
1

Machine Learning: Lecture 8

Computational Learning
Theory

(Based on Chapter 7 of Mitchell T..,
Machine Learning, 1997)

2

Overview
❧ Are there general laws that govern learning?

●  Sample Complexity: How many training examples are needed for
a learner to converge (with high probability) to a successful
hypothesis?

●  Computational Complexity: How much computational effort is
needed for a learner to converge (with high probability) to a
successful hypothesis?

●  Mistake Bound: How many training examples will the learner
misclassify before converging to a successful hypothesis?

❧ These questions will be answered within two analytical
frameworks:
●  The Probably Approximately Correct (PAC) framework

●  The Mistake Bound framework

3

Overview (Cont’d)
❧ Rather than answering these questions for

individual learners, we will answer them for
broad classes of learners. In particular we will
consider:
●  The size or complexity of the hypothesis space

considered by the learner.
●  The accuracy to which the target concept must be

approximated.
●  The probability that the learner will output a

successful hypothesis.
●  The manner in which training examples are

presented to the learner.

4

The PAC Learning Model

❧ Definition: Consider a concept class C
defined over a set of instances X of length n
and a learner L using hypothesis space H. C is
PAC-learnable by L using H if for all c∈C,
distributions D over X, ε such that 0< ε < 1/2,
and δ such that 0< δ <1/2, learner L will, with
probability at least (1- δ), output a hypothesis
h∈H such that errorD(h) ≤ ε , in time that is
polynomial in 1/ε , 1/δ , n , and size(c).

5

Sample Complexity for Finite
Hypothesis Spaces
❧ Given any consistent learner, the number of examples

sufficient to assure that any hypothesis will be probably
(with probability (1- δ)) approximately (within error ε)
correct is m= 1/ε (ln|H|+ln(1/δ))

❧ If the learner is not consistent, m= 1/2ε2 (ln|H|+ln(1/δ))
❧ Conjunctions of Boolean Literals are also PAC-

Learnable and m= 1/ε (n.ln3+ln(1/δ))
❧ k-term DNF expressions are not PAC learnable because

even though they have polynomial sample complexity,
their computational complexity is not polynomial.

❧ Surprisingly, however, k-term CNF is PAC learnable.

6

Sample Complexity for Infinite
Hypothesis Spaces I: VC-Dimension

❧ The PAC Learning framework has 2 disadvantages:
●  It can lead to weak bounds
●  Sample Complexity bound cannot be established for

infinite hypothesis spaces
❧ We introduce new ideas for dealing with these problems:

●  Definition: A set of instances S is shattered by hypothesis
space H iff for every dichotomy of S there exists some
hypothesis in H consistent with this dichotomy.

●  Definition: The Vapnik-Chervonenkis dimension,
VC(H), of hypothesis space H defined over instance
space X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite sets of X can
be shattered by H, then VC(H)=∞

7

Sample Complexity for Infinite
Hypothesis Spaces II
❧ Upper-Bound on sample complexity, using the VC-

Dimension: m≥ 1/ε (4log2(2/δ)+8VC(H)log2(13/ε)
❧ Lower Bound on sample complexity, using the VC-

Dimension:
Consider any concept class C such that VC(C) ≥ 2, any
learner L, and any 0 < ε < 1/8, and 0 < δ < 1/100. Then

there exists a distribution D and target concept in C
such that if L observes fewer examples than

max[1/ε log(1/ δ),(VC(C)-1)/(32ε)]
then with probability at least δ, L outputs a hypothesis

h having errorD(h)> ε .

8

VC-Dimension for Neural Networks
❧ Let G be a layered directed acyclic graph with n

input nodes and s≥2 internal nodes, each having
at most r inputs. Let C be a concept class over Rr

of VC dimension d, corresponding to the set of
functions that can be described by each of the s
internal nodes. Let CG be the G-composition of
C, corresponding to the set of functions that can
be represented by G. Then VC(CG)≤2ds log(es),
where e is the base of the natural logarithm.

❧ This theorem can help us bound the VC-
Dimension of a neural network and thus, its
sample complexity (See, [Mitchell, p.219])!

9

The Mistake Bound Model of Learning

❧ The Mistake Bound framework is different from
the PAC framework as it considers learners that
receive a sequence of training examples and that
predict, upon receiving each example, what its
target value is.

❧ The question asked in this setting is: “How
many mistakes will the learner make in its
predictions before it learns the target concept?”

❧ This question is significant in practical settings
where learning must be done while the system is
in actual use.

10

Optimal Mistake Bounds

❧ Definition: Let C be an arbitrary nonempty
concept class. The optimal mistake bound

for C, denoted Opt(C), is the minimum over
all possible learning algorithms A of MA(C).

Opt(C)=minA∈Learning_Algorithm MA(C)
❧ For any concept class C, the optimal

mistake bound is bound as follows:
VC(C) ≤ Opt(C) ≤ log2(|C|)

11

A Case Study: The Weighted-
Majority Algorithm

ai denotes the ith prediction algorithm in the pool A of
algorithm. wi denotes the weight associated with ai.

❧ For all i initialize wi <-- 1
❧ For each training example <x,c(x)>

●  Initialize q0 and q1 to 0
●  For each prediction algorithm ai

•  If ai(x)=0 then q0 <-- q0+wi
•  If ai(x)=1 then q1 <-- q1+wi

●  If q1 > q0 then predict c(x)=1
●  If q0 > q1 then predict c(x) =0
●  If q0=q1 then predict 0 or 1 at random for c(x)
●  For each prediction algorithm ai in A do

•  If ai(x) ≠ c(x) then wi <-- βwi

12

Relative Mistake Bound for the
Weighted-Majority Algorithm
❧ Let D be any sequence of training examples, let A

be any set of n prediction algorithms, and let k be
the minimum number of mistakes made by any
algorithm in A for the training sequence D. Then
the number of mistakes over D made by the
Weighted-Majority algorithm using β=1/2 is at
most 2.4(k + log2n).

❧ This theorem can be generalized for any 0 ≤ β ≤1
where the bound becomes

(k log2 1/β + log2n)/log2(2/(1+ β))

