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Machine Learning: Lecture 6 

Bayesian Learning 
(Based on Chapter 6 of Mitchell T.., 

Machine Learning, 1997) 
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An Introduction 
❧ Bayesian Decision Theory came long before Version 

Spaces, Decision Tree Learning and Neural Networks. It 
was studied in the field of Statistical Theory and more 
specifically, in the field of Pattern Recognition.  

❧ Bayesian Decision Theory is at the basis of important 
learning schemes such as the Naïve Bayes Classifier, 
Learning Bayesian Belief Networks and the EM 
Algorithm. 

❧ Bayesian Decision Theory is also useful as it provides a 
framework within which many non-Bayesian classifiers 
can be studied (See [Mitchell, Sections 6.3, 4,5,6]). 
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Bayes Theorem 
❧ Goal: To determine the most probable hypothesis, 

given the data D plus any initial knowledge about the 
prior probabilities of the various hypotheses in H. 

❧ Prior probability of h, P(h): it reflects any background 
knowledge we have about the chance that h is a correct 
hypothesis (before having observed the data). 

❧ Prior probability of D, P(D): it reflects the probability 
that training data D will be observed given no 
knowledge about which hypothesis h holds. 

❧ Conditional Probability of observation D, P(D|h): it 
denotes the probability of observing data D given some 
world in which hypothesis h holds.  
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Bayes Theorem (Cont’d) 
❧ Posterior probability of h, P(h|D): it represents 

the probability that h holds given the observed 
training data D. It reflects our confidence that h 
holds after we have seen the training data D and 
it is the quantity that Machine Learning 
researchers are interested in. 

❧ Bayes Theorem allows us to compute P(h|D): 
 

P(h|D)=P(D|h)P(h)/P(D) 
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 Maximum A Posteriori (MAP)  
 Hypothesis and Maximum Likelihood 
❧ Goal: To find the most probable hypothesis h from a set 

of candidate hypotheses H given the observed data D. 
❧ MAP Hypothesis, hMAP = argmax h∈H P(h|D) 

                                        = argmax h∈H P(D|h)P(h)/P(D) 
                               = argmax h∈H P(D|h)P(h) 

❧ If every hypothesis in H is equally probable a priori, we 
only need to consider the likelihood of the data D given 
h, P(D|h). Then, hMAP becomes the Maximum 
Likelihood,  

hML= argmax h∈H P(D|h)P(h) 
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Some Results from the Analysis of 
Learners in a Bayesian Framework  
❧ If P(h)=1/|H| and if P(D|h)=1 if D is consistent with h, 

and 0 otherwise, then every hypothesis in the version 
space resulting from D is a MAP hypothesis. 

❧ Under certain assumptions regarding noise in the 
data, minimizing the mean squared error (what 
common neural nets do) corresponds to computing 
the maximum likelihood hypothesis. 

❧ When using a certain representation for hypotheses, 
choosing the smallest hypotheses corresponds to 
choosing MAP hypotheses (An attempt at justifying 
Occam’s razor)  
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Bayes Optimal Classifier 
❧ One great advantage of Bayesian Decision Theory is 

that it gives us a lower bound on the classification error 
that can be obtained for a given problem.  

❧ Bayes Optimal Classification: The most probable 
classification of a new instance is obtained by 
combining the predictions of all hypotheses, weighted 
by their posterior probabilities: 

argmaxvj∈VΣhi∈ HP(vh|hi)P(hi|D) 
where V is the set of all the values a classification can take 

and vj is one possible such classification. 
❧ Unfortunately, Bayes Optimal Classifier is usually too 

costly to apply! ==> Naïve Bayes Classifier 
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Naïve Bayes Classifier 
❧ Let each instance x of a training set D be described by a 

conjunction of n attribute values <a1,a2,..,an> and let f(x), 
the target function, be such that f(x) ∈ V, a finite set. 

❧ Bayesian Approach: 
vMAP = argmaxvj∈ V P(vj|a1,a2,..,an) 
        = argmaxvj∈ V [P(a1,a2,..,an|vj) P(vj)/P(a1,a2,..,an)] 
        = argmaxvj∈ V [P(a1,a2,..,an|vj) P(vj) 
❧ Naïve Bayesian Approach: We assume that the attribute 

values are conditionally independent so that P(a1,a2,..,an|
vj) =∏i P(a1|vj) [and not too large a data set is required.]           
Naïve Bayes Classifier:  

       vNB = argmaxvj∈ V P(vj) ∏i P(ai|vj)  
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Bayesian Belief Networks 
❧ The Bayes Optimal Classifier is often too 

costly to apply. 
❧ The Naïve Bayes Classifier uses the 

conditional independence assumption to 
defray these costs. However, in many cases, 
such an assumption is overly restrictive. 

❧ Bayesian belief networks provide an 
intermediate approach which allows stating 
conditional independence assumptions that 
apply to subsets of the variable. 
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Conditional Independence 
❧  We say that X is conditionally independent of Y 

given Z if the probability distribution governing X is 
independent of the value of Y given a value for Z. 

❧ i.e., (∀xi,yj,zk) P(X=xi|Y=yj,Z=zk)=P(X=xi|Z=zk) 
❧ or, P(X|Y,Z)=P(X|Z) 
❧ This definition can be extended to sets of variables 

as well: we say that the set of variables X1…Xl is 
conditionally independent of the set of variables Y1…Ym 
given the set of variables Z1…Zn , if 

P(X1…Xl|Y1…Ym,Z1…Zn(=P(X1…Xl|Z1…Zn) 
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Representation in Bayesian 
Belief Networks 

Storm BusTourGroup 

Lightning Campfire 

Thunder ForestFire 

Each node is asserted to be conditionally independent of  
its non-descendants, given its immediate parents 

Associated with each 
node is a conditional 

probability table, which 
specifies the conditional 

distribution for the 
variable given its 

immediate parents in  
the graph 
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Inference in Bayesian Belief 
Networks 

❧ A Bayesian Network can be used to compute the 
probability distribution for any subset of network 
variables given the values or distributions for any 
subset of the remaining variables. 

❧ Unfortunately, exact inference of probabilities in 
general for an arbitrary Bayesian Network is 
known to be NP-hard. 

❧ In theory, approximate techniques (such as Monte 
Carlo Methods) can also be NP-hard, though in 
practice, many such methods were shown to be 
useful. 
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Learning Bayesian Belief 
Networks  3 Cases: 

1. The network structure is given in advance and all the 
variables are fully observable in the training examples. 
==> Trivial Case: just estimate the conditional 
probabilities.  

2. The network structure is given in advance but only 
some of the variables are observable in the training 
data. ==> Similar to learning the weights for the hidden 
units of a Neural Net: Gradient Ascent Procedure 

3. The network structure is not known in advance. ==> 
Use a heuristic search or constraint-based technique to 
search through potential structures.  
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The EM Algorithm: Learning with 
unobservable relevant variables. 
❧ Example:Assume that data points have been uniformly  

generated from k distinct Gaussian with the same known 
variance. The problem is to output a hypothesis       
h=<µ1, µ2  ,.., µk>  that describes the means of each of    
the k distributions. In particular, we are looking for a 
maximum likelihood hypothesis for these means. 

❧ We extend the problem description as follows: for each 
point xi, there are k hidden variables zi1,..,zik such that 
zil=1 if xi was generated by normal distribution l and     
ziq= 0 for all q≠l. 
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The EM Algorithm (Cont’d) 
❧ An arbitrary initial hypothesis h=<µ1, µ2  ,.., µk> is chosen. 
❧ The EM Algorithm iterates over two steps: 

●  Step 1 (Estimation, E): Calculate the expected value 
E[zij] of each hidden variable zij, assuming that the 
current hypothesis h=<µ1, µ2  ,.., µk> holds.  

●  Step 2 (Maximization, M): Calculate a new maximum 
likelihood hypothesis h’=<µ1’, µ2’  ,.., µk’>, assuming 
the value taken on by each hidden variable zij is its 
expected value E[zij] calculated in step 1. Then replace 
the hypothesis h=<µ1, µ2  ,.., µk> by the new hypothesis 
h’=<µ1’, µ2’  ,.., µk’> and iterate. 

The EM Algorithm can be applied to more general problems 


