
ODP ENGINEERING MODEL

1

INTRODUCTION TO
ODP ENGINEERING
MODEL

BY

KAZI FAROOQUI,

LUIGI LOGRIPPO,

DEPARTMENT OF COMPUTER SCIENCE,

UNIVERSITY OF OTTAWA,

OTTAWA K1N 6N5, CANADA.

E-mail: farooqui@csi.uottawa.ca, luigi@csi.uottawa.ca

ODP ENGINEERING MODEL

2

This paper presents a tutorial introduction to the major features of the RM-ODP
Engineering Model. The elements of the engineering model are introduced and
briefly explained.The model is described as an object-based distributed platform
for the support of distributed applications modelled in the computational model.
Major elements of the engineering model which enable, regulate, and hide distribu-
tion are presented.

1. What is an Engineering Model

The classical counterparts of the computational models are the engineering ones
which are of interest to operating system and communication experts. The engi-
neering model contains concepts such as operating systems, distribution transpar-
ency mechanisms, communication systems (protocols, networks), processors,
storage, etc. As the notions of processor, memory, transport network play a more
indirect role in a distributed system, the term ‘engineering model’ is used here in a
more general way to describe a framework oriented towards the organization of the
underlying distributed infrastructure and targeted to the application support. It
mostly focuses on what services may be provided to applications and what mecha-
nisms should be used to obtain these services. The termplatform is used to refer to
the (configuration of) services offered to applications by the infrastructure.

The engineering model is still an abstraction of the distributed system, but it is a
different abstraction than that in the computational viewpoint. Distribution is no
longer transparent, but we still need not concern ourselves with real computers or
with the implementations (technology) of mechanisms or services identified in the
engineering model. The engineering model provides a machine-independent execu-
tion environment for distributed applications.

Unlike the enterprise, information, and computational models which deal with the
semantics of distributed applications, the engineering model is not concerned with
the semantics of the distributed application, except to determine its requirements
for distribution.

2. Engineering Model: An Object-Based Distributed Platform

The ODP engineering model is an architectural framework for the provision of an
object-based distributed platform. The set of basic services and mechanisms, identi-
fied in the engineering model, are modelled as a collection of interacting objects
which together provide support for therealization of interactions between distrib-
uted application components.

The engineering model can be considered as an extended operating system span-
ning a network of interconnected computers. In thenetworked-operating system
view of the engineering model, the linked computers preserve much of their auton-
omy and are managed by their local operating systems which are enhanced with
mechanisms to enable, regulate and (if desired) hide distribution.

3. Engineering Model: Animation of Computational Model

The interest of the computational model is directly related to the existence of a
mapping enabling it to relate to engineering concerns. This means, for instance,
being able to map computational concepts onto the engineering structures.

ODP ENGINEERING MODEL

3

The engineering model provides an infrastructure or a distributed platform for the
support of the computational model. The model provides generic services and
mechanisms capable of supporting distributed applications specified in the compu-
tational model. The model is concerned withhow an application, specified in the
computational model, may beengineered onto the distributed platform. The selec-
tion of distribution transparency and communication (protocol) objects, among
many other support mechanisms, tailored to application needs, forms an important
task.

The engineering model identifies thefunctionality of basic system components that
must be present, in some form or other, in order to support the computational
model. Hypothetically, there may be several engineering models for a particular
computational environment, reflecting the use of different system components and
mechanisms to achieve the same end. The issue in the computational model iswhat
(interactions, distribution requirements); the engineering model prescribes solution
as tohow to realize these interactions, satisfying the stated requirements.

4. Structure of Engineering Model

The engineering model reveals the structure of the distributed platform, the ODP
infrastructure which supports the computational model. The services or mecha-
nisms which enable, regulate and hide distribution in the ODP infrastructure, are
modelled as objects, calledengineering objects, which may support multiple inter-
faces.

There are different kinds of engineering objects in the engineering model corre-
sponding to different distribution (enabling, regulating, hiding) functions required
in distributed environment. Some engineering objects correspond to the application
functionality and they are referred to asbasic engineering objects while those
which provide distribution functions are classified astransparency objects, protocol
objects, supporter objects, etc. At a given host, the basic engineering objects
belonging to an application may be grouped intoclusters. A host may support mul-
tiple clusters in its addressing domain, known ascapsule. A capsule consists of
clusters of basic engineering objects, transparency objects, protocol objects and
other local operating system facilities.

 From an engineering viewpoint, the ODP infrastructure consists of interconnected
autonomous computer systems (hosts), which are callednodes. Each node supports
a nucleus object and multiple capsules. The nucleus encapsulates computing, stor-
age, and communication resources at a node. All the objects in the node share com-
mon processing, storage, and communication resources encapsulated in the nucleus
object of the node.

As mentioned before, the engineering modelanimates the computational model.
The computational-level interactions between a pair of computational objects (or
their interfaces) are supported throughchannel structures in the engineering model.
A channel binds basic engineering objects in different clusters, capsules, or nodes.
The channel is a configuration of transparency objects, protocol objects, etc. which
provide distribution support.

The services and mechanisms currently identified in the engineering model are
generic in nature and can support distribution requirements of applications in a
broad range of enterprise domains (Telecoms, Office Information Systems, Com-
puter Integrated Manufacturing, etc.). However, domain-specific supporting func-

ODP ENGINEERING MODEL

4

tions will be defined in the domain-specific engineering models (which are the
specialization of ODP engineering model).

The following is a brief description of the engineering objects and structures cur-
rently identified in the ODP engineering model (figure 1). The objects and struc-
tures which are defined later in the text are italicized.

4.1 Basic Engineering Object: Basic Engineering Objects (BEOs) are the run time
representation of computational objects (obtained through compilation, interpreta-
tion or through some other transformation of computational objects) which encap-
sulate application functionality.

A basic engineering object is the corresponding computational object (computa-
tionally) enriched with extra interfaces to interact with objects in the channel. In
general, a computational object can be mapped onto a single basic engineering
object, but (because of refinement, decomposition, and replication) a computational
object will often map to several basic engineering objects.

BEO environment rules: It is an object all of whose interfaces are bound to either
other basic engineering objects in the samecluster or to (objects in the)channel. A
BEO is always bound to:

* a nucleus resources interface of thenucleus object (to access nucleus resources)

* a cluster manager object in the samecapsule (to enable object deactivation,
checkpointing, migration, etc.)

4.2 Cluster: A cluster is a configuration of basic engineering objects. Clusters are
used to express related objects (which belong to the same application) that should
be local to one another, i.e., those groups of objects that should always be on the
same node at all times.

Cluster environment rules: It is a partition of BEOs in acapsule such that members
of the partition have no interfaces bound directly to interfaces of objects in other
clusters. Objects within a cluster communicate directly, whereas objects in different
clusters interact throughchannels. A cluster is a:

unit of distribution: objects within a cluster must reside in the same capsule.

unit of storage: all objects in a cluster are stored and retrieved at the same time. It is
a unit of activation and deactivation to storage medium.

unit of migration: all objects in the cluster must move to the destination capsule
when migration takes place.

unit of operation: within a cluster there is no partial operation-if a cluster is opera-
tional (active) then all objects in the cluster are operational.

unit of interaction: objects within the cluster can communicate in non-ODP confor-
mant ways.

unit of replication: if an object needs to be replicated, all objects in the cluster must
be replicated.

ODP ENGINEERING MODEL

5

���������
	���
�������	���������	�	��
������������	������� �!�"�#%$'&("�)*$,+-#.+-/%��$,0,)* 1$'2435)*6478�9#:/� ;"�0,)* <3�=>)*35 ?6

� � @ � 	 � A � � @ � 	 � A

B B

B

@ C � A � � 	

@ D 3 0) 6
@ D 3 0) 6 @ D 3 0) 6

EF
GHH
IJ

� � � 	 K � � � � 	 K L

B B

M � M L

M N

� �

� L

� N

B B B B

M � C � A � � � M � 	 M O � � P

EF
GHH
IJ

EF
GHH
IJ

Q R S

Q T U R V W X Y Z W V [X \]U ^ _ [\ ` S V a ` a \ a b
U ^ _ [\ ` c b d Y ` [V c W Z Y d b [c e W X X [b f a g [

ODP ENGINEERING MODEL

6

unit of security: the same security policy applies to all the objects in the cluster.
Security is not an issue for interaction between objects in the same cluster.

unit of dependability: objects within the cluster have the same level of dependabil-
ity.

unit of availability: objects within the cluster have the same level of availability. A
cluster is not a unit of access control. Access control will have to be applied for
each requests to use objects in a cluster.

The environment of the cluster is shown in figure 2. Acluster template specifies the
initial configuration of objects in the cluster and an initialization activity. Cluster
template instantiation is performed by acapsule manager. A cluster can be in one
of two states:

active cluster: cluster instantiation creates an active cluster. An active cluster has
nucleus resources allocated to its objects. All objects in an active cluster are imme-
diately available for invocation.

passive cluster: deactivating an active cluster destroys the active cluster (object
deletion) and creates a passive cluster representing the same state.

A passive cluster has no nucleus resources allocated to it and is not available for
direct invocation. A cluster is passivated for resource management requirements.

4.3 Cluster Manager: A cluster is associated with a cluster manager which coor-
dinates the management of cluster. The cluster manager performs the operations of
activating a cluster, passivating a cluster, checkpointing a cluster, migrating a clus-
ter, and other policy specific operations.

4.4 Capsule: A capsule consists of clusters of basic engineering objects,transpar-
ency objects, andprotocol objects bound to a commonnucleus in a distinct address
space from any other capsule. A capsule provides to its clusters access to the
objects in thechannel and to the nucleus to which it is bound.

Capsule environment rules: It is a partition of basic engineering objects, transpar-
ency objects, protocol objects in anode such that objects in the capsule have no
interfaces bound directly to interfaces of objects in other capsules (except via
nucleus). A capsule is a unit of failure-if a capsule fails, all clusters in the capsule
fail. Clusters within the capsule cannot fail independently. A capsule consists of:

* active clusters;

* cluster manager objects, one for each cluster in the capsule;

* transparency stub, transparency binder and protocol objects for eachchannel
bound to an interface of a basic engineering object within any of the active clusters.

* a capsule manager. A capsule manager is bound to each cluster manager’s cluster
management interface.

An active cluster is always contained within a single capsule. A capsule is always
contained within a singlenode. The structure of a capsule is shown in figure 3.

ODP ENGINEERING MODEL

7

Capsule instantiation is performed by thenucleus object, with reference to acap-
sule template which specifies the initial configuration of objects in the capsule. A
capsule can be destroyed when it no longer contains any clusters capable of further
activity.

���������
	hL(
�Ai)� ?35=>)*3� <6jAi3�k5k
+- 1)*$'#l!m@nD'3�0,)*6- o+-/%B�	���0
Each capsule has an interface to the nucleus which provides:

* operations for (object’s) threads execution and synchronization (access to pro-
cessing resource of nucleus);

* operations for resource management (access to storage resources of nucleus);

* communication plugs and sockets (access to communication resources of
nucleus)

4.5 Capsule Manager: The capsule manager is responsible for the management of
clusters in the capsule. Each cluster manager in the capsule is bound to the capsule
manager.

4.6 Nucleus: A nucleus is an object that provides access to basic processing, stor-
age, and communication functions of anode for use by basic engineering objects,
transparency objects, protocol objects, bound together into capsules. A nucleus
may support more than one capsule (figure 1). A nucleus has the capability of inter-

Q Q

c p q

c S q

r

Q s

S

f t c p T t r

c b d Y ` [V

c e W X X [b
B � B 	 �A � A) 3 2B $ � B $ # 7 6 � � � +) + = + D@ � � � @ D 3 0) 6 � " # " ! 6 @ � � � @ " k 0 3 D 6 � " # " ! 6

ODP ENGINEERING MODEL

8

acting with other nuclei (through its communication function), providing the basis
for inter-capsule and inter-node communication.

�4�9�u���
	hN(
�AiM��
��@nM����
	v���w@nC���Ai����	
Nucleus environment rules: Nucleus supports the following interfaces:

* interfaces to access storage resources, called nucleusresource interface.

* interfaces to access nucleus communication facilities, calledplug and socket.

* interfaces to access processing resources, called nucleusinterpreter interface.

4.7 Node: A node consists of one nucleus object, a node manager, at least one fac-
tory object, and a set of capsules. All of the objects in a node share common pro-
cessing, storage, and communications resources.

A node is an engineering unit of resource independence; a node is a resource man-
agement domain. The procedure for node instantiation is outside the ODP frame-
work.

4.8 Node Manager: The node manager performs the bootstrapping of the node. It
initializes the services on the node. It is a repository of capsule templates.

c W Z Y d b [c b d Y ` [V
T T T T T

c p q c S q c p q

c e W X X [b Y

ODP ENGINEERING MODEL

9

4.9 Channel: A channel is a configuration oftransparency objects, protocol
objects, andinterceptor objects providing a binding between a set of interfaces to
basic engineering objects, through which interaction can occur. The structure of the
channel is dependent on the distribution function requirements of the interaction
between basic engineering objects. A general structure of the channel is described
in the next section.

4.10 Supporting Object: A supporting object is an object, outside a channel,
which cooperates with objects within the channel for the provision of distribution
transparency. The supporting objects are the repositories of information required by
the transparency objects andprotocol objects within the channel. For example, the
location transparency binder object registers and retrieves object locations via a
supporting object known as therelocator.

5. Structure of Channel

This section describes the generic structure of the channel which provides the bind-
ing between basic engineering objects. A channel supportsdistribution transparent
interaction between a pair of (interfaces to) basic engineering objects located in dif-
ferent clusters.

A channel template specifies a configuration oftransparency objects, protocol
objects, andinterceptor objects. It is parametrized by a set of communication inter-
faces. The configuration of the channel can be dynamically negotiated when estab-
lishing the binding between basic engineering objects.

The configuration of engineering objects in the channel provide the medium
through which (remote) interactions between basic engineering objects pass.

The channel is composed of a variety oftransparency objects. The transparency
objects that make up the channel are classified as eitherstub objects or binder
objects. Both stub objects and binder objects contribute to the provision of distribu-

Table 1: System Abstractions in Engineering Model

Engineering object System representation

Node single computer system, network of workstations managed by a distrib-
uted operating system, any autonomous information processing system
with independentnucleus resources and failure characteristics.

Nucleus processing, storage, and communication resources of anode.

Capsule the concept of address space in operating systems.

Cluster the concept of ‘linked’ modules to form an executable program image.

BEO the program module which may not be executed in isolation.

Channel the run time ‘binding’ between distributed BEOs

Transparency
object

Special purpose modules which enhance the operating system environ-
ment of thenode and can be dynamically linked into the distributed
application program.

ODP ENGINEERING MODEL

10

tion transparency between interacting basic engineering objects, but they differ in
that the stub objects actually modify the information exchanged across the channel,
while binder objects control various aspects of the binding between the interfaces
of remote basic engineering objects.

 Figure 4 is a simplified view of the channel that illustrates the object types used in
the structure. In practice, a channel may be much more complex than this and may
contain several different subtypes of stub objects, binder objects, etc., depending on
the transparency properties required.

The figure shows the client-half and server-half of a single channel object. If the
objects being bound are on different nodes, there is still conceptually only one
channel object created, i.e., there is not one channel object on one node and a differ-
ent channel object on the other.

5.1 Stub Object: An object which acts to a basic engineering object as arepresenta-
tive of another basic engineering object located in different clusters, thus contribut-
ing towards distribution transparency. Stub objects are configured with basic
engineering objects for the purpose of hiding certain aspects resulting from distri-
bution (or heterogeneity).

The stub objects have direct access to the basic engineering objects. The operation
invocations on the interfaces of basic engineering objects areintercepted by stub
objects to hide some aspects of distribution such as concurrency in the system or to
modify the information exchanged between basic engineering objects, thus mask-
ing the heterogeneity in the distributed system.

Stub objectsadd further interactions and/or information to interactions between
interacting basic engineering objects to support distribution transparency. As an
example, a stub object may provide adaptation functions such as marshalling and
un-marshalling of operation parameters to enableaccess transparent interactions
between interfaces of basic engineering objects.

Examples of stub objects includeaccess transparency object and concurrency
transparency object discussed in the next section.

Stub environment rules: Basic engineering objects are always bound to the stub
objects. Stub objects within a channel can interact with one another using other
objects in the channel, or via interaction with supporting objects outside the chan-
nel. Stub objects are always bound to binder objects.

5.2 Binder Object: An object whichcontrols andmaintains the binding between
interacting basic engineering objects, contributing towards the provision of distri-
bution transparency.

Binder objects maintain the binding between basic engineering objects, even if they
migrated, reactivated at new location, or are replicated.

Examples of binder objects includelocation transparency object, migration trans-
parency object, replication transparency object, failure transparency object, and
resource transparency object.

Binder environment rules: Stub objects are bound to binder objects. Binder objects
interact with one another to maintain the integrity of the binding between the inter-

ODP ENGINEERING MODEL

11

acting basic engineering objects. Binder objects in the channel can interact with one
another using other objects in the channel, or via interaction with supporting
objects outside the channel. Binder objects are interconnected by protocol objects.

���������
	vx(
�Ai���y�5���9����	��z��	���	��
�9@{@n|�C�����	��hAiM��
��@nM����
	
5.3 Protocol Object: An object which encapsulates communication protocol func-
tionality for supporting communication between basic engineering objects. A chan-
nel may be composed of a number of protocol objects corresponding to different
communication support requirements of interactions between basic engineering
objects. Protocol objects interact with other protocol objects to support interaction
between basic engineering objects.

Protocol environment rules: When protocol objects are in different (administrative)
domains they interact via an interceptor. When they are in same domain they inter-
act directly.

5.4 Interceptor Object: An object which masks administrative and technology
domain boundaries by performing transformation functions such as protocol con-
version, type conversion etc. It enables interactions to cross administrative and
communication domains, thus contributing towardsfederation transparency.

TRANSPARENCY SYSTEM

Configuration
of Transparency
Stubs

Configuration
of Transparency
Binders

Configuration
of Transparency
Stubs

Configuration
of Transparency
Binders

of Protocol
Objects

Protocol
Objects

Interceptor

Stub
Supporting
Objects

Binder
Supporting
Objects

BEO BEO

@ + # } ! 3 ") $ + #
+ / � +) + = + D� 2 ~ 6 =) 0

@ + # } ! 3 ") $ + #

@ | C � � 	 �

ODP ENGINEERING MODEL

12

Interceptor Rules: In order to perform interception, interceptors need access to the
types of the basic engineering object interfaces they interconnect.

For interaction to occur, basic engineering objects must agree on a (number of)
transfer syntax capable of representing data types including interface references,
operation names, termination names, etc.

Channel Rules: When a channel connects basic engineering objects in capsules sup-
ported by a common nucleus object, i.e., in the same node, all of the protocol and
interceptor objects in the channel structure can be omitted.

When a channel connects basic engineering objects with no requirement for distri-
bution transparency to support interactions between them, the stub and binder
objects can be omitted from the structure.

6. Transparency System

 Distributed systems exhibit a number of properties, inherent in distribution, not
found in centralized systems. Consequently, an application designed to work on a
distributed system must take these additional properties into account. However, it
need not be the case that the application designer has to deal explicitly with these
properties, if these properties are made transparent. The complexities of distributed
systems may be hidden through the notion of distribution transparencies defined by
ODP.

The concept of distributiontransparency is related to the notion ofabstraction,
where irrelevant details are ignored. Distribution transparency is the property of
hiding from the user (in the computational environment) some aspects of the poten-
tial behavior of the underlying ODP infrastructure.

This section describes a distribution transparency system that binds a pair of basic
engineering objects within thechannel of the engineering model. The engineering
model, currently, identifies a set of transparency mechanisms, which are by no
means exhaustive. There is scope for the definition of more generic distribution
transparencies in the engineering model. The distribution transparencies, so far
identified, can be used in a broad range of enterprise domains. However, enterprise
specific transparency requirements will be identified in the enterprise specific engi-
neering models. It is through the definition of a suitable repertoire of transparency
objects that the ODP infrastructure can be made sufficiently flexible to meet a wide
range of enterprise requirements.

6.1 Transparency Support through Stubs and Binders: The transparency objects
cooperate to perform thetransparency function by bringing uniformity to some
aspect of the distribution of the engineering objects they support. Some forms of
transparency require supporting services: for example, if basic engineering objects
can move from one location to another, a means of recording and discovering the
current location of the object is required. Supporting functions are modelled as
engineering objects so that the architecture provides a maximum degree of configu-
ration flexibility. Thetransparency system is composed of stub objects and binder
objects in the channel, and supporting objects outside of the channel.

As mentioned in the previous section, the engineering model classifies transparency
objects as either stub objects or binder objects. While stub objects address masking
of some aspects of distribution - those arising due to the presence ofheterogeneity

ODP ENGINEERING MODEL

13

andconcurrency in the distributed system, the binder objects address aspects of dis-
tribution resulting from change of location of objects. The migration of the object
may be necessitated, in distributed systems, by any of the following reasons:

1. load balancing, reduction of access time, etc. This aspect of distribution is
masked by thelocation transparency binder and themigration transparency binder.

2. failure of object at one location and its reactivation at another location. This
aspect of distribution is masked by thefailure transparency binder.

3. unavailability of (nucleus) resources at one location and its (re)activation at
another location. This aspect of distribution is masked by theresource transparency
binder.

4. replication of objects at different locations. For example, if the server object is
replicated, then it is required to maintain the binding between the client and the set
of replicated server objects. Changes to the membership of the replica group, such
as addition of a server object, would require establishing the binding with the new
member.

In all these cases the binding between the basic engineering objects is susceptible to
be broken down, resulting in disruption of the service to the client. The binder
objects attempt to maintain the integrity of the binding between basic engineering
objects. Hence, they are called transparencybinder objects. The location transpar-
ency binder provides the basic service. All other binders require the support of the
location transparency binder.

6.2 Selective Transparency: In ODP, the application designer can select the level
of transparency needed in a design and have full control of other aspects by turning
off some transparencies. As a general rule, a transparency is supported by placing
the corresponding transparency object between the user and the system, which acts
as a filter to hide unwanted system features from the user. By removing the object
(i.e., turning off the transparency) the user can explicitly deal with the system.

ODP permits distribution transparency to be selectively enabled in any binding
between basic engineering objects and specifies channel configuration rules to
achieve or avoid specific transparencies.

7. Distribution Transparencies

The following transparencies have been identified in the ODP engineering model,
as important in distributed systems. The concept of transparency is viewed as the
corner stone of ODP standardization. A brief description of each transparency,
based on the concept of client and server objects (or client and server interfaces), is
outlined below with respect to what aspect of distribution is masked by the trans-
parency, the result of applying the transparency and a brief description of the trans-
parency mechanism:

1. Access Transparency

2. Concurrency Transparency

3. Location Transparency

ODP ENGINEERING MODEL

14

4. Migration Transparency

5. Replication Transparency

6. Resource Transparency

7. Failure Transparency

8. Federation Transparency

These transparency mechanisms provide an enhanced environment positioned on
top of the low-level operating systems and communications facilities of the distrib-
uted platform, for the support of distribution transparent programming environment
offered by the computational model.

The technique for providing any transparency service is based on the single princi-
ple of replacing an original service by a new service which combines the original
service with the transparency service, and which permits clients to interact with it
as if it were the original service. The clients need not be aware of how these com-
bined services are achieved.

Since the interaction between the objects occur at their interfaces, these transparen-
cies are applicable to individual interfaces or to specific operations of the inter-
faces. An interface may have a set of transparency requirements which may be
different from those of other interfaces of the same object.

7.1 Access Transparency

Hides: It hides from a client object the details of the access mechanisms for a given
server object, including details of data representation and invocation mechanisms
(and vice versa). Access transparency hides the difference between local and
remote provision of the service.

Transparency Mechanism: The mechanisms for the provision of access transpar-
ency (between interacting client and server objects) are encapsulated inclient
access transparency stub and server access transparency stub. These two stubs
together provide access transparency to the client and server basic engineering
objects.

The client access transparency stub acts as a proxy for the server object, offering
the server interface locally. It accepts the client’s local invocation (e.g., a procedure
call) and converts (marshals) the operation name and parameters into a request
message using some agreed transfer syntax.

The request message is sent to the server access transparency stub object which
unmarshals the operation name and parameters from the request message and
makes a local call to the server.

The termination name and the associated result parameters returned by the server
(in response to operation invocation) are marshalled into a response message by the
server access transparency stub.

ODP ENGINEERING MODEL

15

When the response message arrives at the client access transparency stub, it is
unmarshalled and the response is returned as an operation termination (e.g., a local
call return) to the client basic engineering object.

Access transparency implies that there is only one invocation mechanism for both
local and remote services. The services must also appear the same and this can be
done either by making the service appear to be local or by making it appear to be
remote regardless of which has actually been provided.

Making the service appear remote means that the user of the service must allow for
communication failure responses although the probability of such a response from a
local service is zero.

Making the service appear local means introducing a transparency mechanism
which intercepts the communication failure responses and does something about
them. The mechanism may incorporate a recovery strategy that attempts to achieve
the desired result or it may report some kind of failure that is possible for the local
service. The options for the recovery strategy may depend upon which other trans-
parencies are in force.

Result of application of transparency: Access transparency enables interworking
across heterogeneous computer architectures operating systems and programming
languages.

7.2 Concurrency Transparency

Hides: It hides from the client the existence of concurrent accesses being made to
the server. Concurrency transparency hides theeffects due to the existence of con-
current users of a service from individual users of the service.

Basically, this transparency masks scheduling of operation invocations that act on
shared state to satisfy the ACID properties discussed below.

Transparency mechanism: The mechanisms for the provision of concurrency trans-
parency (to the client object from the concurrency existing at the server object) are
encapsulated in theconcurrency transparency stubs in the client and server side of
the channel. This transparency is achieved by the realization of the following prop-
erties, referred to as ACID properties:

1. Atomicity: This property ensures that the effect of an operation is “all-or-noth-
ing”; it should either complete or leave the state of the system unchanged. This can
be achieved by adding ‘commit’ or ‘revert’ results in the terminations ofatomic
operations. It requires the use of commitment, coordination and recovery mecha-
nisms by which an activity threaded through multiple computational objects can
negotiate whether to confirm to a set of potential (distributed) state changes, or to
move back (revert) to the original (distributed) state.

2. Consistency: The “serializable” property of consistency preserves the integrity of
distributed object state by preventing interference between concurrent activities. It
ensures that invocations are scheduled with maximum concurrency and without
conflict. It can be achieved by associating ordering predicates with interfaces,
where the predicate describes the permitted sequence of non-conflicting invoca-
tions. It requires the use of mechanisms for the generation of serializable (or consis-
tent) schedules and of the locking mechanisms for reading and writing shared state.

ODP ENGINEERING MODEL

16

3. Independence: The independence orisolation property controls the way in which
the results of atomic activities (and their sub-activities) become visible to others.
The property ensures that partial results of an operation (intermediate states) are not
visible to other operations until they are ‘committed’ or ‘reverted’ back. This prop-
erty not only avoids the problem of interference but also the related problem of cas-
cading reversions.

4. Durability: The “permanence of effect” property of durability is concerned with
making the effects (commit or revert) of atomic operations permanent. It requires
the provision of failure resilient repositories for recording copies (versions) of the
effects of committed and reverted atomic activities.

Result of application of transparency: The ACID properties together aid in the pro-
vision of concurrency transparency and mask anyeffect due to other concurrent
users of a service from individual users of the service.

7.3 Location Transparency

Hides: It hides from a user (client) where the object (server) being accessed is
located.

Transparency mechanism: Objects (and their interfaces) in a distributed system
may change their location to achieve load balancing or to reduce communication
latency, they may be checkpointed and restarted at different locations, or an object
(and hence its interface) can be accessed by several (protocol) paths and hence sev-
eral network level names by which it is known.

Location transparency implies that there is some sort of mapping from the symbol
that identifies a service to something that identifies the location of the provider of
the service. Like other transparencies, location transparency within the engineering
model controls the visibility of certain kinds of failure (in the computational
model). As an example, an operation invocation may fail if the symbol that identi-
fies a service contains location information and the service is not at the specified
location (due to migration), and a response given to the invoker saying “service not
known here”. With location transparency in place, such a response in not possible.
The location transparency mechanisms locate the service and redirect operation
invocations to changed location.

In the ODP engineering model, the mechanisms for the provision of location trans-
parency between two basic engineering objects are encapsulated in thelocation
transparency binders in the client and server of the channel and in the supporting
object (outside the channel) known as therelocator. A relocator is a repository of
interface locations which is updated whenever an interface (supported by the
object) changes its location. The location binder objects have two main functions:

* to inform the relocator of the location of the interface it supports

* to obtain the location of the migrated interface from the relocator.

The location transparency binders typically cache location information. If the loca-
tion of the interface changes, the use of old location will cause an error. The loca-
tion transparency binder object will then obtain the new location from the relocator
object and re-invoke the operation. This activity remains transparent to the commu-
nicating basic engineering objects.

ODP ENGINEERING MODEL

17

Result of application of transparency: Object invocations are location independent.

7.4 Migration Transparency

Hides: Migration transparency hides from the user of the service (client) the effects
of the provider of the service moving from one location to another, during the pro-
vision of the service (between successive operation invocations).

Location transparency is a static transparency in the sense that it is assumed that
once located the interface remains at its location (until the binding between the
involved interfaces is broken). Migration transparency is the dynamic case which
arises if the server interface can move while the client object is interacting with it,
without disturbing those interactions.

Transparency mechanism: A service is migration transparent if a user of that ser-
vice is unaware of change of location that takes place while an invocation is in
progress. A non-migration-transparent service includes a “moved” response that
indicates that the service has moved to a different location during the invocation of
an operation. A migration transparency mechanism would catch this response and
take recovery action.

Migration transparency requires mechanisms to cleanly disconnect an object
(i.e.,cluster) from the source location (sourcecapsule) and plant it in destination
location (destinationcapsule). All local interface references in the object must be
converted to remote ones and, if interactions with other objects are in progress, the
state of these interactions must be preserved at the destination site and the appropri-
ate redirections left behind at the source site. It may be that requiring that an object
be idle before it migrates is a reasonable restriction. Objects must be passivated
before migration, and reactivated afterwards. The bottom level mechanism will be
an operationfreeze which returns a passive representation of the object (cluster)
and athaw operation to convert the passive representation back into an active
object.

Result of application of transparency: The relocation of the servers from one loca-
tion to another, while the clients are interacting with them, is made transparent to
clients.

7.5 Replication Transparency

Hides: Replication transparency, also known asgroup transparency, hides the pres-
ence of multiple copies of services and the mechanisms for maintaining the consis-
tency of multiple copies of data, from the users of the services.

It enables a set of objects (their interfaces) organized as areplica group to be coor-
dinated so as to appear to interacting objects (or their interfaces) as if they were a
single object (interface).

There are two main aspects of replication transparency. The first hides the differ-
ence between a replicated and a non-replicated provider of a service from users of
that service, and the second hides the difference between replicated and non-repli-
cated users of a service from providers of that service.

ODP ENGINEERING MODEL

18

Replicated service providers: A non-transparent replicated service appears as a set
of services. The user of the service would invoke some or all of these servicessep-
arately, and thencollate all of the results.

A replication transparent provision of this service would appear to be of the same
type as the one of the services in the set (referred to as theserver group). The trans-
parency mechanism is responsible for selecting the members to which the client
operation invocations are to be directed and then collating the results; it has the
non-transparent view described above. This full transparency is typically used to
provide failure resilience, dependability, performance, etc., but may also be used to
spread the work over a number of servers.

Replicated service users: The user of a service may be replicated, and in this case it
will be called aclient group. This means that there will be multiple requests from
different objects for what is really a single invocation. The transparency mechanism
must intercept all of the requests and present a single request to the service provider
(which may itself be replicated). It must also deliver the response to all of the
requestors.

Replication types: There are two types of replication schemes:active replication
andpassive replication.

In anactive replication mechanism every member of a replica group receives every
invocation made on the group and computes its own result.

In a passive replication scheme only one member of the replica group computes a
result in response to an invocation, while the other members record a trace of
requests and responses. The active member checkpoints itself to other members. If
the active member fails, another member takes over.

Transparency mechanism: It is possible for a singleton client to invoke a replicated
server, for a replicated client to invoke a replicated server, or for a replicated client
to invoke a singleton server. The case of a singleton client invoking a singleton
server may be treated as a special one where the client and server group member-
ship is one.

Replication requires the use of functions such asdistribution, collation, ordering,
coordination, recovery, andgroup membership. The basic mechanism to achieve
replication is the use ofatomic broadcast protocols.

In the ODP engineering model, the replication transparency mechanisms are encap-
sulated in thereplication transparency binders in the client and server side of the
channel.

Result of application of transparency: Users are unaware of multiple providers of
the service and need not concern about making multiple operation invocation or
dealing with multiple responses.

7.6 Resource Transparency

Hides: It hides from a user (client) the mechanisms which manage allocation of
resources by activating or passivating (server) objects as demand varies. It also
implies the hiding of deactivation and reactivation of (server) objects from the cli-
ents.

ODP ENGINEERING MODEL

19

Resource transparency, also known asliveness transparency, masks the automated
transfer ofclusters from acapsule to astorage object and back again, to optimize
the use of the node’s nucleus resources (processor, memory, etc.).Active objects
have nucleus resources (e.g., processor, memory, etc.) required for execution, while
passive objects do not.

Transparency mechanism: Objects that are not actively in use may be transferred
from the execution environment to storage (passivated) and then brought back to
the execution environment (reactivated) when a (remote) operation invocation is
made on them. Thus, resource management policies may lead to objects (hence
their interfaces) being requested to move from one location to another and undergo-
ing a change in representation.

Resource transparency requires the functions for passivating and activating objects.
The resource transparency mechanisms are encapsulated in theresource transpar-
ency binder object on the server side of the channel.

Result of application of transparency: Clients can invoke operations on the server
irrespective of whether the server is currently active or passive.

7.7 Failure Transparency

Hides: Failure transparency masks (certain) failure(s) and possible recovery of
server objects from the client objects, thus providing fault tolerance.

Transparency mechanism: Failure transparency requires the mechanisms for peri-
odically checkpointing the object state, and for itsrecovery. Failure transparency is
achieved by saving the checkpoints of the (server) object at another location with
independent failure characteristics and subsequently reactivate the object from that
checkpoint if the active object fails.

Failure transparency mechanisms are encapsulated in thefailure transparency
binder object on the server side of the channel.

Result of application of transparency: Clients do not get a failure response, for cer-
tain types of failures of server object, in the operation termination.

7.8 Federation Transparency

Hides: Federation transparency hides the effects of operations crossing multiple
administrative boundaries from the clients.

Transparency mechanism: Servers of the clients may be located in administrative
domains or technology domains other than the one in which the client is located.
Administrative domains may impose their own access control policies for such pur-
poses as security, accounting, monitoring, etc. Between technology domains proto-
col conversion, name translation, etc., may be required.

Federation transparency mechanisms are provided byclient federation transpar-
ency stub, server federation transparency stub, gateways andinterceptors.

Result of application of transparency: It permits interworking across multiple
administration and technology domains.

ODP ENGINEERING MODEL

20

8. References

[1]. Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model
of Open Distributed Processing - Part-1: Overview.

[2]. Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference
Model of Open Distributed Processing - Part-2: Descriptive Model.

[3]. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference
Model of Open Distributed Processing - Part-3: Prescriptive Model.

[4]. Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model
of Open Distributed Processing - Part-4: Architectural Semantics.

Table 2: ODP Distribution Transparencies

Transparency Central Issue Result of Transparency

Access The method of access to objects
(invocation mechanism and data rep-
resentation).

Clients need not be aware ofaccess
mechanisms at the server interface.

Concurrency Concurrent access to objects in the
distributed system.

Clients are masked from the effects of
concurrent access to the server inter-
face.

Location Location of object in the distributed
system.

Clients are unaware of the physical
location of the server.

Migration Dynamic re-location of objects during
the “bind-session”.

Clients are unaware of the dynamic
migration of the server.

Replication Multiple invocations on replicated
objects, multiple responses, and con-
sistency of replicated data.

Client invokes a replicated server
group as if it were a single server.
Distribution of requests, collation of
responses, consistency of data, and
membership changes are hidden.

Resource Resource management policies of the
node (deactivation and reactivation of
objects).

Client unaware of the deactivation
and reactivation of the server.

Failure Partial failure of object in thenode. Client unaware of the failure of the
server and its subsequent reactivation
(possibly at another node).

Federation Pan-organizational boundaries. Clients unaware of interactions cross-
ing administrative and technology
boundaries.

ODP ENGINEERING MODEL

21

[5]. Proceedings of the IFIP TC6/WG6.4 International Workshop on Open Distrib-
uted Processing (October 1991), North Holland 1992.

[6]. Proceedings of the International Conference on Open Distributed Processing
(September 1993), Berlin.

[7].Proceedings of the First Telecommunication Information Networking Architec-
ture Workshop, (TINA 90), Lake Mohonk, New York, USA, June 1990.

[8]. Proceedings of the Second Telecommunication Information Networking Archi-
tecture Workshop, (TINA 91), Chantilly, France, March 1991.

[9]. Proceedings of the Third Telecommunication Information Networking Archi-
tecture Workshop, (TINA 92), Narita, Japan, January 1992.

[10]. Proceedings of the Fourth Telecommunication Information Networking
Architecture Workshop, (TINA 93), L’Aquila, Italy, September 1993.

[11]. ANSA Reference Manual, Volume A., Release 01.01, Advanced Projects
Management Limited, Cambridge, U.K., JUly 1989.

[12]. ANSA Atomic Activity Model and Infrastructure, AR.004.01, February 1993,
Architecture Project Management Limited, Cambridge, U.K.

[13]. ANSA: A System Designer’s Introduction to the Architecture, RC.253.00,
April 1991, Architecture Project Management Limited, Cambridge, U.K.

[14]. ROSA Architecture (Release Two), 5th Deliverable, RACE Project R1093,
May 1992.

