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Machine Learning: Lecture 8 

Computational Learning 
Theory 

(Based on Chapter 7 of Mitchell T.., 
Machine Learning, 1997) 
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Overview 
❧ Are there general laws that govern learning? 

●  Sample Complexity: How many training examples are needed for 
a learner to converge (with high probability) to a successful 
hypothesis? 

●  Computational Complexity: How much computational effort is 
needed for a learner to converge (with high probability) to a 
successful hypothesis? 

●  Mistake Bound: How many training examples will the learner 
misclassify before converging to a successful hypothesis? 

❧ These questions will be answered within two analytical 
frameworks: 
●  The Probably Approximately Correct (PAC) framework 

●  The Mistake Bound framework 
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Overview (Cont’d) 
❧ Rather than answering these questions for 

individual learners, we will answer them for 
broad classes of learners. In particular we will 
consider: 
●  The size or complexity of the hypothesis space 

considered by the learner. 
●  The accuracy to which the target concept must be 

approximated. 
●  The probability that the learner will output a 

successful hypothesis. 
●  The manner in which training examples are 

presented to the learner. 
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The PAC Learning Model 

❧ Definition: Consider a concept class C 
defined over a set of instances X of length n 
and a learner L using hypothesis space H. C is 
PAC-learnable by L using H if for all c∈C, 
distributions D over X, ε such that 0< ε < 1/2, 
and δ such that 0< δ <1/2, learner L will, with 
probability at least (1- δ), output a hypothesis 
h∈H such that errorD(h) ≤ ε , in time that is 
polynomial in 1/ε , 1/δ , n , and size(c). 
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Sample Complexity for Finite 
Hypothesis Spaces 
❧ Given any consistent learner, the number of examples 

sufficient to assure that any hypothesis will be probably 
(with probability (1- δ)) approximately (within error ε ) 
correct is m= 1/ε (ln|H|+ln(1/δ)) 

❧ If the learner is not consistent, m= 1/2ε2 (ln|H|+ln(1/δ)) 
❧ Conjunctions of Boolean Literals are also PAC-

Learnable and m= 1/ε (n.ln3+ln(1/δ)) 
❧ k-term DNF expressions are not PAC learnable because 

even though they have polynomial sample complexity, 
their computational complexity is not polynomial. 

❧ Surprisingly, however, k-term CNF is PAC learnable.  
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Sample Complexity for Infinite 
Hypothesis Spaces I: VC-Dimension 

❧ The PAC Learning framework has 2 disadvantages: 
●  It can lead to weak bounds 
●  Sample Complexity bound cannot be established for 

infinite hypothesis spaces 
❧ We introduce new ideas for dealing with these problems: 

●  Definition: A set of instances S is shattered by hypothesis 
space H iff for every dichotomy of S there exists some 
hypothesis in H consistent with this dichotomy. 

●  Definition: The Vapnik-Chervonenkis dimension,    
VC(H), of hypothesis space H defined over instance    
space X is the size of the largest finite subset of X   
shattered by H. If arbitrarily large finite sets of X can       
be shattered by H, then VC(H)=∞ 
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Sample Complexity for Infinite 
Hypothesis Spaces II 
❧ Upper-Bound on sample complexity, using the VC-

Dimension: m≥ 1/ε (4log2(2/δ)+8VC(H)log2(13/ε) 
❧ Lower Bound on sample complexity, using the VC-

Dimension: 
Consider any concept class C such that VC(C) ≥ 2, any 
learner L, and any 0 < ε < 1/8, and 0 < δ < 1/100. Then 

there exists a distribution D and target concept in C 
such that if L observes fewer examples than         

max[1/ε log(1/ δ),(VC(C)-1)/(32ε)]                                            
then with probability at least δ, L outputs a hypothesis 

h having errorD(h)> ε . 
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VC-Dimension for Neural Networks 
❧ Let G be a layered directed acyclic graph with n 

input nodes and s≥2 internal nodes, each having 
at most r inputs. Let C be a concept class over Rr 

of VC dimension d, corresponding to the set of 
functions that can be described by each of the s 
internal nodes. Let CG be the G-composition of 
C, corresponding to the set of functions that can 
be represented by G. Then VC(CG)≤2ds log(es), 
where e is the base of the natural logarithm. 

❧ This theorem can help us bound the VC-
Dimension of a neural network and thus, its 
sample complexity (See, [Mitchell, p.219])!  
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The Mistake Bound Model of Learning 

❧ The Mistake Bound framework is different from 
the PAC framework as it considers learners that 
receive a sequence of training examples and that 
predict, upon receiving each example, what its 
target value is.  

❧ The question asked in this setting is: “How 
many mistakes will the learner make in its 
predictions before it learns the target concept?” 

❧ This question is significant in practical settings 
where learning must be done while the system is 
in actual use. 
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Optimal Mistake Bounds 

❧ Definition: Let C be an arbitrary nonempty 
concept class. The optimal mistake bound 

for C, denoted Opt(C), is the minimum over 
all possible learning algorithms A of MA(C).  

Opt(C)=minA∈Learning_Algorithm MA(C) 
❧ For any concept class C, the optimal 

mistake bound is bound as follows: 
VC(C) ≤ Opt(C) ≤  log2(|C|) 
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A Case Study: The Weighted-
Majority Algorithm 

ai denotes the ith prediction algorithm in the pool A of 
algorithm. wi denotes the weight associated with ai. 

❧ For all i initialize wi <-- 1 
❧ For each training example <x,c(x)> 

●  Initialize q0 and q1 to 0 
●  For each prediction algorithm ai 

•  If ai(x)=0 then q0 <-- q0+wi 
•  If ai(x)=1 then q1 <-- q1+wi 

●  If q1 > q0 then predict c(x)=1 
●  If q0 > q1 then predict c(x) =0 
●  If q0=q1 then predict 0 or 1 at random for c(x) 
●  For each prediction algorithm ai in A do 

•  If ai(x) ≠ c(x) then wi <-- βwi 
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Relative Mistake Bound for the 
Weighted-Majority Algorithm 
❧ Let D be any sequence of training examples, let A 

be any set of n prediction algorithms, and let k be 
the minimum number of mistakes made by any 
algorithm in A for the training sequence D. Then 
the number of mistakes over D made by the 
Weighted-Majority algorithm using β=1/2 is at 
most       2.4(k + log2n). 

❧ This theorem can be generalized for any 0 ≤ β ≤1 
where the bound becomes 

(k log2 1/β  + log2n)/log2(2/(1+ β)) 


