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ABSTRACT

Outlier detection and ensemble learning are well established
research directions in data mining yet the application of en-
semble techniques to outlier detection has been rarely stud-
ied. Here, we propose and study subsampling as a technique
to induce diversity among individual outlier detectors. We
show analytically and experimentally that an outlier detec-
tor based on a subsample per se, besides inducing diversity,
can, under certain conditions, already improve upon the re-
sults of the same outlier detector on the complete dataset.
Building an ensemble on top of several subsamples is further
improving the results. While in the literature so far the intu-
ition that ensembles improve over single outlier detectors has
just been transferred from the classification literature, here
we also justify analytically why ensembles are also expected
to work in the unsupervised area of outlier detection. As a
side effect, running an ensemble of several outlier detectors
on subsamples of the dataset is more efficient than ensembles
based on other means of introducing diversity and, depend-
ing on the sample rate and the size of the ensemble, can be
even more efficient than just the single outlier detector on
the complete data.
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1. INTRODUCTION

An outlier is “an observation (or subset of observations)
which appears to be inconsistent with the remainder of that

*This work was done while the author was on leave of ab-
sence from Ludwig-Maximilians-Universitdt Miinchen, Ger-
many.

JrThis work was done while the author was on sabbatical
leave from University of Sao Paulo, Sao Carlos, Brazil.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

KDD’13, August 11-14, 2013, Chicago, Illinois, USA.

Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

set of data” [6]. Detecting outliers is an important task in
many practical applications. Some applications of outlier
detection, such as detecting measurement errors, are mostly
concerned with removing the outliers from the data as a
form of “noise”. Other applications, such as credit card
abuse detection, or the identification of unusual measure-
ments in scientific data, are concerned with finding outliers
because their deviating behavior from the rest of the data
may require specific actions or provide opportunities for new
insights.

Various approaches to outlier detection have been pro-
posed, based on different notions of outliers, or targeted
towards specific applications that require the identification
of outliers. Here, we are interested in unsupervised, non-
parametric outlier detection methods that assign a score to
each data object and thus allow a ranking of objects accord-
ing to their degree of outlierness.

Parametric, statistical approaches [6,35] fit certain distri-
butions to the data by estimating the parameters of these
distributions from the given data. A problem with these ap-
proaches is that distribution parameters such as mean, stan-
dard deviation, and covariances are rather sensitive to the
presence of outliers. Possible effects of outliers on the param-
eter estimation have been termed “masking” and “swamp-
ing”. Outliers can mask their own presence by influencing
the values of the distribution parameters (resulting in false
negatives), or swamp inliers to appear as outlying due to the
influenced parameters (resulting in false positives) [6,19].

Non-parametric approaches do not assume a specific dis-
tribution of the data, but estimate (explicitly or implic-
itly) certain aspects of the probability density. Non-para-
metric methods include the well-known “distance-based” and
“density-based” methods. Both distance-based and density-
based methods basically aim at providing a rather simple
estimate of the density around points, which can be seen
as an approximation of statistical kernel density estimates.
Distance-based methods such as DB-outlier [25] and its vari-
ants are based on the k nearest neighbor (kKNN) distances
[5,34], trying to find so-called global outliers as points that
are, roughly speaking, far away from the rest of the data.
Density-based methods such as LOF [10] and its variants
try to find so-called local outliers as points that are, roughly
speaking, located in an area of relative low density com-
pared to their kNN (intended to indicate points that are
outliers with respect to the nearest mode in the data dis-
tribution). The density around points in these methods is
also estimated based on kNN distances. One problem with
distance-based and density-based methods is that they can



also suffer from effects similar to masking and swamping,
due to the simplicity of (and thus error in) the density es-
timates. Another problem is the typically high runtime of
these approaches, due to the fact that their computation in-
cludes at least finding the kNN of each data point (resulting
in an at least quadratic complexity w.r.t. the database size).

In this paper, we address both problems of distance-based

and density-based methods. We propose and study a general

approach to improve both the quality and the performance
of such outlier detection methods by combining into an en-
semble results of a base method on subsamples of the data.

Previous work on outlier ensembles is very limited and only

shows empirically that ensembles of outlier detectors have

the potential to improve the quality, compared to that of
their base methods [30,36], at an increased runtime cost.

Our work is novel and advances the area of outlier detec-
tion in the following respects:

e We argue theoretically and demonstrate empirically that
it is possible to construct ensemble members for outlier de-
tection methods which perform individually already bet-
ter than the base method, in general.

e Combining those outlier detectors into an ensemble ren-
ders the performance gain not only more robust but can
improve the performance even further.

e At the same time, when using small sample sizes for the
ensemble members, we can gain considerable speed-up in
runtime compared to running a standard ensemble and,
for small ensemble sizes, even compared to running the
base method on the whole data set.

e The proposed principle is fundamental and flexible. It
does not rely on specific data types. It can be combined
with various conventional outlier detection techniques.
The rest of the paper is organized as follows: We dis-

cuss related work on outlier detection and ensembles for out-

lier detection (Section 2). We provide theoretical reasoning
to support outlier detection ensembles in general and the

claimed properties of our method in particular (Section 3).

We provide experimental results to support our claims em-

pirically (Section 4). We conclude the paper in Section 5.

2. RELATED WORK

The distance-based notion of outliers (DB-outlier) [25] was
the first database-oriented approach in the area of unsuper-
vised outlier detection, which initiated a new line of research
on this topic in the data mining community. Variants of DB-
outliers consider the distances to the k nearest neighbors of
each object and use these distances to rank the objects [34],
or, they use the sum of distances to all points within the set
of kNN (called the “weight”) as an outlier degree [5]. These
methods are also called global methods in that the com-
puted outlier scores represent global density scores for each
point. The so-called local methods, e.g. LOF [10], consider
instead local density scores, which are ratios between the
density around an object and the density around its neigh-
boring objects. Variants of the local outlier model include
LoOP [27], and LOCI [33]. Also the distance-based method
LDOF [44] is related in reasoning about local comparisons.
It has been shown recently [37], however, that the differ-
entiation between global and local methods is not strictly
dichotomous but that there are degrees of locality.

Much research has aimed at improving the efficiency of
unsupervised outlier detection by algorithmic techniques, for
example based on approximations or improved pruning tech-

niques for mining the top-n outliers [4,7,22,23,26,42]. An
analysis of such efficiency improving techniques for outlier
detection algorithms has been provided by Orair et al. [32].
These techniques, however, do not aim at improving the ap-
proximations of the underlying statistical notion of outlier-
ness. They only approximate a specific algorithmic model.

Ensemble techniques, on the other hand, have the poten-
tial to improve the performance of their components in terms
of the quality of the detected outliers, rather than in terms
of runtime (but we will show in this paper that it is even
possible to gain performance improvements when construct-
ing certain types of outlier ensembles). The first approach
to improve outlier detection by ensemble techniques, based
on “feature bagging”, was proposed by Lazarevic and Ku-
mar [30], combining different results of the same algorithm
(namely LOF [10]) applied to different, randomly selected
feature subsets. Feature bagging is a common procedure to
induce diversity of ensemble members in ensemble classifi-
cation [11] or ensemble clustering [8,14,40].

Subsequent research on outlier detection ensembles fo-
cused on the issue of comparability of scores for score com-
binations, using Sigmoid functions and mixture modeling
to fit outlier scores, provided by different detectors, into
comparable probability values [17], or scaling by standard
deviation [31], or statistical reasoning about score distri-
butions [28], enabling the combination of different outlier
detection methods into one ensemble. Schubert et al. [36]
proposed a similarity measure to appropriately compare dif-
ferent outlier rankings (based on scores) and to allow for the
assessment of the diversity of different outlier detectors. As
an application, they propose a greedy ensemble approach,
demonstrating the importance of diversity for the perfor-
mance of an ensemble. In all these papers, although outlier
detection ensembles have been discussed and improved, no
new method of inducing diversity has been pursued.

Except for feature bagging [30], all other existing ensem-
ble methods for outlier detection [17,28, 31, 36] are meta-
methods and could be used on top of our sample-based
method (or on top of feature bagging, as in [28,31,36]). They
do not propose original means to induce diversity when using
a selected base outlier detection method.

In general, while the motivation for ensemble methods
for outlier detection is borrowed from the rich tradition in
the literature on supervised ensemble learning [11,12,21,41],
the theoretical foundation for ensemble learning in the un-
supervised setting is far less mature. The same holds true
not only for outlier detection ensembles but also for cluster-
ing ensembles despite the far more abundant literature on
practical approaches in that area [18]. Although the prob-
lem setting is considerably different, let us finally note that
sampling has been used in ensemble clustering to induce
diversity. Different subsamples of the data set have been
clustered and the resulting clusterings were combined into a
consensus clustering [13,16,20,39].

3. OUTLIER DETECTION ENSEMBLES
BASED ON SUBAMPLING

In this section, we will discuss the potential benefits of
using outlier detection ensembles based on subsampling.

Previous approaches using ensemble learning for outlier
detection [17,28, 30, 31, 36] transferred techniques without
any theoretical foundation of why, what has a clear theoret-



ical background in supervised learning, should also work in
unsupervised outlier detection. Such a view can be loosely
argued for when we consider outlier detection methods as
“classifiers”. When assuming that a threshold on outlier
scores is used to distinguish between outliers and inliers, we
can view the outlier method as classifying all objects into
one of these two classes: outliers and inliers — even though,
no labels are used in the “training” phase when the model
(ranking) is built. If we succeed to construct diverse enough
outlier detectors for the same data set, we can hope to im-
prove the overall performance over the individual members
by combining them into an ensemble. The “generic” argu-
ment given is that all the ensemble members are commit-
ting errors but on different cases, if the members are inde-
pendent, i.e., diverse, or, in other words, if the errors are
uncorrelated. While such a “generic” view may potentially
explain some of the performance gains, we will show in the
following subsections that there are more specific reasons for
why (under some general assumptions) an ensemble of out-
lier detection methods can improve the performance over its
individual members.

3.1 Benefits of Ensembles for Outlier Detec-
tion Based on Density Estimates

In this paper, we are focusing on distance-based and densi-
ty-based outlier detection methods, which, as discussed in
the introduction, compute outlier scores that are based, im-
plicitly or explicitly, on some form of density estimates. One
can view these methods as trying to identify the outliers in
a given data set X with respect to an unknown probability
density f, which represents the process that has “generated”
the majority of the data set (at least the inliers). The data
set X itself can be viewed as a sample drawn from the true,
but unknown underlying density distribution, and the meth-
ods try to estimate the density f(z) around points x using
a more or less “rough” density estimate fx (z) (in order to
compute outlier scores in some way).

Assuming the correctness of the underlying outlier model
of the methods, it is clear that the quality of a method’s
result depends on the quality of the density estimate fx(x)
and that the results will improve if the estimate can be im-
proved. For this case, we can show formally that a diverse
ensemble of such outlier detectors does in fact show an im-
proved expected performance over the individual ensemble
members, under some general conditions.

Given a true, smooth p.d.f. f(z) and a data set X, we can
express and estimate fx (z) of f(x) based on X as:

fx(@) = f(z) +vx(z)

where vx () is a random variable describing the error of the
estimate due to the finite sample.

The quality of the estimate f of f decides over success and
failure of the outlier detection. However, the density esti-
mates used by the considered outlier detection algorithms
may not be reliable and stable in all regions of the data
space, due to the natural intrinsic randomness associated
with a single sample that the data set represents. If we are
able to obtain multiple density estimates for each point x
(e.g., as we propose via subsamples), we can obtain more
reliable and stable density estimates by averaging the mul-
tiple density estimates for each point. The rationale for this
is the following: The output of outlier methods is a ranking
of all points x in terms of outlier scores that, in essence,

depends on the ranking of the points according to fx ().
Ideally, we want a ranking of the points x according to f(x).
If we have multiple density estimates for each point that
we average, we can consider the estimate itself as a random
variable and averaging' these estimates for each point gives
us the expectation of this variable as:

E{fx ()} E{f(2)} + E{vx(z)}
f(@) + E{vx ()}

In this formulation, one can clearly see that the ranking of
objects w.r.t. E{fx(z)} is the same as the ranking w.r.t.
the true density f(z) (the “ideal ranking”), if just the ez-
pectation of the error vx(z) in the individual estimates is
the same for every point x. This is obviously the case when
the random variable that describes the error would not de-
pend on z, in which case E{vx(z)} = E{vx} = ftvy, but
one would also obtain the “ideal” ranking when the error
is mot independent on x; for instance, when the error would
vary between points but the expectation is the same for each
point, we would also have the same ranking. We can even
obtain the same ranking as the “ideal” ranking if the expec-
tations E{vx(z1)} and E{vx(x2)} differ for two points z1
and z2, as long as the difference does not cause an inver-
sion between the actual ranks E{fx(z1)} and E{fx(z2)},
respectively. Furthermore, if we consider that for success-
ful outlier detection, the methods only have to distinguish
between outliers and inliers, we can even allow inversions
between ranks, as long as rank inversions occur only within
outliers or within inliers. Only a rank inversion between
an outlier and an inlier would be problematic. In the next
subsection, we will argue that for the proposed ensemble
technique using subsamples, the expectation of the error in
the density estimate E{vx (z)} does depend on the location
z and its surrounding density, but that the method has the
desirable property that it can increase the “gap” in ranks be-
tween the outliers and the inliers, making inversions in rank
between these groups of points even less likely.

3.2 Additional Benefits of Subsampling

Subsampling is theoretically well suited to introduce di-
versity into an ensemble of otherwise identical distance-based
or density-based outlier detection methods. Every member
of the ensemble will determine the outlier score of every ob-
ject in the database, but only using a small subset of the
data to estimate the density around points. Learning den-
sity estimates for outlier detection on smaller samples can
actually improve the detection rate of outliers, compared
to learning these estimates on the whole data set that con-
ceptually represents just a somewhat larger sample of an
unknown distribution f. We will see in the empirical evalu-
ation that in practice, surprisingly small sample sizes (such
as 20% or in many cases even just 10%) are typically not
leading to a deteriorated but to a considerably improved
quality of the outlier detection for a sample-based ensemble
of outlier detectors. One reason for the improved perfor-
mance of an ensemble is, as expected, just the combination
of the results of multiple outlier detectors. Compared to us-
ing the dataset as the only sample drawn from f, drawing
multiple subsamples X from this sample can minimize the
effect of the randomness associated with a single sample.

'Note that averaging the scores to build an ensemble has
been, heuristically, common practice [17,28, 30, 31, 36], but
now it finds also a theoretical justification.



Another, more interesting reason for the improved perfor-
mance is that the base method applied to a smaller subsam-
ple of a given data often shows an improved outlier detection
rate, compared to the same method applied to the whole
data set. As we will argue formally in the following, this is
due to the fact that distance-based and density-based meth-
ods are essentially using simple (not volume normalized) k
nearest neighbor distances to estimate density.

To understand the effects of sample based k nearest neigh-
bor distances, consider a sphere of radius r in a d-dimensional
Euclidean space, containing n data points uniformly dis-
tributed within the sphere. The expected Euclidean dis-
tance from a point to its k nearest neighbour (kKNN) is given
by [9]:

E{di} =7 (%) : (1)

For a given data set, let 7 be a constant value small enough
so that, for two spheres having the same radius r but lying on
different positions of the data space, the data points within
both spheres are approximately uniformly distributed. Now,
suppose that the number of data points within each of these
spheres is different, given by ni and n2 (n1 # n2), which
means that the densities of the data in the respective regions
of the space are different (as their volumes are the same).
For example, one sphere might be located inside a dense
cluster, whereas the other one might lie on a sparse area
containing background noise. Then, it follows from (1) that
the expected ENN distances in the corresponding regions of
the space are given by:

E{d, AL E{d, kE 2

{di}=r . ; {di}=r N2 (2)

If one randomly removes a fraction 1 — m of the data ob-

jects with equal probability, the expected number of remain-

ing objects within those two spheres are given by n1m and

nam, respectively. In this case, the expected kNN distances
become:

E{d;}—r(&)i; E{dﬁi}:r(i)f (3)
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=

The difference in the expected distances are therefore:
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In relative terms, if we divide A; and Az by the original
expected distances (for the full dataset, i.e., before the sub-
sampling), we get:
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The result in (6) says that the expected kNN distances
within the spheres increase proportionally as a function of
the subsampling rate m. This result reflects the intuition
that, in relative terms, the contrast between the densities
of the spheres is kept constant, which justifies the use of a
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Figure 1: Behaviour of the expected 5-NN distances
for two spheres with radius r = 1, in a 2D Euclidean
space, containing 1000m (circles) and 100m (trian-
gles) objects uniformly distributed (m is a fraction
of the data).

subsampling procedure with even sampling probabilities. In
an ensemble setting, for instance, this means that one can
get multiple (sub)samples that exhibit variability (diversity)
in terms of their observations, but keep the same expected
density profile as the full dataset.

The above result is important but it does not explain
all implications of subsampling when using unnormalized k
nearest neighbor distances. In absolute terms, Equations (4)
and (5) tell us that the expected difference in the kNN dis-
tances will be greater for a less dense sphere, i.e., A1 > Aj
if n1 < m2. This means that the expected kNN distances
“diverge” in absolute terms when the data are downsampled
to a fraction m of their original size. In other words, the
absolute differences between the expected kNN distances in
areas of different densities tend to increase as a function of
the subsampling rate. This effect is illustrated in Figure 1
forr=1,d=2, k =5, n1 =100, no = 1000, and m ranging
from 0.1 to 1.

Such an effect can be beneficial for outlier detection, since
it can make it easier to distinguish between outliers and
inliers. Particularly when also using an ensemble as dis-
cussed above, the gap in the ranks between outliers and in-
liers can increase, making inversion of ranks between these
two groups less likely.

3.3 Method and Complexity

Note that the implementation of our proposal is not as
simple as to take subsamples and then run the outlier de-
tection algorithms on these subsamples. This way we would
very likely completely miss information on the outlierness
of many objects that are not contained in any subsample,
and many objects would get scores only from some of the
subsamples. Instead, for each ensemble member, we draw
a subsample from the database and compute the neighbor-
hood of each object in the database based on the subsam-
ple. This way, using subsample-based ensembles can also
lead to a considerable speed-up, compared to other types
of ensembles and, for small subsamples and ensemble sizes,
even compared to running the base method on the whole
data set. We will demonstrate in the experimental evalua-
tion that sample sizes small enough to achieve substantial
runtime improvements are good choices in practice, lead-
ing to good outlier detection rates. In this subsection, we
show the expected runtime improvements by studying the
theoretical complexities.



While other ensemble methods require a multiple of the
computing time compared to the base learner, the theoreti-
cal behaviour of a subsample based ensemble is faster (and
requires less resources) than other types of ensembles. The
typical complexity of a base method is O(n?), due to the
required kNN queries over a database of n objects. The
runtime of a “standard ensemble” such as feature bagging is
essentially s times the runtime of the base method, where s
is a factor that is determined by the number of base learners
used in the ensemble (i.e., the size of the ensemble). This
factor is reduced in the case of feature bagging. Using only
a subset of the dimensions makes individual distance com-
putations faster by some constant factor.

For sample based ensembles, on the other hand, the com-
plete ensemble can even be faster than the base method
on the complete dataset, because of the quadratic runtime
in n of the base method. While the base method requires
kNN queries for each object on the complete database (hence
O(n?)), using a subsample of size m -n, 0 < m < 1, reduces
this to O(n? - m). The runtime of a sample based ensemble
is essentially s times the runtime of the base method, using
a much smaller data set for the neighborhood computation.

For an ensemble size of 10 base learners and sample size
of 10%, the sample-based ensemble would require roughly
the same runtime than a single base method on the full
dataset but 10 times less time than an ensemble with the
same number s of ensemble members based on other means
of diversity. For larger ensembles, the ensemble requires only
a small multiple of the base method but still only 10% (or
the equivalent of the sample size m) of a standard ensemble.
For example, if we use 25 ensemble members and sample
size 10%, the ensemble will require roughly 2.5 times the
runtime of the base method.

4. EVALUATION

4.1 Methods and Parameters

For the reasons discussed in Section 2, the canonical com-
petitor is feature bagging (FB) [30]. As base methods we
use LOF [10], LDOF [44], and LoOP [27].

For the setup of experiments, we have to consider various
parameters. For both ensemble methods (feature bagging
and subsampling), we choose a fixed number of 25 ensemble
members. We follow the original setup of the feature bag-
ging method, combining the scores of the ensemble members
by computing the average. For the subsampling, we consider
various sample sizes. Each of the base methods requires a
size k of the neighborhood. Hence we will show experimen-
tal results (i) with a fixed choice of k and varying sample
size; (ii) with a fixed sample size, varying k; and (iii) with
fixed choices of k and sample size, comparing different base
methods. When we fix k, we choose a value that gives a rea-
sonable result quality (i.e., better than random) for the base
method and compare that to the ensemble variants. Finally
(iv), for the synthetic dataset collections, where the individ-
ual datasets follow the same general characteristics, we show
an average behaviour over all datasets of the collection.

We report the area under the receiver operating charac-
teristic curve (ROC AUC), which plots the true positive rate
vs. the false positive rate, a common measure for evaluation
of outlier detection methods [17,28,30,31,36]. The experi-
ments are performed using ELKI [2, 3].

4.2 Datasets

For a statistical assessment, we generate two independent
sets of 30 synthetic datasets (batchl and batch2). For each
dataset, we choose randomly values for the following param-
eters in the given range: dimensionality d € [20,...,40],
number of clusters ¢ € [2,...,10], for each cluster inde-
pendently the number of points n., € [600,...,1000]. For
each cluster, the points are generated following a Gaussian
model as follows: For each cluster ¢;, and each attribute
a, we choose a mean (i, ., from a uniform distribution in
[—10, 10] and a standard deviation o,,, from a uniform dis-
tribution in [0.1,1]. Then for the cluster ¢;, n.; cluster ob-
jects (points) are generated attribute-wise by the Gaussians
./\/(,uci,a, 0c;,a)- The resulting cluster is rotated by a series of
random rotations and the covariance matrix ¥ correspond-
ing to the theoretical model is computed by the correspond-
ing matrix operations [38]. Then, we compute for each point
the Mahalanobis distance to its corresponding cluster center,
using the covariance matrix % of the cluster. For a dataset
dimensionality d, the Mahalanobis distances for each clus-
ter follow a x? distribution with d degrees of freedom. We
label as outliers those points that exhibit a distance to their
cluster center larger than the theoretical 0.975 quantile, in-
dependently of the actually occurring Mahalanobis distances
of the sampled points. This results in an expected amount
of 2.5% outliers per dataset.

As real datasets we use the datasets Satimage, Lympho-
graphy, and Segment (used also by Lazarevic and Kumar
[30]). Additionally, we chose from the UCI machine learn-
ing repository [15]: Wisconsin breast cancer (WBC) and
Waveform Database Generator (waveform). While Lazare-
vic and Kumar consider outlier detection as equivalent to
rare class detection, we argue that outliers are bound to be
rare, but objects of a rare class are not necessarily outliers.
Therefore, we use a different preprocessing for some of the
datasets: For Satimage, we combined train and test set and
transformed the dataset to an outlier task by taking a sam-
ple of 10% from class 2, evaluating the downsampled class
as outliers vs. the rest.> For Lymphography, we merged the
small classes 1&4 as outliers vs. the rest. For Segment, we
chose classes GRASS, PATH, and SKY for downsampling, in
turn, to 10%, which renders the remaining objects of these
classes outliers (resulting in three different datasets). For
the datasets WBC and waveform we also select a mean-
ingful outlier class for downsampling (‘malignant’, and ‘07,
respectively). With this method of using classification data
for evaluation of outlier detection methods we are conform
with the literature [1,24,29,43,44].

Overall, this results in 60 synthetic and 7 real data sets.

4.3 Efficiency

For a fair comparison, we use a preprocessing of the neigh-
borhood computation for all methods on equal terms, as fa-
cilitated by the framework ELKI [2]. As in our experiments
we use 25 ensemble members, we study the runtime of a
typical base method (LOF), the subsampling ensemble (10%
sample size) and feature bagging, when scaling the number
of objects in the database. As demonstrated in Figure 2,

2Lazarevic and Kumar used the smallest class 4 as outlier
vs. rest, but this is an example where the rare class does
not constitute outliers, as the classes 3-7 are all very similar.
Accordingly, they report performance very close to a random
result on this dataset.
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the subsampling ensemble is close to the base method while
feature bagging requires a multiple of the runtime.

As discussed in Section 3.3, the efficiency depends on the
sample size and on the ensemble size. We do not evaluate the
ensemble size further, let us just consider an example on one
of the synthetic datasets to study the behaviour with adding
more ensemble members (Figure 3). We see a strong increase
in quality between 2 and 10 ensemble members, then, up to
25 ensemble members, the quality increases further, steadily
but slowly. This improved performance comes at moderate
runtime cost. Nevertheless, we fix the ensemble size to 25
in the following experiments.

4.4 Effectiveness

For illustration of results with variances we use box plots
where the box extends from the lower to upper quartile val-
ues of the data, with a line at the median. The whiskers
extend from the box to show the range of the data. The
length of the whiskers extend to the most extreme data
point within 1.5%(75%-25%) data range. Occasionally oc-
curring single data points beyond that range are plotted as
flier points past the end of the whiskers. Note however that
the source of variance in the plots will differ: in synthetic
data, we give the distribution over the 30 datasets, in real
data, we give the distribution over the individual ensemble
members.

Synthetic Data. First, we show as a statistical assess-
ment the results of the subsample-based ensemble over all
the synthetic datasets of batchl. Here the box plots visual-
ize the distribution of the results for the same sample size,
the same base method, and the same parametrization of the
base method for all datasets in the batch for the subsampling
ensemble, the base method (sample size 1.0), and the feature
bagging ensemble (FB). Figure 4 shows examples for a fixed
k = 3 for the base methods LDOF, LOF, and LoOP. The
behaviour on batch2 (not shown) follows the same general
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Figure 4: ROC AUC for ensembles—different sam-
ple sizes as well as feature bagging (FB)—and base
method (sample size=1.0), on the 30 datasets of
batchl.

pattern. We varied k£ from 2 to 10 and got similar results.
The smaller sample size leads to larger improvements.
Real Data. Having shown the ensemble performances over
a set of 30 datasets for the synthetic data, we now analyze
the behaviour on individual real datasets. Here, we show
in the whisker plots the variance in the ROC AUC achieved
by the individual ensemble members based on subsamples of
different sample size (zero variance for sample size 1.0, which
reflects the performance of the deterministic base method
on the complete data), and feature bagging (FB). The ROC
AUC of the ensembles (subsampling and feature bagging)
are visualized by a diamond.

Figures 5, 6, and 7 show the results for the three base
methods on the datasets Lymphography, WBC, and Satim-
age-2, respectively. We choose the same k for all base meth-
ods such that at least some of the base methods get rea-
sonable results. For the larger dataset satimage-2, the k
needs to be larger as well. Comparing these plots, we see
a different behaviour of the base methods as some datasets
are easy for some base methods while some other datasets
are relatively hard. In particular, LDOF does not retrieve
sensible results on all three datasets. In all cases, however,
the subsampling ensemble improves. Feature bagging does
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Figure 5: ROC AUC for ensemble members of

the subsampling ensemble for different sample sizes
(boxes), the base method (sample size=1.0), and en-
sembles (diamonds)—on top of subsamples and fea-
ture bags (FB)—on dataset Lymphography.

not perform always that convincingly, in some cases it drops
to (or below) random quality. Only for LDOF and LoOP
on Lymphography (Figures 5(a), 5(c)), feature bagging can
recover from the weak performance of the base learner.

As a general picture from these and other results, we see
that the smaller sample size actually has the larger poten-
tial of improvement. Although the smaller sample keeps
not as much information about the dataset (and the un-
known underlying density-distribution), from the point of
view of ensemble learning, these findings make sense, as the
smaller samples will actually provide the most diverse en-
semble members, and it also shows the practical applicabil-
ity of the reasoning we provided in Section 3.2. In most
cases, we find the 10%-sample to work best. However, the
break-even point between too much loss of information and
too high similarity of ensemble members differs from dataset
to dataset. We have also examples where the 10%-sample is
already too small such as in Figure 5(a). That is possibly
related to the fact that the lymphography data are relatively
small.

However, we fix the sample size to 0.1 for the follow-
ing experiments and explore the behaviour of base method,
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Figure 6: ROC AUC for ensemble members of

the subsampling ensemble for different sample sizes
(boxes), the base method (sample size=1.0), and en-
sembles (diamonds)—on top of subsamples and fea-
ture bags (FB)—on dataset WBC.

subsampling ensemble and feature bagging ensemble over a
range of k. We see, as an example, in Figure 8, a slight
but steady increase of the ROC AUC with k for the base
methods and the subsampling ensemble while the feature
bagging ensemble appears to be much more instable. While
increasing k does not, in general, increase the quality of the
results, we observe the same pattern of stability of the base
method and the subsampling ensemble and higher variance
of the feature bagging ensemble on other datasets as well.

For the three datasets based on segment, for k£ = 20
(again a selection that gives reasonable results for most of
the base methods), we show results for all three base meth-
ods in Figure 9. Again, the subsampling ensemble compares
favourably against the base method as well as against fea-
ture bagging.

5. CONCLUSION

Although we compared the sample-based ensemble against
feature bagging [30], let us finally note that these two ap-
proaches are not strictly competitors. Feature bagging is
likely to be an interesting approach in the context of very



1.0 : :
= T
0.9} -
£

8 0.8 * B E *
2 _
o 0.7 v EI é
Qo6 . ax =

0.5

0.4 hJ

01 02 03 04 05 06 07 08 09 1.0 FB
Sample fraction

(a) LDOF, k = 50

1.(Jﬁﬁ = ?

Hﬂ-l
o

0.5F

01 02 03 04 05 06 07 08 09 10 FB
Sample fraction

(b) LOF, k = 50

LO—~——rg= " -
0.9 T B Q é o
S08 . E
?
Sor ’ T @
8U~6 L % £

[ESI—

L L L L L L L L L L 'y
0.1 02 03 04 05 06 0.7 08 09 1.0 FB
Sample fraction

(c) LoOP, k = 50

Figure 7: ROC AUC for ensemble members of
the subsampling ensemble for different sample sizes
(boxes), the base method (sample size=1.0), and en-
sembles (diamonds)—on top of subsamples and fea-
ture bags (FB)—on dataset Satimage-2.

high-dimensional data [45]. Sampling should be helpful when
the datasets are growing too large. On the other hand, fea-
ture bagging is not meaningful for low-dimensional data, as
the ensemble members are bound to be too similar. And
sampling on too small data is probably not too promising.
However, these two problems (too small datasets with only a
few dimensions) are not really problems of todays research.
It might be an interesting question for future work to inves-
tigate the integration of both techniques, building ensembles
on subsets of features and subsets of data objects simulta-
neously.
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