
Exploring Patient Risk Groups with Incomplete Knowledge

Xiang Wang, Fei Wang, Jun Wang, Buyue Qian, Jianying Hu
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

{wangxi, fwang, wangjun, bqian, jyhu}@us.ibm.com

Abstract—Patient risk stratification, which aims to stratify a
patient cohort into a set of homogeneous groups according to
some risk evaluation criteria, is an important task in modern
medical informatics. Good risk stratification is the key to
good personalized care plan design and delivery. The typical
procedure for risk stratification is to first identify a set of
risk-relevant medical features (also called risk factors), and
then construct a predictive model to estimate the risk scores
for individual patients. However, due to the heterogeneity
of patients’ clinical conditions, the risk factors and their
importance vary across different patient groups. Therefore a
better approach is to first segment the patient cohort into a
set of homogeneous groups with consistent clinical conditions,
namely risk groups, and then develop group-specific risk
prediction models. In this paper, we propose RISGAL (RISk
Group AnaLysis), a novel semi-supervised learning framework
for patient risk group exploration. Our method segments a
patient similarity graph into a set of risk groups such that some
risk groups are in alignment with (incomplete) prior knowledge
from the domain experts while the remaining groups reveal
new knowledge from the data. Our method is validated on
public benchmark datasets as well as a real electronic medical
record database to identify risk groups from a set of potential
Congestive Heart Failure (CHF) patients.
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I. INTRODUCTION

Personalized care is one of the major trends in modern
medical informatics, where a key step is to segment the
patient cohort into homogeneous groups so that a customized
treatment plan can be constructed for each group. Patient risk
stratification [1] can be viewed as a specific way of patient
cohort segmentation such that patients in each group share
similar risks of having an adverse outcome, e.g. the onset
of Congestive Heart Failure (CHF).

A major challenge for risk stratification is the hetero-
geneity of patients’ clinical conditions. For instance, CHF
patients have different comorbidities, such as diabetes, kid-
ney diseases, lung diseases, etc.. In different comorbidity
groups, the medical features that contribute to the risk, or
risk factors, are different. Even for the common risk factors
across different patient groups, their contributions to the risk
score could vary significantly. For example, asthma is a
known risk factor for heart disease, but it will contribute
much more to the heart disease risk for patients with (other)
existing lung diseases than patients with diabetes. Therefore,

constructing a universal risk prediction model using a shared
set of risk factors may not be the best approach for risk
stratification. It makes more sense to first segment the patient
cohort into risk groups with consistent clinical conditions,
and then construct the prediction model using customized
risk factors from each group.

In order to accurately segment the patient cohort, we want
to incorporate prior knowledge from domain experts (physi-
cians). On the one hand, it is very important to incorporate
these domain knowledge (often in the form of known risk
factors) because they reflect crucial medical insights that
are validated by extensive clinical studies. On the other
hand, these knowledge are mostly incomplete because the
domain experts can only provide guidance within their areas
of expertise, which are unlikely to cover all the relevant
medical aspects of any given patient cohort.

Based on the above considerations, we propose RIS-
GAL (RISk Group anALysis), a novel semi-supervised learn-
ing framework for data- and knowledge-driven patient risk
group exploration. The input of RISGAL is a graph with
nodes as patients and edges as patient similarities, as well
as a set of knowledge-driven risk factors (labels) provided
by domain experts. The output will be a set of patient risk
groups that align with those provided risk factors. The key
challenge is that the label set is incomplete, i.e. there are
unseen classes. It is worthwhile to highlight the following
aspects of our proposed approach:

• Thanks to the semi-supervised learning scheme, RIS-
GAL can discover risk groups that align with the given
risk factors (labels) derived from domain knowledge.

• In the meanwhile, RISGAL can also discover data-
driven risk groups that are not covered by the
knowledge-driven risk factors.

• We propose an efficient algorithm based on Block
Coordinate Descent (BCD) to solve the optimization
problem of RISGAL. Our algorithm guarantees conver-
gence to a local optimum.

We first justify the effectiveness of RISGAL on several
public benchmark datasets. The empirical results validate
the advantage of RISGAL as compared to existing methods.
Then we apply RISGAL to a real-world electronic medical
record database to stratify a set of patients with respect to
their risk of CHF onset. We demonstrate that our algorithm is



able to identify both data- and knowledge-driven risk groups
with rich clinical insights.

II. RELATED WORKS

Graph-based semi-supervised learning with unseen classes
has not been well studied in the literature. Nie et al. [2]
proposed a variation of the Learning with Local and Global
Consistency (LLGC) algorithm [3] in which they initialize
the algorithm by assigning all unlabeled nodes to a new
class. After LLGC converges, the nodes that remain in the
new class are considered as a novel class. The limitation of
their approach is that it can only handle one novel class.

In a broader context, the problem of unseen classes
has been addressed in both semi-supervised and supervised
learning settings. For example, PU learning [4] considers
the binary classification problem and uses only positive and
unlabeled samples to train the classifier. Zero-shot learning
[5], [6] was proposed in the computer vision society and it
uses the semantic-relatedness between instance features to
discover novel object classes. Other criteria used to identify
novel classes from the unlabeled data include maximum
margin [7] and maximum entropy [8]. The key difference
between our work (and [2]) and the aforementioned tech-
niques is that the latter are not graph-based, i.e. they require
a unified vector space representation or some other auxiliary
information (in the case of [8], auxiliary classes), whereas
RISGAL takes a similarity graph as input.

III. THE PROPOSED FRAMEWORK

A. Objective Function

Assume we have a set of n patients with their similarity
matrix W ∈ Rn×n, whose (i, j)-th entry encodes the
clinical similarity between patient i and patient j. W is
symmetric. Let ∆ be the corresponding normalized graph
Laplacian. Suppose we have c knowledge-driven risk factors,
and Y = [y1, . . . ,yc] ∈ {0, 1}n×c encodes their association
to the patients, i.e., yij = 1 means patient i has risk factor j
(so that patient i belongs to risk group j, note that such group
assignment can be overlapping, i.e., one patient can belong
to multiple groups based on the risk factors he/she has),
yij = 0 otherwise. Let L ⊂ {1, . . . , n} denote the index set
of labeled patients and c′ be the total number of risk groups.
We assume c′ > c, i.e. some risk groups are unseen with
unknown risk factors. Let F = [f1, . . . , fc] ∈ {0, 1}n×c be
the patient assignment matrix to the knowledge-driven risk
groups, and G = [g1, . . . ,gc′ ] ∈ {0, 1}n×c

′
be the patient

assignment matrix to all potential risk groups.
We design the following objective for RISGAL:

J = α

c∑
k=1

‖fk − yk‖2L + β

c∑
k=1

fTk ∆fk

+ γ

c′∑
l=1

gTl ∆gl − µ
c∑

k=1

c′∑
l=1

gTl (fkf
T
k )gl

(1)

α, β, γ, µ > 0 are all weighting parameters. Our goal is
to minimize J . The following section will introduce the
meaning of each term in J .

B. Interpretation and Discussions

Fitting Term: α
∑c
k=1 ‖fk−yk‖2L. Note that F is the as-

signment of patients to the c knowledge-driven risk groups.
This term governs how well F must fit the input knowledge
Y. The subscript L means the fitting only applies to labeled
patients. α decides how much F can deviate from Y. When
α→∞, the known labels are not allowed to be altered.

Smoothing Term: β
∑c
k=1 f

T
k ∆fk. This term enforces the

neighborhood assumption of semi-supervised learning, i.e.
if two patients are highly similar in the graph then they are
likely to belong to the same risk group. Larger β will bias
F more towards the graph structure as encoded by ∆.

Grouping Term: γ
∑c′

l=1 g
T
l ∆gl. Note that G is the

assignment of patients to all c′ potential risk groups. This
term represents the data-driven exploration of the graph
structure ∆. γ decides how much G will be biased towards
the normalized min-cut of the graph.

Matching Term: −µ
∑c
k=1

∑c′

l=1 g
T
l (fkf

T
k )gl. This term

maximizes (note the negative sign before µ) the agreement
between assignment F and assignment G in terms of pair-
wise relations. The value of

∑c
k=1

∑c′

l=1 g
T
l (fkf

T
k )gl is the

total number of patient pairs whose relation F and G agree
on. µ decides how close G and F must be to each other.

If we treat F and G as two groups of variables, we can
adopt a Block Coordinate Descent (BCD) type of approach
to solve it. This approach is an iterative method such that
at each iteration, we fix either F or G and minimizing J
with respect to the other. In our case, fixing G solving F
leads to graph transduction, and fixing F solving G leads to
normalized min-cut. Unfortunately, solving either step of the
alternating minimization process is NP hard in their original
form. In the following section we show how to relax the
objective to allow an efficient solution.

C. Efficient Solution

In this section, we show how to solve a relaxed version
of Eq.(1) efficiently. Our algorithm is summarized in Algo-
rithm 1.

First we relax F and G from binary assignment to soft
assignment. The relaxed objective becomes:

argmin
fk,gl∈Rn

α

c∑
k=1

‖fk − yk‖2L + β

c∑
k=1

fTk ∆fk

+ γ

c′∑
l=1

gTl ∆gl − µ
c∑

k=1

c′∑
l=1

gTl (fkf
T
k )gl

s.t. GTG = Ic′ , G ≥ 0.

(2)

Ic′ is a c′×c′ identity matrix. The orthogonality constraint on
G stops trivial solutions. Note that it is unnecessary to pose



the same constraint on F because F is already constrained
by the fitting term to approximate Y.

After relaxation, given a fixed G, we solve for F:

argmin
fk∈Rn

α

c∑
k=1

‖fk−yk‖2L+β

c∑
k=1

fTk (In− (S+
µ

β
GGT ))fk.

(3)
Zhou et al. [3] showed that this objective can be solved in
closed form:

F = (1− ρ)(In − ρ(S +
µ

β
GGT ))−1Y, (4)

where ρ = α/(α+ β) and S = In −∆.
Given a fixed F, we solve for G:

argmin
gl∈Rn

c′∑
l=1

gTl ∆gl −
µ

γ

c∑
k=1

c′∑
l=1

gTl (fkf
T
k )gl,

s.t. GTG = Ic′ , G ≥ 0.

(5)

Eq.(5) is equivalent to:

argmax
gl∈Rn

c′∑
l=1

gTl (S +
µ

γ
FFT )gl,

s.t. GTG = Ic′ , G ≥ 0.

(6)

Since FFT is a kernel, S + µ
γFF

T remains a positive
semidefinite kernel. Eq.(6) is a standard graph min-cut
objective with nonnegativity constraint and it can be solved
by the multiplicative update rule [9]:

G← G�

√
(S + µ

γFF
T )G

G(GT (S + µ
γFF

T )G)
. (7)

� is Hadamard product. G can be initialized by the cluster
assignment from performing spectral clustering on S.

The alternating minimization process is guaranteed to
converge because the objective in Eq.(2) is lower-bounded.
The proof is omitted here due to page limit.

D. Implementation Issues

Setting β, γ, µ. Since we only care about the ratio µ/β
and µ/γ, without loss of generality we can fix µ to 1.
1/γ > 0 decides the influence of FFT on S in Eq.(6).
Smaller γ will makes G biased more towards F rather than
S. To balance the influence of the two kernels (S and FFT ),
notice that the most significant cut of S comes from its
second largest singular vector (its largest singular vector is
a constant vector) and the most significant cut of FFT comes
from its largest singular vector. Let SVD(X, k) denote the
function that returns the k-th largest singular value of X, γ
can be set to:

γ = SVD(FFT , 1)/SVD(S, 2). (8)

This scales the influence of FFT to the same level of the
normalized min-cut of S. Similarly, the ratio 1/β controls

Algorithm 1: RISGAL

Input: Similarity graph W, input labels
Y ∈ {0, 1}n×c, parameters c′, β, γ, µ = 1, ρ;

Output: Group indictor matrix G ∈ Rn×c′ ;
1 Normalized the graph kernel: S← D−1/2WD−1/2,

where D is the degree matrix of W;
2 Compute the normalized Laplacian: ∆← In − S;
3 Perform c′-way spectral clustering on S and initialize
G ∈ {0, 1}n×c′ as the corresponding group assignment
matrix;

4 repeat
5 G′ ← G;
6 F← (1− ρ)(In − ρ(S + µ

βG
tGtT ))−1Y;

7 H← G;
8 repeat
9 H′ ← H;

10 H← H′ �
√

(S+µ
γFFT )H′

H′(H′T (S+µ
γFFT )H′)

;

11 until ‖H−H′‖ < ε;
12 G← H;
13 until ‖G−G′‖ < ε;
14 return G;

the influence of GGT on S in Eq.(4). Since we want to
preserve the given labels in Y, in our implementation, we
set β to a large number such that 1/β will be small, say 0.1.

Setting ρ. ρ ∈ (0, 1) is a tradeoff factor between the graph
structure and the input labels. Larger ρ will make F biased
more towards the normalized min-cut of S + µ

βGGT . [3],
[10] provided detailed discussion on how to choose ρ. In
our implementation, we use a simple heuristic to set ρ:

ρ = (1−|L|
n

)a1+a2, ∀a1, a2 ≥ 0, a1+a2 <
β

β + µc′
. (9)

Eq.(9) bounds the value of ρ between a1 and a2 and the
value of ρ will decreases when the number of labeled nodes
increases (thus F must adhere more strictly to Y).

Setting c′. Ideally, c′ > c is the true number of risk groups
in the patient cohort. c′ is usually set by domain experts. If
sufficient domain knowledge is lacking, we could set c′ in
two different ways. One is to set c′ = c+1, which essentially
merges all risk groups into one meta-group. The other is to
estimate c′ through a regularizer.

Complexity. Inside each iteration, the complexity of our
algorithm is dominated by that of LLGC (Eq.(4)) and
nonnegative min-cut (Eq.(6)). The complexity of LLGC is
dominated by computing the pseudoinverse of an n × n
matrix, which is O(n3) in the worst case. The complexity
of nonnegative normalized min-cut is O(n2k), where k
is the number of iterations needed to converge. An extra
O(n2c′) time is needed to initialize G using c′-way spectral
clustering.



Table I
BENCHMARK DATASETS USED IN OUR EXPERIMENTS

Identifier #Instances #Classes #Unseen
Iris 150 3 1

Wine 178 3 1
Soybean 47 4 2

20 Newsgroups 1,759 4 1
USPS Digits 400 4 2

DBLP 421 4 2

IV. EMPIRICAL STUDY ON BENCHMARK DATASETS

In this section we justify the effectiveness of our algorithm
on a variety of benchmark datasets with comparison to
several existing techniques. The datasets we used in this
section are all publicly available.

A. Methodology

The datasets we used are summarized in Table I. We
used three scientific datasets from the UCI archive, namely
Iris, Wine, and Soybean, a subset of the USPS Handwritten
Digits, a subset of 20 Newsgroups, and co-author graph
constructed from the DBLP dataset. For each dataset, we
randomly chose a subset of ground truth labels as the
training labels Y. To simulate unseen class, we withheld
labels from certain classes. For Iris, we kept the Setosa class
hidden; for Wine, we kept Class 3 hidden; for Soybean,
we kept D1 and D2 hidden. For the USPS dataset we
picked digits 1, 2, 3, and 4 for our experiment and kept
digit 1 and 3 hidden from the training labels. For the 20
Newsgroups, which contained 4 high-level topics (rec, comp,
sci, and talk), we withheld comp from the training data. For
the DBLP dataset, we collected authors and their papers
from four areas of computer science, namely data mining
(KDD, ICDM, SDM), machine learning (NIPS, ICML),
database (SIGMOD, VLDB), and computer vision (CVPR,
ICCV). We used the areas as class labels and withheld data
mining and database from the training data. For the first five
datasets, we used the RBF kernel to construct graphs. The
optimal kernel bandwidth was chosen using cross validation.
For the DBLP dataset we constructed a co-author graph
where Wij is the number of papers author i and j have
co-authored.

We compared our algorithm to three existing techniques:

• SC: Spectral Clustering with the true number of classes.
It serves as a baseline to show if the training labels have
helped to improve the results.

• CSC: Constrained Spectral Clustering without label
propagation. This is a special case of our framework
where FFT in Eq.(6) is replaced with YYT .

• GGSSL: This is the graph-based algorithm proposed
in [2], which can deal with only one unseen class.

The parameters of our algorithm were set following the
discussion in Section III.
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Figure 1. Accuracy on benchmark datasets.

To evaluate the accuracy of prediction, we computed
Adjusted Rand Index against the ground truth labels. Higher
ARI means higher accuracy, 1 means perfect match between
the prediction and the ground truth while 0 means the
prediction is as good as random guess.

B. Results and Analysis

In Figure 1 we compare the accuracy of our algorithm to
the three baseline algorithms on all six datasets. We report
the mean and standard deviation of each technique (except
SC) over 50 randomly sampled training label sets. We can
see that our algorithm outperformed spectral clustering (SC)
on all but one dataset. This indicates our algorithm can
effectively utilize given guidance to improve the accuracy
of prediction. The only exception is the Wine dataset (c),
where SC already achieved close-to-perfect performance and
did not leave much room for improvement. Comparing our
algorithm to the constrained spectral clustering baseline (C-
SC) shows that our algorithm can improve the performance
more than CSC using the same amount of guidance. In some
cases, the accuracy of CSC was even worse than SC due to
the incompleteness of input knowledge. Our algorithm also
outperformed the GGSSL algorithm, especially when there
were more than one unseen classes (b)(d)(e).



V. APPLICATION TO RISK STRATIFYING CONGESTIVE
HEART FAILURE PATIENTS

In this section we present the results of applying RIS-
GAL to risk stratify a set of potential Congestive Heart
Failure (CHF) patients extracted from a real electronic
medical record database. For this dataset, we have 1, 296
patients that are confirmed with CHF using the diagnosis
criteria mentioned in [11], who are subsequently referred
to as case patients. For each case patient, we matched it
with a control patient, i.e. a patient who does not meet the
diagnosis criteria for CHF, but is similar to the case patient
in terms of gender, age, and some key clinical characteristics
as mentioned in [11]. For all selected patients we extracted
medical features in terms of the first three digits of ICD9
(International Classification of Diseases, 9th version), which
is also referred to as diagnosis group codes. In our database,
there are in total 1,230 distinct diagnosis group codes. When
constructing the patient graph, we set the edge weights, i.e.
pairwise patient similarities, to be the total number of co-
occurred comorbidities in terms of diagnosis group codes
between the patient pairs.

In our investigation, we combined all case and control
patients and segmented them into six risk groups accord-
ing to our medical experts’ suggestion. First we applied
unsupervised spectral clustering to discover those six risk
groups, and the results are summarized in Table II. For each
risk group, we present the number of patients assigned to
that group, the five diagnosis group codes with highest in-
group frequency as well as the group risk score, which is
the percentage of case patients in that group. We also give
a name to each risk group in the first column of the table to
summarize the medical characteristics. From Table II we
can see that unsupervised spectral clustering can already
discover some well-known risk factors for CHF, such as
documented heart diseases and diabetes.

When we presented these results to our medical experts,
however, they suggested that some important risk factors are
missing, such as kidney disease and pulmonary disease. Thus
we treated these two types of diseases as knowledge-driven
risk factors and injected them into the RISGAL framework.
We selected two specific diagnosis, namely Severe Chronic
Kidney Disease and Chronic Obstructive Pulmonary Disease
as the labels and applied our RISGAL framework. The results
are summarized in Table III. From the table we can clearly
observe that the kidney and pulmonary disease risk groups
were discovered, whose risk scores confirmed the guidance
from the medical experts that these two groups lead to high
risk of CHF onset. In the meanwhile, those data-driven risk
groups discovered by unsupervised exploration, such as heart
diseases and diabetes, are still retained.

VI. CONCLUSION

We propose RISGAL, a novel graph-based semi-
supervised learning framework for patient risk group ex-

ploration. Given some known risk factors according to
prior knowledge and the corresponding patient cohort, our
method finds the optimal partition over the patient similar-
ity graph guided by incomplete knowledge. The obtained
patient groups tend to align with the knowledge-driven risk
factors, while revealing additional data-driven risk groups
in the patient cohort. We first validated our algorithm on a
variety of benchmark datasets with comparison to existing
techniques. Then we applied our algorithm to a real medical
dataset to identify risk groups from a CHF patient cohort.
The empirical results demonstrated the effectiveness of our
approach.
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Table II
6 RISK GROUPS IDENTIFIED BY UNSUPERVISED LEARNING (SORTED BY GROUP RISK SCORE)

Risk Group Top Risk Factors Proportion % Group Risk
427 Cardiac Dysrhythmias 35.9
V58 Other and Unspecified Aftercare 12.0

HEART DISEASE V45 Other Postsurgical States 8.4 0.7365
(195) 414 Other Forms of Chronic Ischemic Heart Disease 7.6

424 Other Diseases of Endocardium 5.5
250 Diabetes Mellitus 21.2
414 Other Forms of Chronic Ischemic Heart Disease 10.6

DIABETES RELATED 585 Chronic Renal Failure 9.8 0.5712
(360) 272 Disorders of Lipoid Metabolism 7.3

401 Essential Hypertension 5.6
724 Other and Unspecified Disorders of Back 13.9
715 Osteoarthrosis and Allied Disorders 13.0

BONES & TISSUES 719 Other and Unspecified Disorder of Joint 9.8 0.5117
(323) 722 Intervertebral Disc Disorders 8.8

729 Other Disorders of Soft Tissues 6.9
496 Chronic Airways Obstruction, Not Elsewhere Classified 5.8
285 Other and Unspecified Anemias 4.3

MISC 599 Other Disorders of Urethra and Urinary Tract 4.1 0.4504
(828) 244 Acquired Hypothyroidism 3.9

401 Essential Hypertension 3.7
173 Other Malignant Neoplasm of Skin 26.3
702 Other Dermatoses 25.5

SKIN 238 Neoplasm of Uncertain Behavior of Other and Unspecified Sites and Tissues 16.5 0.4415
(144) 427 Cardiac Dysrhythmias 5.6

600 Hyperplasia of Prostate 5.1
365 Glaucoma 19.4
366 Cataract 17.2

EYE 250 Diabetes Mellitus 15.8 0.3931
(157) 362 Other Retinal Disorders 14.6

244 Acquired Hypothyroidism 11.1

Table III
6 RISK GROUPS IDENTIFIED BY RISGALWITH GUIDANCE TO LOOK FOR TWO SPECIFIC RISK FACTORS: CHRONIC OBSTRUCTIVE PULMONARY DISEASE

AND SEVERE CHRONIC KIDNEY DISEASE

Risk Group Top Risk Factors Proportion % Group Risk
585 Chronic Renal Failure 47.4
586 Renal Failure, Unspecified 15.0

KIDNEY DISEASE 403 Hypertensive Renal Disease 11.1 0.8458
(22) 250 Diabetes Mellitus 10.7

584 Acute Renal Failure 10.0
427 Cardiac Dysrhythmias 33.7
V58 Other and Unspecified Aftercare 11.7

HEART DISEASE V45 Other Postsurgical States 9.0 0.7306
(208) 414 Other Forms of Chronic Ischemic Heart Disease 8.3

424 Other Diseases of Endocardium 6.0
496 Chronic Airways Obstruction, Not Elsewhere Classified 23.5
491 Chronic Bronchitis 8.3

PULMONARY DISEASE 493 Asthma 6.1 0.5591
(255) 250 Diabetes Mellitus 4.8

427 Cardiac Dysrhythmias 4.4
250 Diabetes Mellitus 24.5
272 Disorders of Lipoid Metabolism 8.1

DIABETES RELATED 414 Other Forms of Chronic Ischemic Heart Disease 7.5 0.4824
(394) 366 Cataract 6.7

365 Glaucoma 6.4
715 Osteoarthrosis and Allied Disorders 5.1
719 Other and Unspecified Disorder of Joint 4.6

MISC 724 Other and Unspecified Disorders of Back 4.4 0.4525
(995) 244 Acquired Hypothyroidism 4.0

272 Disorders of Lipoid Metabolism 4.0
702 Other Dermatoses 26.3
173 Other Malignant Neoplasm of Skin 25.8

SKIN 238 Neoplasm of Uncertain Behavior of Other and Unspecified Sites and Tissues 17.0 0.4452
(133) 600 Hyperplasia of Prostate 5.5

365 Glaucoma 5.1


