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ABSTRACT
A high quality hierarchical organization of the concepts in
a dataset at different levels of granularity has many valu-
able applications such as search, summarization, and con-
tent browsing. In this paper we propose an algorithm for
recursively constructing a hierarchy of topics from a collec-
tion of content-representative documents. We characterize
each topic in the hierarchy by an integrated ranked list of
mixed-length phrases. Our mining framework is based on a
phrase-centric view for clustering, extracting, and ranking
topical phrases. Experiments with datasets from different
domains illustrate our ability to generate hierarchies of high
quality topics represented by meaningful phrases.

Categories and Subject Descriptors
I.7 [Computing Methodologies]: Document and Text
Processing; H.2.8 [Database Applications]: Data Mining

Keywords
Topic Modeling, Ontology Learning, Network Analysis,
Keyphrase Extraction, Keyphrase Ranking

1. INTRODUCTION
A high quality hierarchical organization of the concepts

in a dataset at different levels of granularity has many valu-
able applications in the areas of summarization, search and
browsing. A student could familiarize herself with a new
domain by perusing such a hierarchy and quickly learning
the domain’s topics. Or, a researcher could discover which
terminology phrases are representative of his topic of in-
terest, assisting his search for relevant work done by other
colleagues and potentially discovering subtopics to focus on.
We are therefore motivated to create a robust framework
for constructing high quality topical hierarchies from texts
in different domains.

For this task, we work with datasets of short texts - in
particular, content-representative documents. A document
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is content-representative if it may serve as a concise descrip-
tion of its accompanying full document. For example, the
title of a scientific paper is usually a content-representative
document, because it is a good representation of the topics
found in the paper itself. However, the same is rarely true
of e.g. fiction books. The terms in a content-representative
document (the title) can therefore be thought of as proba-
bilistic priors for which terms are the most likely to generate
phrases representative of the full document (the paper). Our
goal is to represent the topics of a collection, so content-
representative documents are cleaner, simpler to use, and
more likely to be available than full documents, while yield-
ing the desired result.

Our framework therefore aims to construct a hierarchy
where each topic is represented by a ranked list of topical
phrases, such that a child topic is a subset of its parent topic.
For example, the topic of query processing and optimization
may be described by the phrases {‘query processing’, ‘query
optimization’,. . .}, while its parent topic of general prob-
lems in databases may be described by {‘query processing’,
‘database systems’, ‘concurrency control’,. . .}

Our goal has several challenges. Topical phrases that
would be regarded as high quality by human users are likely
to vary in length (e.g., ‘support vector machines’ and ‘fea-
ture selection’ would both be good phrases for a topic about
machine learning). Existing phrase extraction and rank-
ing approaches are term-centric and cannot directly com-
pare such mixed-length phrases, highlighting the need for
a phrase-centric approach. Globally frequent phrases are
not assured to be good representations for individual topics,
demonstrating the need to infer the frequency of phrases in
each topic. Finally, we must be able to recursively estimate
each phrase’s topical frequency for subtopics, in order to
construct a topical hierarchy.

In this work we present CATHY (Constructing A Topical
HierarchY), a phrase-centric framework for topical hierarchy
generation via recursive clustering and ranking. The main
features of our framework are as follows:
• Phrase-centric approach: We employ topic analysis and
frequent pattern mining to estimate the topical frequency for
phrases. By using a phrase-centric topical frequency mea-
sure instead of a unigram-centric measure, we are able to
mine and rank higher quality phrases for each topic.
• Ranking of topical phrases: We define a topical keyphrase
ranking function which implements the four criteria that in-
tuitively represent high quality topical phrases: coverage,
purity, phraseness, and completeness. Because the input to



our ranking function is phrases and their topical frequencies,
instead of unigrams that must somehow be combined, we
can directly compare phrases of different lengths and yield
an integrated ranking of mixed-length phrases.
• Recursive clustering for hierarchy construction: Our topic
inference is based on term co-occurrence network clustering.
For any topic, we can extract its representative subnetwork,
and recursively apply CATHY to discover subtopics.

2. PROBLEM FORMULATION
Traditionally, a phrase is defined as a consecutive sequence

of terms, or unigrams. However, as discussed in [16] this def-
inition can be quite limiting as it is too sensitive to natural
variations in the term order, or the morphological struc-
ture of a phrase. For instance, consider that two computer
science paper titles, one containing ‘mining frequent pat-
terns’ and the other containing ‘frequent pattern mining,’
are clearly discussing the same topic, and should be treated
as such. A phrase may also be separated by other terms:
‘mining top-k frequent closed patterns’ also belongs to
the topic of frequent pattern mining, in addition to incor-
porating secondary topics of top-k frequent patterns, and
closed patterns. Therefore, we define a phrase to be an
order-free set of terms appearing in the same document. Our
framework can work with alternative definition of phrases as
well, such as traditonally defined consecutive ngrams.

Definition 1 (Phrase). A phrase P with length n is
an unordered set of n terms: P = {wx1 , . . . , wxn |wxi ∈
W}, where W is the set of all unique terms in a content-
representative document collection. The frequency f(P ) of
a phrase is the number of documents in the collection that
contain all of the n terms.

We use phrases as the basic units for constructing a topical
hierarchy.

Definition 2 (Topical Hierarchy). A topical hier-
archy is defined as a tree T in which each node is a topic.
The root topic is denoted as o. Every non-root topic t with
parent topic par(t) is represented by a ranked list of phrases
{Pt, rt(Pt)}, where Pt is the set of phrases for topic t, and
rt(P t) is the ranking score for the phrases in topic t. For
every non-leaf topic t in the tree, all of its subtopics com-
prise its children set Ct = {z ∈ T , par(z) = t}. A phrase
can appear in multiple topics, though it will have a different
ranking score in each topic.

To construct a topical hierarchy, we must soft cluster
phrases into a hierarchy and find representative phrases for
each topic. As an example, consider the task of judging
what constitutes high quality phrases for various topics in
computer science. There are four criteria for judging the
quality of a phrase:
• Coverage: A representative phrase for a topic should
cover many documents within that topic. Example: ‘in-
formation retrieval’ has better coverage than ‘cross-language
information retrieval’ in the Information Retrieval topic.
• Purity: A phrase is pure in a topic if it is only frequent
in documents belonging to that topic and not frequent in
documents within other topics. Example: ‘query processing’
is more pure than ‘query’ in the Databases topic.
• Phraseness: A group of terms should be combined to-
gether as a phrase if they co-occur significantly more of-
ten than the expected chance co-occurrence frequency, given

that each term in the phrase occurs independently. Example:
‘active learning’ is a better phrase than ‘learning classifica-
tion’ in the Machine Learning topic.
• Completeness: A phrase is not complete if it is a subset
of a longer phrase, in the sense that it rarely occurs in a
document without the presence of the longer phrase. Exam-
ple: ‘support vector machines’ is a complete phrase, whereas
‘vector machines’ is not because ‘vector machines’ is almost
always accompanied by ‘support’ in documents.

The measures which represent these criteria can all be
characterized by an important concept: topical frequency.

Definition 3 (Topical Frequency). The topical fre-
quency ft(P ) of a phrase is the count of the number of times
the phrase is attributed to topic t. For the root node o,
fo(P ) = f(P ). For each topic node in the hierarchy, with
subtopics Ct, ft(P ) =

∑
z∈Ct fz(P ), i.e., the topical fre-

quency is equal to the sum of the sub-topical frequencies.

Table 1 illustrates an example of estimating topical fre-
quency for phrases in a computer science topic that has
4 subtopics. The phrase ‘support vector machines’ is es-
timated to belong entirely to the Machine Learning (ML)
topic with high frequency, and therefore is a candidate for
a high quality phrase. However, ‘social networks’ is fairly
evenly distributed among three topics, and is thus less likely
to be a high quality phrase. Section 3.3 discusses how such
candidate phrases are actually ranked, using measures based
on estimated topical frequency.

Table 1: Example of estimating topical frequency. The topics
are assumed to be inferred as machine learning, database, data
mining, and information retrieval from the collection

Phrase ML DB DM IR Total

support vector machines 85 0 0 0 85
query processing 0 212 27 12 251
world wide web 0 7 1 26 34
social networks 39 1 31 33 104

3. CATHY FRAMEWORK
In order to estimate the topical frequency for each phrase,

we need to infer the dataset’s topics. We perform topic
inference and estimate topical frequency by analyzing our
dataset’s term co-occurrence network.

Formally, every topic node t in the topical hierarchy is
associated with a term co-occurrence network Gt. The root
node o is associated with the term co-occurrence network
Go constructed from the collection of content-representative
documents. Go consists of a set of nodes W and a set of
links E. A node wi ∈ W represents a term, and a link
(wi, wj) between two nodes represents a co-occurrence of
the two terms in a document. The number of links eij ∈ E
between two nodes wi and wj is equal to the number of
documents containing both terms. For every non-root node
t 6= o, we construct a subnetwork Gt by clustering the term
co-occurrence network of its parent par(t). Gt has all of the

nodes from Gpar(t), but only those links belonging to the
particular subtopic t.

We chose to use term co-occurrence network for topic anal-
ysis instead of document-term topic modeling because the
it naturally supports recursive mining: the clustering result



for one topic can be used as the input when further parti-
tioning the topic into subtopics. The CATHY framework
generates a topical hierarchy in a top-down, recursive way:

Step 1. Construct the term co-occurrence network Go =
(W,E) from the document collection. Set t = o.

Step 2. For a topic t, cluster the term co-occurrence net-
work Gt into subtopic subnetworks Gz, z ∈ Ct, and estimate
the subtopical frequency for its subtopical phrases using a
generative model.

Step 3. For each topic z ∈ Ct, extract candidate phrases
based on estimated topical frequency.

Step 4. For each topic z ∈ Ct, rank the topical phrases
using a unified ranking function based on topical frequency.
Phrases of different lengths are directly compared, yielding
an integrated ranking.

Step 5. Recursively apply Steps 2 - 5 to each subtopic
z ∈ Ct to construct the hierarchy in a top-down fashion.

3.1 Clustering: Estimating Topical Frequency
We first introduce the process of clustering for one topic

t. We assume Ct contains k child topics, denoted by z =
1 . . . k. The value of k can be either specified by users or
chosen using a model selection criterion such as the Bayesian
Information Criterion [27].

In the term co-occurrence network Gt, we assume every
co-occurrence of two terms wi and wj is attributed to a topic
z ∈ Ct = {1, . . . , k}. We represent the total link frequency
ei,j between wi and wj as a summation of the number of
links between wi and wj in each of the k topics: eij =∑k
z=1 e

z
ij . The goal is thus to estimate ezij for z = 1 . . . k,

which is unlike most network analysis approaches.
We develop a generative model of the term co-occurrence

network, and use it to estimate topical frequency fz, z ∈ Ct.

3.1.1 A generative model for term co-occurrence net-
work analysis

To generate a topic-z link, we first generate one end node
wi following a multinomial distribution p(wi|z) = θzi , and
then generate the other end node wj with the same multino-
mial distribution p(wj |z) = θzj . The probability of generat-
ing a topic-z link (wi, wj) is therefore p(wi|z)p(wj |z) = θzi θ

z
j .

With this generative assumption for each individual link,
we can derive the distribution of topical frequency for any
two terms (wi, wj). If we repeat the generation of topic-
z links for ρz iterations, then the chance of generating a
particular topic-z link between wi and wj can be modeled
as a Bernoulli trial with success probability θzi θ

z
j . When

ρz is large, the total number of successes ezij approximately
follows a Poisson distribution Pois(ρzθ

z
i θ
z
j ).

Now we can write down the generative model for random
variables ezij with parameters ρz, θ

z.

ezij ∼ Poisson(ρzθ
z
i θ
z
j ), z = 1, . . . , k (1)

|W |∑
i=1

θzi = 1, θzi ≥ 0, ρz ≥ 0 (2)

The constraints guarantee a probabilistic interpretation. Ac-
cording to the expectation property of the Poisson distri-
bution, E(ezij) = ρzθ

z
i θ
z
j . Also, according to the additive

property of expectations,

E(
∑
i,j

ezij) =
∑
i,j

ρzθ
z
i θ
z
j = ρz

∑
i

θzi
∑
j

θzj = ρz

In other words, ρz is the total expected number of links in
topic z.

One important implication due to the additive property
of Poisson distribution is that

eij =

k∑
z=1

ezij ∼ Poisson(

k∑
z=1

ρzθ
z
i θ
z
j ) (3)

So given the model parameters, the probability of all ob-
served links is

p({eij}|θ, ρ) =
∏

wi,wj∈W

p(eij |θi, θj , ρ)

=
∏

wi,wj∈W

(
∑k
z=1 ρzθ

z
i θ
z
j )eij exp(−

∑k
z=1 ρzθ

z
i θ
z
j )

eij !
(4)

In this model, the observed information is the total num-
ber of links between every pair of nodes, including zero links
and self-links. The parameters which must be learned are
the role of each node in each topic θzi , wi ∈ W, z = 1, . . . , k,
and the expected number of links in each topic ρz. The
total number of free parameters to learn is therefore k|W |.
We learn the parameters by the Maximum Likelihood (ML)
principle: find the parameter values that maximize the likeli-
hood in Eq. (4). We use an Expectation-Maximization (EM)
algorithm that can iteratively infer the model parameters:

E− step : êzij = eij
ρzθ

z
i θ
z
j∑k

t=1 ρtθ
t
iθ
t
j

(5)

M− step :

ρz =
∑
i,j

êzij (6)

θzi =

∑
j ê
z
ij

ρz
(7)

Intuitively, the E-step calculates the expected number of
links êzij in each topic z between the terms wi and wj : the
ratio of êzij to eij is proportional to its Poisson parameter
ρzθ

z
i θ
z
j . The M-step calculates the ML parameter estimates:

θzi is the ratio of the total number of links in topic z where
one end node is wi and ρz, which is the sum of the total
expected number of links in topic z.

We update êzij , θ
z
i , ρz in each iteration. Note that if eij /∈

E, we do not need to calculate êzij because it equals 0.
Therefore, the time complexity for each iteration is O((|E|+
|V |)k) = O(|E|k). Like other EM algorithms, the solution
converges to a local maximum and the result may vary with
different initializations. The EM algorithm may be run mul-
tiple times with random initializations to find the solution
with the best likelihood. We empirically find that the EM
algorithm generally requires hundreds of iterations to con-
verge, although we can improve the efficiency with some
acceleration tricks. For example, we do not need to update
a parameter in each iteration if it converges before the whole
model converges. Similar tricks are used in other generative
models such as [2], and we omit the details here.

It is important to note that our method naturally sup-
ports top-down hierarchical clustering. To further discover
subtopics of a topic, we can extract the subnetwork where
Ez = {êzij |êzij ≥ 1} (expected number of links attributed
to that topic, ignoring values less than 1) and then apply
the same generative model on the subnetwork. This pro-



cess can be recursively repeated until the desired hierarchy
is constructed.

3.1.2 Topical frequency estimation
Using the learned model parameters, we can estimate the

topical frequency for a phrase P = {wx1 . . . wxn}:

fz(P ) = fpar(z)(P )
ρz
∏n
i=1 θ

z
xi∑

t∈Cpar(z) ρt
∏n
i=1 θ

t
xi

(8)

This estimation is based on two assumptions: i) when gen-
erating a topic-z phrase of length n, each of the n terms is
generated with the multinomial distribution θz, and ii) the
total number of topic-z phrases of length n is proportional
to ρz. It is easy to see that when n = 2, fz({wi, wj}) reduces
to êzij .

3.2 Topical Phrase Extraction
Since we define phrases to be sets of frequent terms, we de-

velop an algorithm to mine frequent topical patterns. The
goal is to extract patterns with topical frequency larger than
some threshold minsup for every topic z. In contrast to tra-
ditional frequent pattern mining problem, the topical fre-
quency of each pattern is unknown and must be estimated.
The results from the clustering step in Section 3.1 are nec-
essary for our estimation.

To extract topical frequent patterns, one can first mine
all frequent patterns with a traditional pattern mining algo-
rithm such as Apriori [1] or FP-growth [15], and then filter
them using the topical frequency estimation using Eq. (8).
The following two properties of topical frequency can be fur-
ther exploited to speed up this step:

Property 1. A phrase’s topic-z frequency has an upper
bound of the topic-z frequency of any of its subphrases.

Property 2. A phrase’s topic-z frequency has an upper

bound fpar(z)(P
′)

ρz
∏n

i=1 θ
z
xi∑

t∈Cpar(z) ρt
∏n

i=1 θ
t
xi

, where P ′ ⊂ P is

any subphrase of P .

Note that for only the top level topics z ∈ Co, the parent
topical frequency fpar(z)(P ) is equal to f(P ) and must be
counted from the text. However, for all lower levels, the
parent topical frequency fpar(z)(P ) was already calculated
when the parent topic was generated, and therefore never
needs to be counted.

One problem with the extracted frequent term sets is that
every subset of a frequent phrase is also a frequent phrase.
However, some of these subphrases should be removed ac-
cording to the completeness criterion described in Section 2
(e.g., ‘vector machines’). To remove incomplete phrases, we
adapt the notions of ‘closed patterns’ and ‘maximal pat-
terns’ [14]. A maximal pattern has no frequent supersets,
and a closed pattern has no supersets with the same fre-
quency. For our task, retaining only maximal phrases is too
aggressive since a long frequent phrase will override all of
its subphrases. However, retaining all closed phrases only
removes a phrase if it has a superphrase with exactly the
same frequency, which is rare.

We therefore try to find a middle ground by unifying the
definitions of maximal patterns and closed patterns together
with a tunable parameter. For each topic, we remove a
phrase P if there exists a frequent phrase P ′, such that

P ⊂ P ′, fz(P
′) ≥ γfz(P ). The remaining patterns are re-

ferred to as γ-maximal patterns (0 ≤ γ ≤ 1). When γ = 1,
this is equivalent to a closed pattern, and when γ = 0, this
is a maximal pattern. We empirically set γ ≈ 0.5, which re-
moves a phrase if its topical frequency is no more than twice
of some superphrase. In other words, if a phrase co-occurs
with a superphrase more than half the time, we consider
that it is subsumed by the superphrase, and should be re-
moved. According to Property 1, pruning can be performed
by comparing the frequency of a length-n phrase with all of
its length-(n + 1) superphrases. The collection of all of the
γ-maximal phrases of a topic z forms the candidate phrase
set Pz.

3.3 Ranking
As discussed in Section 2, topical phrases in Pz are ranked

according to four criteria: coverage, purity, phraseness, and
completeness. The last criterion is already employed as a
filter for the phrase extraction step, parameterized by γ. So
we now combine the remaining three criteria into a ranking
function using a probabilistic modeling approach.

The ranking function should be able to directly compare
keyphrases of mixed lengths, which we refer to as having
the comparability property. For example, the keyphrases
‘classification,’ ‘decision trees,’ and ‘support vector machines’
should all be ranked highly in the integrated list of keyphrases
for the Machine Learning topic, in spite of varying in length.
Traditional probabilistic modeling approaches, such as lan-
guage models or topic models do not exhibit the compara-
bility property. These approaches simply find that longer
n-grams have a much lower probability than shorter ones,
because the probabilities of seeing every possible unigram
sum to 1, and so do the probabilities of seeing every possible
bigram, trigram, etc. However, the total number of possi-
ble n-grams grows following a power law (O(|V |n)). While
previous work has used various heuristics to correct for this
bias during post-processing steps by, for example, using a
penalization term with respect to the phrase length [29, 34],
our approach is cleaner and more principled.

We propose a different ranking model that exhibits the
comparability property. The key idea is to consider the oc-
currence probability of ‘seeing a phrase p in a random docu-
ment with topic t.’ With this definition, the events of seeing
n-grams of various lengths in a document are no longer mu-
tually exclusive, and therefore the probabilities no longer
need to sum to 1.

We construct estimations for occurrence probability and
two contrastive probabilities that will be used to compare
against the occurrence probablity. We use mz to denote
the number of documents that contain at least one frequent
topic-z phrase. Similarly, we use mZ to denote the num-
ber of documents that contain at least one frequent topic-z
phrase for some topic z ∈ Z. We can then calculate the
occurrence probability of a phrase P conditioned on topic z:

p(P |z) =
fz(P )

mz
(9)

The independent contrastive probability is the probability of
independently seeing every term in phrase P = {wx1 , . . . wxn}
conditioned on topic z:

pindep(P |z) =

n∏
i=1

p(wxi |z) =

n∏
i=1

fz(wxi)

mz
(10)



and the mixture contrastive probability is the probability of a
phrase P conditioned on a mixture of multiple sibling topics
Z ⊂ Cpar(z), Z % {z}:

p(P |Z) =

∑
t∈Z ft(P )

mZ
(11)

We can now define the three remaining ranking crite-
ria: coverage, purity, and phraseness. The coverage of a
phrase is directly quantified by p(P |z). The phraseness can
be measured by the log ratio of the occurrence probabil-

ity to the independent contrastive probability log p(P |z)
pindep(P |z) .

The purity can be measured by the log ratio of the occur-
rence probability and the mixture contrastive probability

log p(P |z)
p(P |Z)

. The definition of purity is configurable by al-

tering the makeup of the topic mixture Z. For example,
using the mixture of all the sibling topics Cpar(z) as the
topic mixture results in a weaker purity criterion. However,
deliberately choosing the subset Z so that the contrastive
probability p(P |Z) is maximized, results in a stronger pu-
rity criterion.

The three criteria are unified by the ranking function:

rz(P ) = p(P |z)
(

log
p(P |z)
p(P |Z)

+ ω log
p(P |z)

pindep(P |z)

)
(12)

where ω controls the importance of the phraseness criterion.
This formulation of the ranking function has several desir-
able characteristics:
• The coverage measure p(P |z) is the most influential,

since the other two criteria are represented by log ratios
of p(P |z) and a contrastive probability, and the effect of
contrastive probability on the ranking score is smaller than
the influence of p(P |z). This is a desirable property because
when a phrase P has low support, the estimates of purity and
phraseness are unreliable; but their effect is small since the
value of p(P |z) would be correspondingly low. Therefore, a
phrase with low coverage would inevitably be ranked low, as
should be the case for representative phrases.
• The relative importance of the purity and phraseness

measures is controlled by ω. Both measures are log ra-
tios on comparable scales, and can thus be balanced by
weighted summation. As ω increases, we expect more topic-
independent but common phrases to be ranked higher. We
therefore restrict ω ∈ [0, 1] because our task requires topic-
related phrases to be highly ranked.
• The ranking function can also be nicely represented as

a pointwise Kullback-Leibler (KL) divergence in an infor-
mation theoretic framework. Pointwise KL divergence is a
distance measure between two probabilities. It is more ro-
bust than pointwise mutual information because the former
also considers absolute probability. In pointwise KL diver-
gence, the relative difference between probabilities must be
supported by a sufficiently high absolute probability. The

product p(P |z) log p(P |z)
p(P |Z)

is equivalent to the pointwise KL

divergence between the probabilities of p(P |z) and p(P |Z).

Likewise, p(P |z) log p(P |z)
pindep(P |z) is equivalent to the pointwise

KL divergence between the probabilities of p(P |z) under dif-
ferent independence assumptions. Therefore, Eq. (12) can
also be interpreted as a weighted summation of two point-
wise KL divergence metrics.

4. RELATED WORK

4.1 Ontology learning
With respect to the goal of our framework, our work is

broadly related to ontology learning. Topical hierarchies,
concept hierarchies, ontologies, etc., provide a hierarchical
organization of data at different levels of granularity, and
have many important applications, e.g., in web search and
browsing [11]. There has been a substantial amount of re-
search on ontology learning from text, though it remains
a challenging problem (see [32] for a recent survey). The
techniques can be broadly categorized as statistics-based or
linguistic-based. Most studies aim to mine subsumption
(‘is-a’) relationships [17], either by using lexico-syntactic
patterns (e.g., ‘x is a y’) [28, 25] or statistics-based ap-
proaches [33, 9]. Our definition of a topical hierarchy is
clearly distinct from a subsumption hierarchy. Chuang and
Chien [7] and Liu et al. [20] generate taxonomy of given key-
word phrases by hierarchical clustering techniques, with the
help of knowledge bases and search engine. If our work were
to be broadly viewed as an ontology-learning approach, we
use statistics-based techniques, without resorting to external
knowledge resources such as WordNet or Wikipedia.

4.2 Topical keyphrase extraction and ranking
The nature of our technique is related to topical keyphrase

extraction and ranking. Keyphrases are traditionally ex-
tracted as ngrams using statistical modeling [31], or as noun
phrases using natural language processing techniques [3].
We mainly review the related work in extracting topical
keyphrases from document collections rather than keyphrase
extraction from single documents. The state-of-the-art ap-
proaches to unsupervised keyphrase extraction have gen-
erally been graph-based, unigram-centric ranking methods,
which first extract unigrams and rank them for each topic,
and finally combine them into keyphrases [21, 34]. Some
previous methods have used clustering techniques on word
graphs with the help of external knowledge bases such as
Wikipedia for keyphrase extraction [13]. Tomokiyo and Hurst
[29] require a document collection with known topics as in-
put and train a language model to define their ranking cri-
teria. Mei et al. [22] use keyphrase extraction techniques to
discover labels for topics.

In contrast to all of these studies, we relax the restriction
that a phrase must be a consecutive n-gram, and instead
use document colocation - which is effective due to the na-
ture of the short, content-representative document collec-
tions which our framework expects. We also do not employ
any NLP techniques to parse the text of our datasets.

4.3 Topic modeling
Our study is also related to topic modeling. Topic mod-

eling techniques such as Latent Dirichlet Allocation [5] take
documents as input, model them as mixtures of different
topics, and output word distributions for each topic. Some
extensions have been developed to discover topical phrases
comprised of consecutive words [30, 31, 19, 4]. They can-
not find hierarchical topics, and their definition of phrases is
more restrictive. Several other extensions can model the hi-
erarchical dependency of unigram-based topics [12, 18, 24].
It is challenging to apply these techniques to our scenario be-
cause: i) since our text is sparse, the distribution estimates
are quite brittle [10] when calculating multiple topic levels,



and ii) these methods compute the entire hierarchy simulta-
neously and do not support recursive discovery of subtopics
from a topic.

5. EXPERIMENTS
In this section we first introduce the datasets and meth-

ods we used for comparison. We then describe our 3-part
evaluation: i) we conduct a user study with ‘intruder detec-
tion’ tasks to evaluate hierarchy quality; ii) we use category-
labeled data to evaluate the mutual information between
phrase-represented topics and known topical divisions; and
iii) we present several case studies.

5.1 Datasets
We analyze our performance on two datasets:1

• DBLP. We collected a set of titles of recently published
computer science papers in the areas related to Databases,
Data Mining, Information Retrieval, Machine Learning, and
Natural Language Processing. These titles come from DBLP2,
a bibliography website for computer science publications.
We minimally pre-processed the dataset by removing all
stopwords from the titles, resulting in a collection of 33,313
titles consisting of 18,598 unique terms.
• Library. We obtain titles of books from the University of
Illinois Library catalogue database in 6 general categories:
Architecture, Literature, Mass Media, Motion Pictures, Mu-
sic, and Theater. We pre-processed the titles by removing
all stopwords and terms with frequency < 5 in the dataset.
We also remove titles over 10 words in length, and titles not
in English. The resulting dataset contains 33,372 titles con-
sisting of 3,556 unique terms.

5.2 Methods for Comparison
As the topical hierarchy construction problem setting that

we study is new, there are no directly comparable algo-
rithms. We implement several methods:

SpecClus: As one baseline, we implement a common
framework of clustering-based ontology construction, which
first extracts all concepts from the text and then hierarchi-
cally clusters them. We adapt this to our setting by first
mining all frequent phrases using FP-growth [15], a typi-
cal pattern mining algorithm. We then implement spectral
clustering [26] for the clustering step, where the similarity
metric between two phrases is their co-occurrence count in
the dataset. This approach uses K-means to perform hard
clustering after computing a spectral embedding of the sim-
ilarity graph. Finally, we rank phrases in each cluster based
on their distance from the cluster center. In order to go down
in the hierarchy we recursively perform the same clustering
and ranking on each cluster of phrases.

hPAM: As a second baseline, we use a state-of-the-art hi-
erarchical topic modeling approach: the hierarchical Pachinko
Allocation Model [24]. hPAM takes documents as input and
outputs a specified number of supertopics and subtopics, as
well as the associations between them. However, it builds a
hierarchy for 3 levels simultaneously, not recursively, so we
only generate a hierarchy with 3 levels.3

1The datasets are available at http://illimine.cs.
illinois.edu/cathy
2http://www.dblp.org/
3hPAM has several parameters. Our tuning shows that the op-

hPAMrr: For each topic, hPAM outputs a multinomial
distribution over unigrams. These distributions can be used
to calculate the coverage and purity measures in our ranking
function (phraseness and completeness do not matter when
all candidate phrases are unigrams). We therefore also im-
plement a method that reranks the unigrams in each topic
generated by hPAM, with our ranking function adopting
the distribution learned by hPAM. We refer to the result as
hPAMrerank, or hPAMrr. Note that we cannot rerank Spec-
Clus because it does not generate a probability distribution
that can be input into our ranking function.

CATHYcp: In this version of CATHY the ranking func-
tion only considers the coverage and purity criteria, and not
phraseness or completeness (γ=1, ω=0). This allows us to
more closely compare the performance of our clustering and
mining step with hPAM, using hPAMrr.
CATHY: For evaluation we set minsup=5, γ=ω=0.5 for

phraseness and completeness criteria, and we use the strong
definition of purity, as discussed in Section 3.3 (Refer to
[8] for more thorough studies of the effects of the ranking
function’s parameters.)

5.3 Topical Hierarchy of DBLP Paper Titles
Our first evaluation assesses the ability of our method to

construct topical phrases that appear to be high quality to
human judges, via a user study. We construct hierarchies
with 4 levels from the DBLP dataset. For simplicity we set
the number of subtopics for the root node to be 5, for all
other non-leaves to be 4, for all of the methods. Since hPAM
and hPAMrr only construct 3 levels of the hierarchy, we
compare the 3-level hierarchies across all methods, and the
full hierarchies for the 3 methods which constructed them.

In the following subsections, we present a sample of the
hierarchies actually generated by these methods and encoun-
tered by participants in the user study. We then explain the
details of our user study, and present quantitative results.

5.3.1 Qualitative Results
Figure 1 shows a subset of hierarchies constructed by

CATHY and the two baselines, SpecClus and hPAM. In gen-
eral, CATHY constructs high quality phrases, representing
the areas and subareas on both levels. hPAM outputs un-
igrams that are fair at conveying the top-level topics when
considered jointly, but independently are topic-ambiguous
(e.g., ‘services’ for IR). hPAM’s second level subtopics are
generally more difficult to interpret, and some parent-child
relationships are not clearly observed. SpecClus tends to
generate phrases with good purity but unsatisfactory cover-
age and phraseness (e.g., ‘querying spatial’ for DB).

5.3.2 Word and Topic Intrusion User Study
To quantitatively measure topical phrase quality, we in-

vited people to judge the topical phrases generated by the
different methods. Since the DBLP dataset generates topics
in computer science, we recruited 9 computer science grad-
uate students - who could thus be considered to be very
knowledgeable judges - for a user study. We first describe

timal values of mixture prior between supertopic and subtopic
are 1.5 and 1.0 respectively. The mixture prior over topics in the
same level is optimal at 1.0 for both levels. The optimal prior for
topic distribution over terms is 0.01.
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Figure 1: Each method generates a hierarchy. For each method, we show the subtrees rooted at Level 2 that are the most likely to
represent the topics of Information Retrieval and Databases. The ordering of words in each phrase are determined by the most frequent
ordering in the documents, and two phrases only differeing in plural/single forms are shown only once.

the two tasks administered in the user study, and then dis-
cuss the obtained results.

In order to evaluate the quality of the generated topical
phrases, we adapt two tasks from Chang et al. [6], who
were the first to explore human evaluation of topic models.
Our first task is Topic Intrusion, which tests the quality of
the parent-child relationships in the generated hierarchies.
Our second task is Phrase Intrusion, which evaluates how
well the hierarchies are able to separate phrases in different
topics. Both tasks are depicted in Figure 2.
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Figure 2: Examples of user study questions. In the Topic Intru-
sion task (left), participants are asked to select which child topic
does not belong to the given parent topic (Child topic 1). In
the Phrase Intrusion task (right), participants are asked to select
which phrase does not belong with the others (Question 1: ‘logic
programs’; Question 2: ‘natural language’)

Topic Intrusion Task: Participants are shown a parent
topic t and T candidate child topics. T−1 of the child topics

are actual children of t in the generated hierarchy, and the
remaining child topic is not. Each topic is represented by its
top 5 ranked phrases. Participants are asked to select the
intruder child topic, or to indicate that they are unable to
make a choice.

Phrase Intrusion Task: Participants are shown T phrases.
T − 1 of the phrases come from the same topic and the re-
maining phrase is from a sibling topic. Each phrase is a
top-5 ranked phrase in the topic which it represents. Partic-
ipants are asked to select the intruder phrase, or to indicate
that they are unable to make a choice.

For the user study we set T = 4, and asked participants
80 Topic Intrusion questions and 130 Phrase Intrusion ques-
tions. Questions are generated from the hierarchies con-
structed by each of the methods. We sample questions from
each hierarchy in a uniform way, drawing equally from all
topics in each level.

We then calculate the agreement of the user choices with
the actual hierarchical structure constructed by the various
methods. We consider a higher match between a given hier-
archy and user judgment to imply a higher quality hierarchy.
For each method, we report the average percent of questions
answered ‘correctly’ (matching the method), as well as the
average percent of questions that users were able to answer.

Since the hPAM and hPAMrr hierarchies had one fewer
level than other methods, we present two analyses. Table 2
presents the results from the full set of questions, except the
questions generated by hPAM and hPAMrr (4 Levels), and
the results from only those questions taken from the shared
levels of every method’s hierarchies (3 Levels).



Table 2: User study results, for 3 level and 4 level hierarchies.
Higher values indicate a higher quality constructed hierarchy

Topic Intrusion Phrase Intrusion

3 Levels Correct Answered Correct Answered

hPAM 34.4% 75.6% 38.8% 78.9%
hPAMrr 32.2% 72.2% 47.8% 77.2%
SpecClus 38.9% 65.6% 36.1% 77.2%
CATHYcp 78.9% 97.8% 57.8% 90.0%
CATHY 82.2% 98.8% 57.2% 88.9%

4 Levels Correct Answered Correct Answered

SpecClus 34.4% 68.3% 32.9% 77.4%
CATHYcp 61.7 % 96.7% 56.7% 88.5%
CATHY 78.3% 97.8% 54.1% 89.3%

For the Topic Intrusion task, CATHY outperforms all
non-CATHY methods by a large margin. CATHY does
slightly better than CATHYcp in the 3 level hierarchy, and is
significantly better in the 4 level hierarchy, suggesting that
participants found the phraseness and completeness crite-
ria to be helpful. SpecClus slightly outperforms hPAM,
because hPAM generates broad unigrams with good cov-
erage, which makes the parent-child relationships difficult
to identify, while SpecClus yields phrases with better purity
which, when considered jointly, represent a topic more suc-
cessfully. Participants answered more questions generated
by the hPAM variations than by SpecClus, which, combined
with the resulting accuracies, suggests that hPAM generated
the least well-separated hierarchy (even with reranking).

CATHY and CATHYcp outperform other methods com-
parably in the Phrase Intrusion task. As hPAM favors high
coverage phrases which are often topic-ambiguous, it posted
a low performance. hPAMrr considers phrase purity as well
as topical coverage, and therefore performs much better on
this task. SpecClus favors purity, and thus is more likely
to generate seemingly unrelated high ranked phrases in the
same topic, which is reflected here by its poor performance.
Once again, participants were more likely to answer ques-
tions generated by the CATHY variations than by any of
the other three methods.

5.4 Topical Hierarchy of Book Titles
In this section, we work with the Library dataset. Since

the book titles are labeled with their subjects, we examine
how well a high quality topical phrase can predict its cat-
egory, and vice versa. For this, we construct a hierarchy
and measure the coverage-conscious mutual information at
K (CCMIK) of the labels with the top level branches. Our
evaluation is based on [24] but we modify their definition of
mutual information to also depend on coverage because we
represent topics with phrases.

As we saw in Section 5.3 that CATHY generally performs
equal to or better than CATHYcp, and hPAMrr similarly
outperforms hPAM, we simply compare the performances
of CATHY, hPAMrr, and SpecClus, with 6 topics (k = 6).
For each method, we do multiple runs for various values of
K (the number of top-ranked phrases per topic considered).
To calculate CCMIK , we label each of the top K phrases
per topic with the topic in which it is ranked highest. We
then check if each title contains any of these top phrases.
If so, we update the number of events “seeing a topic t and
category c” for t = 1 . . . k, with the averaged count for all
those labeled phrases in the title; otherwise we update the

number of events “seeing a topic t and category c” for t =
1 . . . k uniformly, where c is the category label for the title.
Finally, we compute coverage-conscious mutual information
at K:

CCMIK =
∑
t,c

p(t, c) log2
p(t, c)

p(t)p(c)

Figure 3 shows CCMIK for each method, K∈ [1, 100].
Since CCMIK considers the coverage of a phrase as well
as its mutual information with a category, its value gener-
ally grows withK. Both CATHY and SpecClus demonstrate
this by slowly improving over time, although CATHY is con-
sistently much better at differentiating the categories as K
increases. hPAMrr prefers unigrams with high coverage, and
thus hits an asymptote almost immediately because it is un-
able to improve on the performance of the first few phrases.
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Figure 3: CCMIK values for various methods (methods in legend
are ordered by performance, high to low)

5.5 On Defining Term Co-occurrence
Term co-occurrence can be defined in many ways: two

term may be said to co-occur if they appear in the same
sentence, same paragraph, or in a window of N unigrams
of each other [23]. Because we worked with collections of
short texts, we consistently defined term co-occurrence for
our framework to mean co-occurring in the same document.
However, most traditional methods of keyphrase extraction
only consider phrases to be sequences of terms which ex-
plicitly occur in the text. We ran a variation of CATHY
which emulates this behavior by defining two terms to co-
occur only if they are actually adjacent in the same title,
and constructed a hierarchy on the DBLP dataset.

Using adjacency co-occurrence results in a sparser network
and lowers the estimated phrase topical frequencies at every
level. As can be seen in Figure 4, we observe lower quality
phrases in the adjacency-based hierarchy (e.g., the topics
which are supposed to be represented by the two rightmost
children are very difficult to identify.)

6. CONCLUSION
In this work, we address the problem of constructing a

topical hierarchy from short, content-representative texts,
where topics are represented by ranked lists of phrases. We
design a novel phrase mining framework to cluster, extract



association rules, large scale, mining association rules, 
gene expression data, mining frequent 

association 
rules, mining 
association 
rules, rough 
sets, discovery 
rough set 

mining frequent, 
mining frequent 
itemsets, mining 
patterns, mining 
sequential 
patterns 

large scale, gene 
expression data, 
large datasets, 
mining positive 
negative, large 
data sets 

large graphs, 
pattern 
discovery, 
discovering 
patterns, 
massive sets,  

a"subtopic"in"data"mining"by"CATHY"on"co5occurrence"network"

mining association rules, discovering patterns, incremental 
maintenance, efficient frequent, mining gene 

mining association 
rules, finding 
frequent, mining 
closed, mining 
sequential, mining 
associations 

incremental 
maintenance, 
views, 
computing, 
incremental, 
monitoring 

based, 
association, 
multi-
dimensional, 
disjunctive, 
negative  

problems, 
finding 
transactions, 
revisited, 
closed, 
preferences 

a"subtopic"in"data"mining"by"CATHY"on"colloca;on"network"

association rules / large scale / mining association 
rules / gene expression data / mining frequent 

association 
rules / mining 
association 
rules / rough 
sets / discovery 
rough set /  
large sets 

mining frequent / 
mining frequent 
itemsets / mining 
patterns / mining 
sequential 
patterns / closed 
frequent itemsets 

large scale / 
gene expression 
data / large 
datasets / mining 
positive 
negative / large 
data sets 

large graphs / 
pattern discovery / 
discovering 
patterns /  
massive sets / 
mining 
associations 

mining association rules / discovering patterns / 
incremental maintenance / efficient frequent / mining gene 

mining association 
rules / finding 
frequent / mining 
closed / mining 
sequential / mining 
associations 

incremental 
maintenance / 
views /
computing / 
incremental / 
monitoring 

based / 
association / 
multi-
dimensional / 
disjunctive / 
negative  

problems /
finding 
transactions /
revisited /
closed /
preferences 

Data Mining - Association Rules 

Figure 4: A level 3 topic and its level 4 subtopics, from hier-
archies constructed by CATHY on two different DBLP term co-
occurrence networks: document-based co-occurrence (top) and
adjacency-based co-occurrence (bottom). Document-based co-
occurrence yields better quality phrases, especially at lower levels

and rank phrases which recursively discovers specific topics
from more general ones, thus constructing a top-down topi-
cal hierarchy. A key aspect of our approach involves shifting
from a unigram-centric to a phrase-centric view in order to
consistently generate high caliber topics over multiple levels.
By evaluating our approach on two datasets from different
domains, we validate our ability to generate high quality,
human-interpretable topic hierarchies.

We would like to extend our framework to incorporate su-
pervised knowledge, either from user guidance or external
knowledge bases. We would also like to explore integrat-
ing advanced text mining and natural language processing
techniques, which would help us work with longer texts.
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