
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3.3 Combining Multiple Measures 

We considered multiple data sources and obtained several prediction scores for each 
pair (d,s). Given m scores for a drug-disease pair (d,s) (i.e., there are m different data 
sources), we propose a large margin method to calculate final score f E as a weighted 
average of individual scores: 

1

( , ) ( , )
m

E i
x i x

i

f d s w f d s
=

=  

where wi is the corresponding weight for the i-th (i=1,…,m) data source. 
We learn the weights from training data using a large margin method as follows. 

Let us assume that we are given m data sources, {Dj, j = 1,…,m}, and n drugs {xi, i = 
1,...,n}. Each drug is assigned to several indications from the set of k indications. Let 

Yi denote the set of indications that drug xi is assigned to, and iY  denote the set of 

indications that drug xi is not assigned to. Then, let f(x,y) be a vector of length m, 
whose j-th element is the score of drug x for indication y on the data source Dj. A 
weight vector w, used for integration of m prediction, is found by solving the 
following optimization problem: 
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where e is a vector of ones. The resulting convex optimization problem can be solved 
using standard optimization tools, such as CVX2. With the trained weight vector w, 
the drug-indication scores from different data sources can be integrated by taking 
their weighted average as wT·f i(x,y). 

4 Experimental Results 

In this section we experimentally evaluate the proposed SLAMS algorithm on a drug 
repositioning task.  

4.1 Data Description 

In the experiment, we analyzed the approved drugs from DrugBank [22], which is a 
widely used public database of drug information. From DrugBank, we collected 1007 
approved small-molecule drugs with their corresponding target protein information. 
Furthermore, we mapped these drugs to several other key drug resources including 

                                                           
2  Available at http://cvxr.com/. 
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PubChem [16] and UMLS [23] in order to extract other drug related information. In 
the end, we extracted chemical structures of the 1007 drugs from PubChem. Each 
drug was represented by an 881-dimensional binary profile whose elements encode 
for the presence or absence of each PubChem substructure by 1 or 0, respectively. 
There are 122,022 associations between 1007 drugs and 881 PubChem substructures. 

To facilitate collecting target protein information, we mapped target proteins to 
UniProt Knowledgebase [24], a central knowledgebase including most comprehensive 
and complete information on proteins. In the end, we extracted 3152 relationships 
between 1007 drugs and 775 proteins. 

Side-effect keywords were obtained from the SIDER database [19]. SIDER 
presents an aggregate of dispersed public information on drug side effects. SIDER 
extracted information on marked medicines and their recorded side effects from 
public documents and package inserts, which resulted in a collection of 888 drugs and 
1385 side-effect keywords. Merging these 888 SIDER drugs to the 1007 DrugBank 
approved drugs, we obtained 40,974 relationships between 613 drugs and 1385 side 
effects. A total number of 394 drugs from DrugBank approved list could not be 
mapped to SIDER drug names. We used the method described in subsection 3.2 to 
predict their side-effect profiles. Finally we obtained 19,385 predicted relationships 
between these 394 drugs and 1385 side effects. 

We obtained a drug's known use(s) through extracting treatment relationships 
between drugs and diseases from the National Drug File - Reference Terminology3 
(NDF-RT), which is part of the UMLS [23]. The drug-disease treatment relationship 
list is also used by Li and Lu [12] as the gold standard set of drug repositioning task. 
We normalized various drug names in NDF-RT to their active ingredients. From the 
normalized NDF-RT data set, we were able to extract therapeutic uses for 799 drugs 
out of the 1007 drugs, which constructed a gold standard set of 3250 treatment 
relationships between 799 drugs and 719 diseases. We plotted the statistics of the gold 
drug-disease relationship in Fig. 2. Most of drugs (75%) treat <5 indicated diseases; 
18% of drugs treat 5 to 10 diseases; only 7% of drugs treat >10 diseases (Fig. 2(a)). 
Although the disease hypertension has 78 related drugs, 80% of diseases have only <5 
drugs; 10% of diseases have 5-10 drugs; and remaining 10% of diseases have >10 
drugs (Fig. 2(b)). 

All the data used in our experiments are available at our website4. 

4.2 Evaluation Measures 

In the study, we modeled the drug repositioning task as a binary classification 
problem where each drug either treats or does not treat a particular disease. We 
measure the final classification performance using four criteria: precision, recall, F-
score, and area under the ROC curve. In order to provide the definitions of these four 
criteria, we first define the classification confusion table for binary classification 

                                                           
3  NDF-RT found at http://www.nlm.nih.gov/research/umls/ 
sourcereleasedocs/current/NDFRT/. 

4  Available at http://astro.temple.edu/~tua87106/drugreposition.html. 
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problems where the two classes are indicated as positive and negative, which is 
constructed by comparing the actual data labels and predicted outcomes (see Table 1). 

Then we can define the classification evaluation metrics as: True Positive Rate = 
TP / (TP+FN), False Positive Rate = FP / (FP+TN), Precision = TP / (TP+FP), 
Recall = TP / (TP+FN), and F-Score = 2  Precision  Recall / (Precision+Recall). 

 

Fig. 2. Statistics of the drug-disease relationship dataset. (a) The number of indicated diseases 
per drug. (b) The number of drugs per indicated disease. 

Table 1. Confusion matrix 

  Actual Value 

Predicted True Positive (TP) False Positive (FP) 

Value False Negative (FN) True Negative (TN) 
 
The confusion matrix can be used to construct a point in the ROC curve, which is a 

graphical plot of true positive rate against false positive rate. The whole ROC curve 
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can be plotted by varying threshold value for prediction score, above which the output 
is predicted as positive, and negative otherwise. Then we can use the area under the 
ROC curve (AUC) as a measure. The other three measures (precision, recall, and F-
score) require setting the prediction threshold. In the experiment, a threshold was 
selected according to the maximum F-score of the predictions. Finally the precision, 
recall, and F-score are calculated over this specific threshold. 

4.3 Method Comparison 

To evaluate our SLAMS algorithm, we applied it in a 10-fold cross-validation setting. 
To avoid easy prediction cases, we hid all the associations involved with 10% of the 
drugs in each fold, rather than hiding 10% of the associations. In our comparisons, we 
considered three multiple source integration methods: (1) PREDICT [13] that uses 
similarity measures as features, and learns a logistic regression classifier that weighs 
the different features to yield a classification score. Replicating the settings of 
Gottlieb et al. [13], the training set used for the PREDICT logistic regression 
classifier was the true drug-disease associations (positive set), and a randomly 
generated negative set of drug-disease pairs (not part of the positive set), twice as 
large as the positive set. (2) Simple Average that assumes that each data source is 
equally informative, thus simply averages all k-NN prediction scores from multiple 
data sources. (3) The SLAMS algorithm proposed in this paper that uses a large 
margin method to automatically weigh and integrate multiple data sources. All 
evaluation measures are summarized in Table 2. 

Table 2. Comparison of SLAMS vs. alternative integration methods according to AUC, 
precision, recall, and F-score 

Method AUC Precision Recall F-score 

Simple Average 0.8662 0.3144 0.6085 0.4146 

PREDICT 0.8740 0.3228 0.5987 0.4194 

SLAMS 0.8949 0.3452 0.6505 0.4510 

 
As shown in Table 2, our proposed SLAMS algorithm obtained an AUC score of 

0.8949. The score was superior to the Simple Average (AUC = 0.8662) and 
PREDICT (AUC = 0.8740). Also our proposed SLAMS algorithm produced a higher 
precision of 34.52% and a recall of 65.05% compared with Simple Average (31.44% 
for precision and 60.85% for recall) and PREDICT (32.28% for precision and 59.87% 
for recall). The results showed that our proposed SLAMS algorithm, a large-margin 
method, is better at integrating multiple drug information sources than simple average 
and logistic regression strategies. 

An interesting observation is that for all methods, the AUC score is quite large 
(around 0.9 in the experiment), but the actual ability to detect and predict positive 
samples (i.e., the new drug-disease pairs) is low: even for the best method in the 
experiment - SLAMS, on average 34.52% of its predicted indications will be correct 
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and about 65.05% of the true indications will be revealed for the previously unseen 
drugs. The reason for this is that the drug repositioning task is a highly imbalanced 
problem where the dataset has an approximate 1:176 positive to negative ratio. 
Consequently, a large change in the number of false positives can lead to a small 
change in the false positive rate used in ROC analysis. Therefore, AUC scores can 
present an overly optimistic view of an algorithm’s performance for the drug 
repositioning task. Unlike Li and Lu [12] and Gottlieb et al. [13], we reported 
precision, recall, and F-score in addition to AUC. 

4.4 Data Source Comparison 

In the study, the three data sources we used reveal three different aspects of a drug: 
(1) chemical properties - compound fingerprints; (2) biological properties - protein 
targets; (3) phenotypic properties - side-effect profiles. The weight vector w derived 
from SLAMS is interpretable: the i-th element of w corresponds to the i-th data 
source, and the sum of all elements of w is 1. The SLAMS weights of each data 
source and standard deviation during the 10-fold cross-validation are plotted in Fig. 3. 

To further characterize the abilities of different data sources and/or their 
combinations to predict new drug-disease relationships (i.e., drug repositioning), we 
used SLAMS through a 10-fold validation with different data-source combinations. 
To conduct a fair and accurate comparison across different data sources, the same 
experimental conditions were maintained by using the same training drugs and test 
drugs for each fold. Fig. 4 shows the ROC curves for different data sources based on 
cross-validation experiments, and Table 3 summarizes the evaluation results. 

 

Fig. 3. Distribution of SLAMS weights and standard deviation for chemical, biological and 
phenotypic data sources in 10-fold cross-validation experiments 
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Fig. 4. The ROC comparison in 10-fold cross validation for various data-source combinations 
using SLAMS. chem: chemical properties; bio: biological properties; pheno: phenotypic 
properties. Data sources are sorted in the legend of the figure according to their AUC score. 

Table 3. Comparison of various data-source combinations according to AUC, precision, recall, 
and F-score 

Data Source AUC Precision Recall F-score 

chem 0.8171 0.2232 0.4633 0.3013 

bio 0.8139 0.2166 0.4592 0.2944 

pheno 0.8492 0.2685 0.5117 0.3522 

chem+bio 0.8339 0.2366 0.5012 0.3215 

chem+pheno 0.8876 0.3281 0.6244 0.4302 

bio+pheno 0.8503 0.2733 0.5119 0.3563 

chem+bio+pheno 0.8949 0.3452 0.6505 0.4510 

 
When the data sources were compared independently, the phenotypic data appeared 

to be the most informative (highest AUC of 0.8492), and chemical and biological data 
achieved similar AUC. This could be partially explained with the following reasons. 
Drug indications (i.e., drug's indicated diseases) and side effects are both measureable 
behavioral or physiological changes in response to the treatment. Intuitively, if drugs 
treating a disease share the same side-effects, this may be manifestation of some 
underlying mechanism-of-action (MOA) linking the indicated disease and the side-
effect. Furthermore, both drug indications and side-effects are observations on human in 
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the clinical stage, so there is less of a translational issue. Therefore, phenotypic data is a 
much more important drug information source with regard to predicting drug 
indications. 

In the experiment while combing any two data sources will improve the AUC, the 
increase obtained by adding chemical structures on top of phenotypic properties (from 
0.8492 to 0.8876) is much more significant than adding biological targets information 
on it (from 0.8492 to 0.8503). It seems that chemical properties and phenotypic 
properties are complementary. Combing all three data sources, we obtained the 
highest AUC score. On the other hand, if we focus on precision and recall, adding 
chemical properties to phenotypic properties yielded a dramatic increase (~22% in 
precision and recall). However, in our experiments there was no significant 
improvement when adding biological properties to phenotypic properties. 

4.5 Analysis of Novel Predictions 

During the 10-fold cross-validation, our SLAMS method with all chemical, 
biological, and phenotypic properties produced 3870 false-positive drug-disease 
associations. In other words, these associations were predicted by our method but they 
were not present in the gold standard. Some of these associations could be false, but a 
few associations could be true and can be considered as drug repositioning candidates 
in the real-world drug discovery. Taking the disease Rheumatoid Arthritis as an 
example, in Table 4 our SLAMS method found 10 drugs to treat it. These 10 drugs 
don’t have associations with Rheumatoid Arthritis in the gold standard, and they have 
their own indications other than Rheumatoid Arthritis. 

In order to test whether our predictions are in accordance with current experimental 
knowledge, we checked the extent to which they appear in current clinical trials. In 
Table 4, the drugs Ramipril, Meloxicam, and Imatinib have been tested for treating 
the disease Rheumatoid Arthritis in some clinical trials. In other words, 
pharmaceutical investigators have been aware of the associations of the drugs and 
Rheumatoid Arthritis, although they are still in the experimental stage. We 
downloaded all drug-disease data from registry of federally and privately supported 
clinical trials conducted around the world5. Overall, we acquired 18,392 unique drug-
disease associations that are being investigated in clinical trials (phases I-IV). In all, 
4798 of these associations involve drugs and diseases that are present in our data set 
with the exact names, spanning 4066 associations that are not part of our gold 
standard. Of these 4066 associations, our 3870 false-positive drug-disease 
associations cover 21% (i.e., 854 associations). It was highly unlikely that our false-
positive predictions identified this set of 854 experimental drug-disease associations 
by chance (p < 0.0001, Fisher’s exact test [25]). Hence, we conclude that false-
positive novel uses predicted by our method attained significant coverage of drug-
disease associations tested in clinical trials. All predicted drug-disease associations in 
our experiments are available at our website6. 

                                                           
5  Clinical trials found at http://clinicaltrials.gov/. 
6  Available at http://astro.temple.edu/~tua87106/drugreposition.html. 
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Table 4. Repositioned drugs for Rheumatoid Arthritis predicted by our method 

Drug Name Original Uses Treat Rheumatoid Arthritis in clinical trial 

Ramipril Hypertension NCT00273533 proposed in Jan 2006 

Diabetic Nephropathies 

  Heart Failure   

Lisinopril Hypertension N/A 

  Heart Failure   

Mercaptopurine Lymphoma N/A 

Meloxicam Osteoarthritis NCT00042068 proposed in July 2002 

Mefenamic Acid Menorrhagia N/A 

Fever 

  Dysmenorrhea   

Zileuton Asthma  N/A 

Imatinib Gastrointestinal Neoplasms NCT00154336 proposed in Sept 2005 

Leukemia, Myeloid 

  Blast Crisis   

Allopurinol Gout N/A 

Imiquimod Condylomata Acuminata N/A 

Masoprocol Keratosis  N/A 

5 Conclusion 

In response to the high cost and risk in traditional de novo drug discovery, discovering 
potential uses for existing drugs, also known as drug repositioning, has attracted 
increasing interests from both the pharmaceutical industry and the research 
community. From a serendipitous drug repositioning to systematic or rational ways, a 
variety of computational approaches using single source have been developed. 
However, the complexity of the problem clearly needs methods to integrate drug 
information from multiple sources for better solutions.  

In this paper, we proposed SLAMS, a new drug repositioning framework by 
integrating chemical (i.e., compound signatures), biological (i.e., protein targets), and 
phenotypic (i.e., side effects) properties. Experimental results showed that our method 
is superior to a few existing computational drug repositioning methods. Furthermore, 
our predictions statistically overlap drug-disease associations tested in clinical trials, 
suggesting that the predicted drugs may be regarded as valuable repositioning 
candidates for further drug discovery research. An important property of our method 
is that it allows easy integration of additional drug information sources. Moreover, the 
method ranked multiple drug information sources based on their contributions to the 
prediction, thus paving the way for prioritizing multiple data sources and building 
more reliable drug repositioning models. 
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