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Abstract—Supervised machine learning methods for classify-
ing spam emails are long-established. Most of these methods
use either header-based or content-based features. Spammers,
however, can bypass these methods easily—especially the ones
that deal with header features. In this paper, we report a novel
spam classification method that uses features based on email
content-language and readability combined with the previously
used content-based task features. The features are extracted
from four benchmark datasets viz. CSDMC2010, SpamAssassin,
LingSpam, and Enron-Spam. We use five well-known algorithms
to induce our spam classifiers: Random Forest (RF), BAGGING,
ADABOOSTM1, Support Vector Machine (SVM), and Naı̈ve Bayes
(NB). We evaluate the classifier performances and find that
BAGGING performs the best. Moreover, its performance surpasses
that of a number of state-of-the-art methods proposed in previous
studies. Although applied only to English language emails, the
results indicate that our method may be an excellent means to
classify spam emails in other languages, as well.

Keywords—Spam classification, machine-learning application,
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I. INTRODUCTION

Since the publishing of Spam! in 1998 [1], the menacing
onslaught of spam emails has grown exponentially. According
to a recent survey, the number of spam emails sent out in
March 2013 is about 100 billion [2]. This phenomenal quantity
is 98% more than that from the end of the previous quarter.
Among the drastic effects of spam emails are loss of indi-
vidual productivity and financial loss of organizations. Anti-
spammers, therefore, are putting forward efforts to prevent this
potential threat to today’s Internet.

Many studies agree that spam emails have attributable
patterns [3][4]. Recognizing this, spammers are constantly
introducing new techniques to obfuscate these recognizable
patterns to fend off supervised anti-spam filters. Therefore,
spam filtering is, and is likely to remain, an interesting machine
learning application. Typically, an email exhibits two types of
features: (i) header features and (ii) content-language features.
Using either set of features to detect spam email has its pros
and cons. For instance, Zhang et al. [5] empirically showed that
the performances of a handful of machine learning algorithms
are not satisfactory with text features. Lai and Tsai [6] found
similar results, too—according to their study, header features
have a lower total cost ratio than text features. Another typical
argument to support the use of header features is that they are
language independent (see, for example, [7] and [8]). However,

Metsis et al. [9] exploited a language independent, content-
based feature called term frequency (TF). Using this feature
with different variants of the Naı̈ve Bayes algorithm, they
found results that are better than those found by a number
of header-based methods. Likewise, studies are continuously
reporting improved results with email-text features (see Prab-
hakar and Basavaraju [10], and Ma et al. [11])—most of which
perform better than header features.

The proposed method utilizes text features that are long-
established such as frequency of spam words and HTML tags
as well as some that are new. The novelty of our work is
that we introduce language-centric features such as grammar
and spell errors, use of function words, presence of verbs and
alpha-numerics, TF·IDF, and inverse sentence frequency. In
addition, we use features related to message readability (e.g.,
reading difficulty indexes, complex and simple word frequency,
document length, and word length). The features are extracted
from four standard email datasets—CSDMC2010, SpamAs-
sassin, LingSpam, and Enron-Spam. The features are then
used by five well-known learning algorithms—Random For-
est (RF), BAGGING, ADABOOSTM1, Support Vector Machine
(SVM), and Naı̈ve Bayes (NB)—to induce binary classifiers.
From our extensive experiment, we find that the addition of
text and readability features significantly improves classifier
performance compared to that found with the commonplace
features alone. Another notable finding is that the classifier
induced by BAGGING performs the best on all of the datasets.
In addition, its performance surpasses that of a number of state-
of-the-art methods proposed in previous studies. Like Metsis
et al. [9], our features are language independent. Whereas we
derive the results solely from English emails, the proposed
approach may be an excellent means to classify spam emails
in any language.

The next section details the features used in this research.
Following that, we describe the learning algorithms, perfor-
mance evaluation measures, and datasets. In Section VI, we
report the experimental findings, and in Section VII we provide
some discussion of these results, especially as compared with
previous filtering methods. Finally, Section VIII concludes the
paper.

II. FEATURE SELECTION

Each email, in our experiment, is represented as (~x, y),
where ~x ∈ R

n is a vector of n attributes and y ∈ {spam, ham}
is the label of the email. In our study, we explored 40 attributes
to classify emails and therefore, n = 40. We have grouped



Groups Features

Traditional Features Spam Words HTML Anchors HTML Non-anchors HTML Tags

Text Features
Alpha-numeric Words Verbs Function Words TF·ISF

TF·IDF Grammar Errors Spelling Errors Language Errors

Readability Features

FI FRES SMOG FORCAST
FKRI Simple Word FI Inverse FI Complex Words

Simple Words Document Length Word Length TF·IDFcomplex
TF·IDFsimple

TABLE I: The list of features used to classify spams in our experiment.

these features into three subgroups: (i) traditional features, (ii)
text features, and (iii) readability features. The list of features
used in our experiment is shown in Table I. The notation used
in this section is “Xi : name = feature value”, where Xi is
used to label the graphs later in the paper, name is a descriptive
name, and feature value indicates the feature value calculation.
Some features are also normalized. These normalizations are
discussed where warranted.

A. Traditional Features

Below are descriptions of the four typical features for spam
classification that are used in our experiment.

1) Dictionary-based Features: The first feature in this
group is the frequency of spam words. The selection of
this feature is inspired by the interesting findings of Graham
[12]. He showed that merely looking for the word click in
the messages can detect 79.7% of spam emails in a dataset
with only 1.2% false positives. To exploit this feature, we
have developed a dictionary comprising 381 spam words1

accumulated from various anti-spamming blogs. We treated
each message as a bag-of-words and counted the frequency of
spam words in them as follows:

X1 : Spam Words = #Spam Words.

2) HTML Features: The frequency of HTML tags in emails
is a common means to classify spams. We have subdivided this
feature into three features: (i) frequency of anchor tags (i.e.,
number of close-ended tags <a> and </a>), (ii) frequency of
tags that are not anchors, anchor′ (e.g., <p> or <br>), and
(iii) total HTML tags in the emails (e.g., sum of (i) and (ii)). To
identify HTML tags in the emails, we used a Java HTML parser
called jsoup2. Each feature is normalized by the length of the
email, N, which is the number of sentences in the message.
The detailed HTML feature calculations are:

X2 : anchor =
#anchor tags

N
,

X3 : anchor′ =
#anchor tags′

N
, and

X4 : total HTML =
#anchor tags+#anchor tags′

N
.

B. Text Features

These novel (except for Verbs) features focus on various
aspects of the email text. These features into divided into two
subgroups: (i) Word-level Features and (ii) Error Features.

1http://cogenglab.csd.uwo.ca/sentinel/spam-term-list.html
2http://jsoup.org/download

1) Word-level Features: First, we considered the frequency
of alpha-numeric words in the emails. We found reasonable
evidence to select this feature during the development of
the spam word dictionary (See Section II-A)—many of the
dictionary entries are alpha-numerics. The apparent reasons for
this include that spammers often advertise menacing websites
by replacing literals of the legitimate website with numerics
and vice versa. This text feature is calculated as follows:

X5 : Alpha-numeric Words = #Alpha-numeric Words.

In their study, Orasan and Krishnamurthy [13] showed that
a verb Part-of-Speech (POS) feature can be a strong identifier
of junk emails; nonetheless, very few works have followed up.
We are, however, interested in this particular POS feature. We
used the Stanford POS Tagger3 to tag the POS of each word
in the emails and considered the frequency of verbs in each:

X6 : Verbs = #Verbs.

Third, we used the frequency of function words4 in the
emails as a feature. As the definition of function words varies
from task to task, we define them as follows: function words
are very frequent non-content-bearing words such as articles,
prepositions, adverbs, etc. We developed a stoplist function to
count the frequency of function words in the emails:

X7 : Function Words = #Function Words.

Fourth, we included another novel feature: TF·ISF, a simple
summation of the product of TF and ISF, where the prior is the
frequency of a term t in a message and the latter is its inverse
sentence frequency. TF of term t can be calculated as follows:

TFt = 1 + log(frequencyt), if frequencyt > 0, 0 otherwise,

while its ISF is:

ISFt = log N
SFt

,

where N is the message length and SFt is the number of
sentences with term t. Inverse sentence frequency is a relative
measure of whether the term is common or rare in a single
message. The TF·ISF of a message is calculated as follows:

X8 : TF·ISF =
∑

t TFt × ISFt, for all t in the message.

Our next feature in this group is TF·IDF which is similar
to TF·ISF except that the inverse document frequency, IDF,
measures whether a given term t is common or rare in an
entire dataset. The IDF of a term t in the message can be
found as follows:

IDFt = log D
DFt

,

3http://nlp.stanford.edu/software/tagger.shtml
4http://cogenglab.csd.uwo.ca/sentinel/function-word-list.html



where D is the total number of messages in the dataset and DFt

is the number of messages containing t. The TF·IDF feature is
then calculated as follows:

X9 : TF·IDF=
∑

t TFt × IDFt.

The feature is then normalized by taking its square root.

2) Error Features: The next three features are concerned
with the grammar and spelling errors present in the message.
For each message, we counted the frequency of grammar and
spelling errors using a Java API called LanguageTool5. By
summing up these two errors, we introduced another feature
named Language Errors:

X10 : Grammar Errors = #Nge,

X11 : Spelling Errors = #Nse, and

X12 : Language Errors = #Nte,

where Nge is the number of sentences with grammar errors, Nse

is the number of sentences with spelling errors and Nte denotes
the total number of sentences with language-based errors (i.e.,
Nte = Nge + Nse). This group of features, to the best of our
knowledge, is novel for spam classification. It is to be noted
that for training emails, this feature has been normalized re-
spectively for hams and spams; for the testing emails for which
the class label is unknown, traditional attribute normalization
is performed. Surprisingly, we get unsatisfactory results if we
use traditional attribute normalization for the training emails.

C. Readability Features

The second group of novel features that we use are
readability-based features. Readability deals with the difficulty
of reading a sentence, a paragraph, or a document. Two
important parameters to calculate readability are simple and
complex words. Simple words are those that have at most two
syllables while complex words contain three or more syllables.
Based on these two factors and others, five scores, among
many, are used as yardsticks to assess the readability of text.
In this section, we divided readability features further into two
subgroups: (i) Score-based Features and (ii) Frequency-based
Features.

1) Score-based Features: We measured the readability of
each message in the datasets using the five aforementioned
scoring methods. First, we used the Fog Index (FI) [14], which
is the most popular score to measure readability. The scores
of each message can be found as follows:

X13 :

FI = 0.4×
((∑

Words
N

)

+ 100×
(∑

Complex Words
∑

Words

))

.

Second, we used the Flesch Reading Ease Score (FRES)
[15], one of the oldest readability scores. The FRES of any
given message can be found as follows:

X14 : FRES =

206.835− 1.015×
(∑

Words
N

)

− 84.6×
(∑

Syllables
∑

Words

)

.

The SMOG index, when first published, was anticipated as
a proper substitute for FI due to its accuracy and ease of use
[16]. It is the third readability score used as a feature:

5http://www.languagetool.org/java-api/

X15 :

SMOG Index = 1.043×

√

30×
∑

Complex Words
N

+ 3.1219.

The FORCAST index was originally formulated to assess
the reading skills required by different military jobs without
focusing on running narratives [17]. The index, unlike others,
emphasizes the frequency of simple words. The following is
the way to calculate the FORCAST index of a message:

X16 : FORCAST Index = 20− W
10

,

where W is the number of simple words in a 150-word sample
of the text.

A second instalment of a readability index proposed by
Flesch and further investigated and modified by Kincaid [18]
is known as the Flesch-Kincaid Readability Index (FKRI). This
feature can be calculated as follows:

X17 : FKRI =

0.39×
(∑

Words
N

)

+ 11.8×
(∑

Syllables
∑

Words

)

− 15.59.

In addition, we have modified FI in two different ways
to give two additional features. We chose to modify FI only,
because empirical outcomes showed that these modifications
of FI provide better results than those of other scores.

First, in X13, in the place of complex words, we substituted
the frequency of simple words:

X18 :

FIsimple = 0.4×
((∑

Words
N

)

+ 100×
(∑

Simple Words
∑

Words

))

.

Second, we took the arithmetic inverse of FI of the
messages to get the feature Inverse FI:

X19 : Inverse FI = 1
FI

.

2) Frequency-based Features: We also considered the fre-
quency of Complex Words and Simple Words in the messages
as two more features:

X20 : Complex Words = #Complex Words, and

X21 : Simple Words = #Simple Words

Document Length, which has already been used in other
features for normalizing, is also considered as a feature in
our research. It simply denotes the number of sentences in a
message:

X22 : Document Length = #Sentences.

Word Length of a message is simply the average number
of syllables per word. This feature is calculated as follows:

X23 : Word Length =
#Syllables
#Words

.

Our last two features are the combination of TF·IDF, and
frequency of simple and complex words. While X9 deals with
the TF·IDF of any term t, our second last feature (TF·IDF)complex

deals with that of complex words. Finally, our last feature
(TF·IDF)simple considers the TF·IDF of simple words. The for-
mula to calculate these feature are given below:

X24 : (TF·IDF)complex =
∑

TFcomplex × IDFcomplex, and

X25 : (TF·IDF)simple =
∑

TFsimple × IDFsimple.



Learning Algorithms Parameters

Random Forest (RF)
Maximum Depth: Unlimited Number of Trees to be Generated: 10

Random Seed: 1

ADABOOSTM1
Number of Iterations: 10 Random Seed: 1

Resampling: False Weight Threshold: 100

BAGGING
Size of Bag (%): 100 Out of Bag Error: False

Number of Iterations: 10 Random Seed: 1

Support Vector Machine (SVM)

SVM Type: C-SVC Cost: 1.0
Degree of Kernel: 3 EPS: 0.0010

Gamma: 0.0 Kernel Type: Radial Basis
Epsilon: 0.1 Probability Estimates: False

Shrinking Heuristics: True

Naı̈ve Bayes (NB) Use of Kernel Estimator: False

TABLE II: Parameters of the learning algorithms used in this experiment.

As well, we used 14 more features that are calculated by
excluding stopwords from the features X1, X5, X6, X8, X13−
X21, and X23. In the graphs these features have labels ending
with a dot. It is noteworthy that the features X2, X3, and
X4 could not be extracted from the LingSpam and Enron-
Spam datasets as the related information was removed from
the messages by the dataset curators (refer to Table IV).

Since we analyzed the feature vectors for all the messages
in the datasets, we have found that the distribution of the most
of the feature values is not normal rather they exhibit either
positive or negative skewness. The effect of this skewness was
eliminated by using a logarithmic transformation of all the
feature values. Once log-transformed, the distribution becomes
normal. The newly found log values of any given feature
are then normalized by the highest transformed value of that
feature in the dataset; the resulting values are therefore in [0,1].

III. LEARNING ALGORITHMS

We used the well-known learning algorithms Random
Forest RF, Naı̈ve Bayes (NB), Support Vector Machine (SVM),
and two meta-learning algorithms viz. ADABOOSTM1 and
BAGGING to induce binary classifiers. What follow are the
reasons for choosing the algorithms in our experiment.

Among the learning algorithms, we have chosen Random
Forest (RF) for three reasons. First, it has been used by
a number of anti-spam filters because of its high spam-
classification accuracy (see, for instance, [7] and [19]). Second,
the algorithm runs efficiently on large data. Third and most
importantly, the learning is fast—which is desirable for any
live spam filter.

Our second algorithm, also an ensemble learning method,
is called ADABOOSTM1. Although an ensemble method, AD-
ABOOSTM1 is both simple and fast. The biggest advantage of
this ensemble method is that it is less susceptible to training-
data overfit. Last but not least, the algorithm has been reported
to perform better than Naı̈ve Bayes (NB) and Probabilistic
TF·IDF for text categorization tasks [20]. The reasons to
use bagging are primarily three. First, like ADABOOSTM1,
BAGGING is simple and fast. Note that the speed of learning
of this algorithm depends on the choice of the number of
random samples of training data. Second, it is less susceptible
to overfitting. Finally, it leads to improvements for unstable
classification algorithms like trees [21]. In this experiment,
RF has been chosen as the base algorithm for ADABOOSTM1
and BAGGING. Therefore, we name the classifiers generated

by these two algorithms BOOSTED RF and BAGGED RF, re-
spectively.

Support Vector Machine (SVM) is also a popular learning
algorithm for spam detection. However, from the work of
Zhang et al. [5], Lai and Tsai [6], Hu et al. [7], Qaroush et
al. [19], and Ye et al. [22], it is evident that the performance
of SVM is better with header features than with text features.

Like SVM, Naı̈ve Bayes (NB) is a widely-used learning
algorithm in the anti-spamming community. Benchmark anti-
spam tools developed by Lai and Tsai [6], Hu et al. [7],
Metsis et al.[9], and Qaroush et al. [19] use NB to generate
classifiers because the algorithm is simple yet powerful enough
to detect spams effectively. For instance, on many occasions,
with simple features like TF·IDF, NB even outperformed quality
learning algorithms like SVM.

The parameter setup for the learning algorithms used in
this experiment is presented in Table II.

IV. EVALUATION MEASURES

The evaluation of spam classification differs from many
other classification tasks. A significant number of previous
works rely on performance measures like precision, recall, F-
score, and accuracy [7][8][10][11][19]. However, even a poor
classifier can achieve overly-optimistic results on a skewed
dataset and appropriate performances on such datasets are
not reflected by the aforementioned measures. Because of the
presence of skewness in the datasets, cost-sensitive measures
like ham misclassification rate (FPR), spam misclassification
rate (FNR) and total cost ratio (TCR) [23] [24] are becoming
more popular. In addition, being a balanced measure that
combines both FPR and FNR, area under the ROC curve
(hereinafter, AUC) is also preferred by many [24]. Considering
these facts, we choose to report seven evaluation measures—
FPR, FNR, accuracy, precision, recall (or simply spam recall),
F-score, and AUC. The measures are explained below.

All of the measures reported in this paper depend on the
confusion matrix given in Table III. Precision is the fraction

Actual
Spam Ham

Prediction
Spam ns→s nh→s

Ham ns→h nh→h

TABLE III: Confusion matrix for spam classification problem.



Dataset Total Messages Spam Rate Text Pre-processed? Year of Curation

CSDMC2010 4, 327 31.85% No 2010

SpamAssassin 6, 046 31.36% No 2002

LingSpam 2, 893 16.63% Yes 2000

Enron-1 5, 172 29.00%

Yes 2006

Enron-2 5, 857 25.54%
Enron-3 5, 512 27.21%
Enron-4 6, 000 75.00%
Enron-5 5, 175 71.01%
Enron-6 6, 000 75.00%

TABLE IV: Brief description of the email datasets.

of spam predictions that are correct. Should the precision be
bigger, the probability of misclassifying a legitimate mail as
spam is smaller:

Precision = ns→s

ns→s+nh→s

.

Spam recall examines the fraction of spam emails being
recognized. A bigger spam recall points out that the probability
of misclassifying a spam as legitimate mail is smaller:

Recall = ns→s

ns→s+ns→h

.

F-score, simply, is the harmonic mean of precision and
recall:

F-score = 2×Precision×Recall
Precision+Recall

.

Accuracy, on the other hand, is the percentage of correctly
identified spams and hams:

Accuracy = nh→h+ns→s

nh→h+nh→s+ns→h+ns→s

.

FPR denotes the fraction of all legitimate messages classi-
fied as spams:

FPR = nh→s

nh→s+nh→h

.

In contrast, FNR is the fraction of all spams delivered to
the user inbox:

FNR = ns→h

ns→h+ns→s

.

Note that the lower the FPR and FNR, the better the
performance. Considering the situation where users might
accept spams to enter into their inbox but they do prefer their
hams not to end up in the spam-traps, a higher FPR is more
expensive than a higher FNR. To resolve this, we need a balance
between FPR and FNR, which is the AUC in this case. The
AUC is measured using the Receiver Operating Characteristics
(ROC) curves. The ROC curve is a 2-D graph whose Y-axis is
the true positive rate (which is indeed 1−FNR) and X-axis is
the FPR, and therefore depicts the trade-offs between the cost
of ns→h and nh→s.

V. DATASETS

A number of standard email datasets are publicly available
and widely used. In our experiment, we chose four of them:
(i) CSDMC2010, (ii) SpamAssassin, (iii) LingSpam, and (iv)
Enron-Spam. The reasons for choosing these datasets are
manifold. Firstly, emails in these datasets have been sent out
between 2000 and 2010. This provides an interesting test-bed
that characterizes the change of language of emails spanning
across a decade. Secondly, we are interested to evaluate our
method with spam-skewed datasets. The reason behind this
interest is because with ham-skewed datasets, even a poor

classifier can achieve good FPR by classifying most of the
emails, if not all, as hams (see, for example, Bratko et al. [24]).
Therefore, we include Enron 4-6 in our experiment. Thirdly,
we include LingSpam in our dataset because not only are its
hams domain-specific but also its excerpts are of scholarly
discussions on linguistics. As a result, we are expecting some
features, Error Features (see Section II-B2) in particular, to
be more useful for the LingSpam emails. Fourthly, we include
datasets that are not explored by many (e.g., CSDMC2010 and
Enron-Spam). Last but not least, the use of Enron-Spam gives
us an opportunity to work with hams coming from a user’s
personal inbox.

A. Description

CSDMC20106, among the four, is the latest collection of
emails. The spam rate of this dataset is reasonable—about
32%. Both hams and spams in this dataset are collected
randomly (i.e., not from any particular inbox). CSDMC2010
is relatively new and except for the ICONIP-2010 challenge
participants, this dataset has not been explored by many. In
contrast, SpamAssassin7 is one of the most popular public
datasets. Like CSDMC2010, the emails of SpamAssassin are
also collected randomly. In addition, the spam rate of this
dataset is almost equal to that of CSDMC2010. The LingSpam
dataset [25] is both the smallest and oldest dataset used in this
study. Moreover, its spam rate is smaller than the preceding
datasets—only about 17%. It is, however, the odd one out of
the four as the hams in this dataset are collected from the
discussions of a linguistics forum; the spams, on the other
hand, are collected randomly. Enron-Spam [9] is an email
collection comprising six different datasets each of which
contains ham messages from a single user of the Enron corpus.
Of the six datasets, the bulk of the emails in Enron 1-3 are
hams while the bulk of the emails in Enron 4-6 are spams.
This collection is very different compared to the others as the
hams of each dataset bear the characteristics of one individual.
In this paper, we experiment on each of these six datasets and
report the average performance. Table IV briefly outlines the
datasets used in this experiment.

B. Pre-processing

We noticed that spam emails have some features that can
easily distinguish them from hams. Therefore, to provide a
conservative estimate of our method’s performance, we follow
these pre-processing steps: First, symbols (like $ or ! signs)
or spam words (like porn, webcam, or lottery) are excluded

6http://csmining.org/index.php/spam-email-datasets-.html
7http://spamassassin.apache.org/publiccorpus/
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(a) The order of the features according to their importance for the
CSDMC2010 dataset.

ra
n
d
M

in
ra

n
d
M

e
a
n

ra
n
d
M

a
x

X
1
4
.

X
2
3
.

X
6

X
1
6

X
1
4

X
2
3

X
6
.

X
1
3

X
1
9

X
2
2

X
1
8

X
1
5
.

X
1
8
.

X
2
0
.

X
1
5

X
2
0

X
1
6
.

X
8
.

X
8

X
1
3
.

X
1
9
.

X
5

X
5
.

X
1
7

X
2
1
.

X
2
1

X
1
7
.

X
3

X
7

X
2
4

X
1
1

X
2

X
4

X
1
0

X
9

X
2
5

X
1
2

X
1

X
1
.

0

10

20

30

40

50

Importance of Features on SpamAssassin Dataset

Features

Im
p
o
rt

a
n
c
e
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(c) The order of the features according to their importance for the
LingSpam dataset.

Fig. 1: Feature importance on three datasets according to the Boruta algorithm.

from the subject field of the emails. Second, attachment
fields (if any) are excluded from the email texts. Third, non-
ASCII characters present in the email texts not only are spam
indicators but also the presence of such characters can change
the readability of the entire message. As readability is one of
our key features (see Section II-C), we remove the non-ASCII
characters from the messages as well.

VI. EXPERIMENTAL RESULTS

A. Feature Importance

In machine learning, the identification of features rel-
evant for classification is important, so is the observation
of results when features work in groups. This identification

and observation give us a set of features that are important
[26][27]. To measure feature importance, we use a feature
importance measuring algorithm named Boruta8 that uses a
wrapper around Random Forest. The details of the Boruta
algorithm are beyond the scope of this paper but can be found
in the study by Kursa and Rudnicki [26]. We applied the
algorithm on each of the datasets. Of note, due to limited
space, the analysis of feature importance for the six Enron-
Spam datasets are made available elsewhere9.

Figure 1 exhibits the boxplots created with Boruta for the
non-personalized email datasets. The Y-axis of each plot repre-

8http://cran.r-project.org/web/packages/Boruta/index.html
9http://cogenglab.csd.uwo.ca/sentinel/feature-importance.html



Baseline Baseline + Text

Feature

Baseline +

Readability

Features

All

RF 0.060 0.034 0.038 0.040

BOOSTED RF 0.062 0.028 0.028 0.030

BAGGED RF 0.055 0.023 0.023 0.020

SVM 0.022 0.037 0.023 0.027

NB 0.031 0.065 0.093 0.101

(a) FPR of different groups of features combined with the baseline for the CSDMC2010 dataset.

Baseline Baseline + Text

Feature

Baseline +

Readability

Features

All

RF 0.064 0.040 0.045 0.034

BOOSTED RF 0.071 0.029 0.034 0.026

BAGGED RF 0.061 0.026 0.028 0.022

SVM 0.055 0.063 0.050 0.052

NB 0.060 0.075 0.094 0.104

(b) FPR of different groups of features combined with the baseline for the SpamAssassin dataset.

Baseline Baseline + Text

Feature

Baseline +

Readability

Features

All

RF 0.041 0.019 0.023 0.017

BOOSTED RF 0.044 0.018 0.016 0.017

BAGGED RF 0.040 0.011 0.015 0.009

SVM 0.0004 0.012 0.020 0.014

NB 0.063 0.091 0.214 0.218

(c) FPR of different groups of features combined with the baseline for the LingSpam dataset.

Baseline Baseline + Text

Feature

Baseline +

Readability

Features

All

RF 0.404 0.164 0.245 0.174

BOOSTED RF 0.404 0.156 0.240 0.158

BAGGED RF 0.402 0.143 0.218 0.150

SVM 0.424 0.371 0.442 0.416

NB 0.408 0.304 0.376 0.336

(d) FPR of different groups of features combined with the baseline for the Enron-Spam dataset.

TABLE V: The effect of incrementing groups of features on spam classification for (a) CSDMC2010, (b) SpamAssassin, (c)
LingSpam, and (d) Enron-Spam Datasets. The FPRs that are not statistically significant compared to the comparable baseline are
written in italics.

sents feature importance (a measure specific to the algorithm)
while the X-axis represents feature labels (see Section II). The
features are sorted according to the ascending order of their
importance in determining class labels. The key finding in the
plots is that for all the datasets, the most important feature
is Spam Words (X1). Another interesting finding is that the
error features (see Section II-B2) are close in importance. In
addition, the TF·IDF of simple words (X25) and the HTML

features (X2 and X3, in particular) are important features for
CSDMC2010 and SpamAssassin emails (Figures 1a and 1b).
The relative position according to the importance of Alpha-
numeric Words (X5) is similar in all three datasets as is the
Verbs feature (X6). Interestingly, the function word feature
(X7) performed reasonably well—to the best of our knowledge
not many consider this as a spam detection feature. Except
TF·IDF of simple and complex words, most of the readability
features are on the left side of the graph—seeming to be
less important. Note that the significance of the readability
features becomes evident when we, next, investigate the feature
performance in groups.

We are also interested in reporting the importance of the
features in groups. To do this, we used the traditional features
(Section II-A1) as our baseline. These features are first used by

the algorithms to classify the emails. Then, we added the text
features and HTML features. As well, we added the readability
features with the baseline. FPR is chosen as the measure to
evaluate the classification. Figure 1 strongly suggests that the
traditional features are important for spam classification. The
interesting results shown in Table V, however, indicate the
effect of combining the features. One common attribute of
these results is that the ham misclassification rate decreases
as the baseline features are combined with text and readability
features. Another significant finding is that combining the read-
ability features with the baseline may not produce the optimal
result but combining these two groups of features with text
features (i.e., using the entire feature pool) improves the ham
misclassification rate. However, in that case the two exceptions
are CSDMC2010 and Enron-Spam. Also from the results, the
lowest FPR is achieved by the RFs—BAGGED RF, in particular.
Although the FPRs for SVM and NB seem promising, their
significantly low AUC indicates a possible overfit, especially
for the CSDMC2010 and LingSpam datasets. The results for
SVM and NB, therefore, are in doubt. The lowest FPR in Table
V is achieved by BAGGED RF using all features on the most
language homogeneous dataset, the LingSpam dataset.

Note that the FPRs that are not statistically significant



FPR FNR Accuracy % Precision Recall F-score AUC

RF 0.040 0.092 94.338 0.914 0.908 0.911 0.980

BOOSTED RF 0.030 0.089 95.124 0.934 0.912 0.922 0.980

BAGGED RF 0.020 0.107 95.193 0.953 0.893 0.922 0.988

SVM 0.027 0.390 85.718 0.913 0.610 0.730 0.792

NB 0.101 0.396 80.471 0.737 0.604 0.662 0.855

(a) Evaluation measures of the full-featured spam classifiers for the CSDMC2010 dataset.

FPR FNR Accuracy % Precision Recall F-score AUC

RF 0.034 0.093 94.707 0.923 0.907 0.915 0.979

BOOSTED RF 0.026 0.079 95.700 0.941 0.921 0.931 0.982

BAGGED RF 0.022 0.099 95.353 0.948 0.901 0.924 0.986

SVM 0.052 0.292 87.265 0.861 0.708 0.777 0.828

NB 0.104 0.558 75.373 0.660 0.443 0.529 0.847

(b) Evaluation measures of the full-featured spam classifiers for the SpamAssassin dataset.

FPR FNR Accuracy % Precision Recall F-score AUC

RF 0.017 0.162 95.817 0.907 0.838 0.869 0.978

BOOSTED RF 0.017 0.162 95.886 0.910 0.838 0.871 0.977

BAGGED RF 0.009 0.193 95.956 0.944 0.807 0.868 0.986

SVM 0.014 0.341 93.156 0.907 0.659 0.760 0.822

NB 0.218 0.277 77.186 0.402 0.723 0.515 0.831

(c) Evaluation measures of the full-featured spam classifiers for the LingSpam dataset.

FPR FNR Accuracy % Precision Recall F-score AUC

RF 0.174 0.072 91.681 0.887 0.927 0.906 0.960

BOOSTED RF 0.158 0.070 92.288 0.896 0.929 0.912 0.956

BAGGED RF 0.150 0.080 92.521 0.910 0.919 0.914 0.972

SVM 0.416 0.379 78.350 0.836 0.620 0.627 0.602

NB 0.336 0.302 73.344 0.680 0.697 0.686 0.750

(d) Average evaluation measures of the full-featured spam classifiers for the Enron-Spam
dataset.

TABLE VI: Performances of the classifiers on (a) CSDMC2010, (b) SpamAssassin, (c) LingSpam, and (d) Enron-Spam Datasets.

compared to the comparable baseline are written in italics.

B. Classification Performance Evaluation

Treating each dataset independently, the real-valued fea-
tures are extracted from each email of each dataset. Then, using
a conventional stratified 10-fold cross-validation approach,
five classifiers are generated using the five algorithms. The
classifiers are then evaluated. In a K-fold cross-validation, the
original dataset is randomly partitioned into K equal-sized folds
or subsets. Then each classifier is trained on K − 1 folds
and evaluated on the remaining fold. Stratification means that
the class (i.e., ham or spam) in each fold is represented in
approximately the same proportions as in the full dataset. The
cross-validation process is then repeated until each of the K

folds is used exactly once as the validation data. The final
estimation of the classifier is the average of the K results from
the folds.

Table VI shows the performance of the learned classifiers
on spam email classification. The most striking attribute of
this data is that the best ham misclassification rate is achieved
by the BAGGED RF classifiers. In contrast, the best spam
misclassification rate is attained by BOOSTED RF. To decide
the best, we then refer to a balanced measure of the two:
the AUC. According to the data shown in Table VI, BAGGED

RF performs the best of all because it has the better AUC.
A further indicator of the supremacy of BAGGED RF over
the others can be found in Table VIc—its best FPR comes
from LingSpam indicating that it performs best at identifying
domain-specific hams. The interesting competition between
BAGGED RF and BOOSTED RF continues on precision and

recall. For all four datasets, BAGGED RF achieves the best
precision while the best recall is scored by BOOSTED RF.
For two datasets, SpamAssassin and LingSpam, BOOSTED

RF achieves the best F-score. On the other hand, BAGGED

RF ties with BOOSTED RF for CSDMC2010; for Enron-Spam
it is BAGGED RF that attains the best F-score. Recall that,
CSDMC2010 and SpamAssassin have similar characteristics
as well as spam rates (see Section V). This is complemented
by the results in Tables VIa and VIb. The data show that
except for the SVM classifiers, others have similar FPRs. When
it comes to accuracy, BAGGED RF again outperforms the other
algorithms—the only exception is the SpamAssassin dataset.

Compared to the preceding results, the performances of
SVM and NB are not satisfactory. Attaining very low FPR with
a low AUC by SVM for CSDMC2010 and LingSpam indicates
a possible training overfit. The reasons for this possible overfit
are yet to be investigated. On the other hand, we examined the
correlation among the features. It is evident that the features
have inter-dependency10—which contradicts the independence
assumption of the NB algorithm and can be a reason for the
algorithm’s poor classification performance.

The data in Table VId describe the performance of our
method on the Enron-Spam dataset. The most intriguing find-
ing is that on this dataset, the classifiers’ FNRs are remarkably
low. Inevitably, the FPRs of the classifiers on the dataset are the
poorest. Although the AUC is still reasonable, the results are
not quite as good as we expected. This phenomenon confirms
that for personalized email data, our approach misclassifies

10http://cogenglab.csd.uwo.ca/sentinel/sentinel-attribute-correlations.html



FPR FNR Accuracy % Precision Recall F-score AUC

RF 0.187 0.320 71.411 0.796 0.714 0.731 0.830

BOOSTED RF 0.159 0.329 71.510 0.805 0.712 0.732 0.843

BAGGED RF 0.125 0.369 69.473 0.809 0.695 0.713 0.855

SVM 0.059 0.578 55.772 0.799 0.558 0.570 0.681

NB 0.176 0.634 48.529 0.712 0.485 0.497 0.645

(a) Classifiers trained on ham skewed Enron 1-3 and tested on spam skewed Enron 4-6.

FPR FNR Accuracy % Precision Recall F-score AUC

RF 0.458 0.077 64.494 0.808 0.645 0.661 0.865

BOOSTED RF 0.445 0.069 65.709 0.815 0.657 0.673 0.887

BAGGED RF 0.379 0.061 70.793 0.834 0.708 0.723 0.908

SVM 0.842 0.028 37.833 0.763 0.378 0.321 0.564

NB 0.734 0.089 44.048 0.732 0.440 0.425 0.717

(b) Classifiers trained on spam skewed Enron 4-6 and tested on ham skewed Enron 1-3.

TABLE VII: Performances of the classifiers on Enron-Spam.

a lot of legitimate emails. Two other notable aspects of
the reported data are that on the Enron-Spam collection the
classifiers have (i) the best accuracy and (ii) the poorest recall.

From the results of Table VI, it can be seen that except
for Enron-Spam, the FPRs of the classifiers are much better
than their FNRs. The most likely cause for the classifiers
labelling hams more correctly than spams is that CSDMC2010,
SpamAssassin, and LingSpam are ham skewed (Table V),
To see whether the training on a skewed dataset affects the
overall performance of the classifiers, we further tested with
the Enron-Spam dataset. We first trained the classifiers with
Enron 1-3 and tested them on Enron 4-6. And then, we trained
the classifiers with Enron 4-6 and tested them on Enron 1-3.
It is evident from the data in Table VII that training on a ham
skewed dataset results in improved FPR while training on a
spam skewed dataset brings about better FNR. A significant
change to spam recall has also been observed from the results
as spam recalls listed in Table VIIa are better than that in Table
VIIb. In other words, the results suggest that no matter how we
train our classifiers, either with spam or ham skewed training
data, we need our test set to contain more spams than hams
to get better spam recall. This finding is significant because
a low recall results in low F-score and AUC. Overall, from
this particular experiment, we can say that to observe the true
performance of spam classifiers, reported work should test their
system on a balanced dataset.

VII. DISCUSSION AND RELATED WORK

In this section, our results are compared with some of
the related work. Of the references mentioned throughout
this paper, we only compare our results with the commen-
surate ones—those that used the same dataset. Moreover, the
compared results are evaluated with a student t-test with a
significance level set to 5% (i.e., α = 0.05) to report if the
differences are significant.

We have mixed results for the CSDMC2010 dataset.
Qaroush et al. [19], for instance, investigated the performance
of several learning algorithms on this dataset. They concluded
that RF outperforms the rests. The reported spam recall in
their paper is 0.958, which is significantly better than what we
found (0.912) (Table VIa). Whereas their precision is similar to
that of our approach, because of their high recall, their 0.958
F-score also outperforms our F-score of 0.922 (Table VIa).

Surprisingly, we outperform them if we do a cost-sensitive
analysis of our data. The AUC that we found for the dataset
is 0.988 (Table VIa) which is better than what they found
(0.981). An SVM-based spam filter developed by Yang et al.
[28], on the other hand, reported 0.943 precision, 0.965 recall,
and a promising AUC of 0.995. Among the three measures,
we only obtained a better precision. Their second anti-spam
filter uses a an NB classifier. This filter, interestingly, achieved
100% recall. Its precision of 0.935 and AUC of 0.976, however,
was outperformed by our approach (Table VIa). Note that, the
differences in the results are statistically significant.

By using 328 features, the filter developed by Ma et al.
generates a Neural Network classifier. On the SpamAssassin
dataset, they reported that both their precision and accuracy
was 0.920. On the other hand, our approach achieved a
0.948 precision and 0.957 accuracy. Both of these results are
statistically significant. Another Neural Network based filter
developed by Srisanyalak and Sornil [29] uses immunity-
based features from emails. The filter has been reported to
be accurate 92.4% of the time. Our reported accuracy is
better than this (Table VIb). The phenomenal FPR and FNR

achieved by the filter developed by Bratko et al. (FPR=0.001
and FNR=0.012) indicates that our approach needs further
improvement in these measures; our reported FPR and FNR

are 0.023 and 0.079, respectively (Table VIb).

From previous studies, we found that the performance of
the filters are relatively low on the LingSpam dataset. Prab-
hakar and Basavaraju [10], for instance, applied K-NNC and a
data clustering algorithm called BIRCH on this dataset. Their
filter achieved 0.698 precision, 0.637 recall, 0.828 specificity,
and an accuracy of 0.755. In contrast, the data in Table VIc
show that our approach has a precision of 0.944 with 0.838
recall, 0.990 specificity (1 − FPR), and 0.960 accuracy. Our
reported AUC on LingSpam also outperformed that reported by
Cormack and Bratko [30]; our AUC of 0.986 is significantly
better than their AUC of 0.960. The recall we have on this
dataset is much better than that reported by Yang et al. [28]; the
precisions, however, are similar. Their NB-based filter achieved
0.943 precision and 0.820 recall. Surprisingly, the AUC of their
filter (e.g., 0.992) significantly outperformed the AUC of our
approach (Table VIc).

As mentioned in Section VI-B, our results with the Enron-
Spam dataset are not satisfactory because of the properly
balanced property of the dataset. The curators of the dataset,



however, reported a spectacular spam recall of 0.975 [9] while
our best spam recall on the dataset is 0.929 with BOOSTED RF.
Moreover, their reported ham recall is 0.972; ours is a mere
0.842 (Table VId). However, we have recently surpassed the
results reported by Metsis et al. [9] using an anti-spam filter
named SENTINEL [31] that we have developed using the ideas
presented in this paper.

VIII. CONCLUSIONS

To sum up, we consider the task of email classification as
a supervised machine-learning problem. The novelty of this
work is the use of a set of features related to the readability
of email texts. Because the features are language-independent,
the method reported in this paper is potentially able to classify
emails written in any language. The aforementioned features as
well as the traditional ones are used to generate binary classi-
fiers by five well-known learning algorithms. We then evaluate
the classifier performances on four benchmark email datasets.
The evidence from this study suggests that although traditional
features are individually more important than the other feature
types, the combination of all of the features produces the
optimal results. Extensive experiments also imply that classi-
fiers generated using meta-learning algorithms perform better
than trees, functions, and probabilistic methods. Finally, we
compare the results of our method with that of many state-
of-the-art anti-spam filters. Although the performance of our
method is not always superior to other filter-dataset instances,
we find that our approach surpasses a number of them. Taken
together, the results suggest that the method described in this
paper can be a good means to classify spam emails.

Because our results suggest that meta-learning algorithms
perform the best, further tests should be carried out to see
the performance of classifiers generated by stacking several
algorithms.
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