
- 1 -

 An Introduction to LOTOS: Learning by Examples1

Keywords: Concurrent languages, Formal Description Techniques, Open Systems
Interconnection, specification languages, LOTOS.

1. Introduction

1.1 Motivation

This paper should be seen as a companion to the small number of LOTOS tutorials existing today.
Bolognesi and Brinksma’s paper [BB 87], the only one in print in English we are aware of at the
time of writing this paper, concentrates on the theoretical foundations of the language. We
intentionally avoid discussing certain important aspects of the language that are covered in [BB
87], such as formal definitions of LOTOS concepts, inference rules and behavioral equivalences.
While we consider this tutorial self-contained, the novice reader is encouraged to first read this
tutorial and then consult [BB 87] to obtain a broader view of LOTOS. Also, the descripion of ACT
ONE, the data part of LOTOS, is left to another paper appearing in this issue [MRV 91]. We
introduce LOTOS by using examples, with the aim of showing readers that the language, from a

1. Corrected version of the paper appeared in Computer Networks and ISDN Systems 23 (1992) 325-342

L. Logrippo, M. Faci, M. Haj-Hussein

University of Ottawa
Protocols Research Group

Department of Computer Science
Ottawa, Ontario, Canada K1N 6N5

E-mail: lmlsl@uottawa.bitnet

Abstract. An informal, design-oriented introduction to the specification language
for distributed systems LOTOS is presented. Examples based on variations of the
well-known producer-consumer problem are used to illustrate the different aspects
of the language.

- 2 -

design point of view, offers the power of expressing abstract ideas in precise terms.

1.2 The Origin of LOTOS

LOTOS is a by-product of the effort of standardization of the Open Systems Interconnection (OSI)
within the International Organization for Standardization (ISO). As this work started in the late
seventies, it was realized that for OSI standards to be effective, they had to be precisely described.
The term Formal Description Techniques was then coined (FDTs), to refer to techniques for the
exact specification of protocols and services.

Some of the main desirable characteristics of the FDTs were recognized to be:
abstractness, implementation-independence, formal semantics and support of verification
methods. It was soon realized that no suitable FDT existed yet, so a committee was set up in 1979
to work towards the definition of such an FDT. The committee became known as the FDT Ad-hoc
Group of ISO/TC 97/SC 16/WG 1 (SC 16, to become later SC21, being the Subcommittee in
charge of standardizing the higher layers of the OSI, and WG 1 being the Working Group in charge
of developing the basic architectural concepts of the OSI).

The first Rapporteur of the FDT group was John Day, who soon resigned in favor of Chris
Vissers. After some initial meetings, where the existing methods were evaluated and directions
charted, the FDT group found it impossible to agree on a common conceptual model. Two main
subgroups were established: Subgroup B, which was to work on an Extended Finite State Machine
Model, and Subgroup C, which was to work on a Temporal Ordering Technique. Subgroup B
eventually produced the Estelle standard [ISO3 89], while Subgroup C produced LOTOS [ISO1
89]. The first Chairman of Subgroup C was Chris Vissers.

The year 1983 saw several important developments. Ed Brinksma, who had joined the
group the previous year, became Chairman of Subgroup C. He maintained the technical direction
of the Subgroup until the end, and he was the editor of the final International Standard as well as
of the several drafts. The direction of work became firmly established in the course that led to
LOTOS: the language was to be based mostly on Milner’s Calculus of Communicating Systems
(CCS) [Mil 89], although Hoare’s Communicating Sequential Processes (CSP) [Hoa 85] was also
quite influential. In the same year, the language acquired its name, which is an acronym for
Language Of Temporal Ordering Specifications.

In 1984, it was decided that Ehrig and Mahr’s ACT ONE [EM 85] was to be used as the
basis for the definition of data types. The first version of the language came to light in 1985, and
was published as ISO Draft Proposal 8807. The semantics of LOTOS were defined on the basis of
a simpler language, called CCS*, which extended CCS.

- 3 -

The following months brought about considerable discussion on possible improvements of
the language. A. Tocher, then a student of C.A.R. Hoare, proposed the introduction of CSP-like
multi-way synchronization in the language. To illustrate what improvements in expressiveness this
would bring about, he demonstrated the concept of constraint-oriented style [VSVB 91] [Tur
88a][FLS 90] with application in the specification of a simplified Transport Service (this
constituted the first draft of what has become the current Draft Technical Report on the LOTOS
specification of that service [ISO2 89]). Bolognesi, DeNicola, and Latella showed how CCS*
could be disposed of, and a more natural, one-level definition of the language could be devised.

These discussions led to the language as it is known today, of which a first version appeared
in the Second Draft Proposal of 1986. Readers of early LOTOS papers should beware that those
papers relate to a language (the one of the 1985 Draft Proposal) that has some subtle, but important
differences with respect to current LOTOS. In 1986, the first interpreter that supported the full
language of the 1985 Draft Proposal, was produced at the University of Ottawa [LOBF 88]. What
followed was mostly refinement and completion. The static semantics, which must relate concepts
of the control and the data parts, required a particularly elaborate effort.

The language was substantially complete in 1987, but it had to wait until 1989 to become
an International Standard [ISO1 89]. In 1988, with the end of the SEDOS project, a number of tools
(including an interpreter) and technical reports on the language, as well as a book [VVD 89],
became available. Current work concentrates on the application of the language, and on the
development of the theory and tools. In order to allow this work to proceed on a firm basis, the ISO
has decided to temporarily disallow changes and enhancements, however at the time of writing
(early 1991) modifications to improve the user-friendliness of ACT ONE are being envisaged.
Work on the development of a graphic presentation for LOTOS started as a joint project of ISO
and CCITT in 1988, and is now almost complete (responsible for this project are Elie Najm and
Paul Tilanus).

As is common in the case of standards, the membership of the LOTOS group varied from
meeting to meeting, and several people who did not attend meetings regularly also gave valuable
contributions.

Another brief account of the development of LOTOS is given in [VCA 89].

1.3 LOTOS Principles

Some of the principles that have inspired the design of LOTOS are:

1. Complementary formalisms for ’data’ and ’control’ . LOTOS designers felt that no single
existing formalism was general enough to express conveniently both the control component

- 4 -

and the data component of a specification. Accordingly, the language was conceived as the
union of two formalisms: ACT ONE for the data part, and the CCS/CSP-based language
discussed in this paper for the control part.

2. Formal definition: Formally defined syntax, static semantics, and dynamic semantics. In
particular, the static semantics are defined by an attributed grammar [ISO1 89], and the
dynamic semantics are described operationally in terms of inference rules [BB 87].

3. Process algebra: Following Milner’s ideas, the operational semantics are defined in such
a way that it is possible to prove a rich set of algebraic equivalence properties, based on
several types of equivalence relations. These properties can be used in order to prove
equivalence or correctness of specifications, as well as to transform the structure of a
specification. Several examples of these properties are given in this paper.

4. Interleaving concurrency: Events are considered to be atomic, and thus the parallel
execution of two events a and b is defined as a situation of choice, where a can occur before
b, or vice versa. Therefore, any LOTOS behavior expression can be rewritten as an
expression consisting of a choice between behavior expressions, each prefixed by a single
action (i.e., expansion theorem [Mil 80], [Mil 89]). This principle is used in our paper,
where we explain the operators by examples for which we show the expansion.

5. Executability: Because LOTOS semantics are defined operationally, it is possible to
implement these semantics in an interpreter, which for a behavior expression can
enumerate the set of possible next actions [LOBF 88][V 88], and the behavior expressions
resulting by the execution of each one of them (this is another application of the expansion
theorem). Although this set can be infinite, in many cases it can still be described in finite
terms. This means that LOTOS specifications can be written, without difficulty, in such a
way as to be interpretable, or even, with some user-supplied information, to be translatable
into a program [MM 89]. Such specifications can be taken to be fast prototypes of the entity
specified.

6. Modularity and module reusability: LOTOS favors stepwise decomposition of processes.
By using parameterization, these processes become reusable.

Much of the power of LOTOS is the result of the power of the parallel composition
operator, and of the concept of process rendezvous, which is called process synchronization. Their
semantics are quite different from those found in most common programming languages. The
following are some of the salient characteristics of these concepts:

1. Multiway synchronization: While much of LOTOS semantics are based on CCS, the
multiway synchronization concept was borrowed from Hoare’s CSP. In order for
synchronization to occur, a number of processes may have to participate, as will be
described below.

2. Symmetric synchronization: As mentioned above, all processes that participate in a
synchronization cooperate in it equally, in particular there is no concept of a process

- 5 -

initiating the synchronization and others responding. For example, while it is often thought
that in an output operation a producer process transfers information to a passive external
environment, in LOTOS one says that both the producer process and the environment
participate in establishing the value being output. There is no directionality in this concept,
although some processes may have more information on the value to be established than
others.

3. Anonymous synchronization: A process that is ready for a synchronization proposes the
synchronization to its environment, without being able to direct its proposal to a specific
process. It is the structure of the system where the process is embedded that decides which
processes will have to participate for a synchronization to occur. Process identification can
be specified as an exchange of appropriate values (Section 3.2).

4. Nondeterministic synchronization. Often more than one synchronization is possible. One
only will be executed according to a nondeterministic choice (Sections 2.4 and 2.6).

 A behavior expression represents a state of a process. A predefined set of operators is used
to combine actions and behavior expressions to form other behavior expressions. There are two
predefined behavior expressions, stop, which denotes deadlock (or inaction) and exit, which
denotes successful termination. LOTOS process definitions are named behavior expressions,
similar to procedures in a programming language. Process instantiation is similar to procedure call.

 The behavior expression of a process determines which actions (or events) are possible as
next actions of the process. There are actions that a process can execute independently, these are
represented by the internal action i. And there are actions that need synchronization with the
environment in order to be executed. These are offered at synchronization points called gates. The
environment of a process consists of other processes, or some external (i.e. non-LOTOS) world
that can be a human observer. When an action is executed, the behavior expression of the process
is transformed into another behavior expression. It is the inference rules of the dynamic semantics
that determine which actions can be offered and executed by a process and how behavior
expressions are transformed by effect of the execution of actions. For instance, we shall see that
the behavior expression a; B evolves into behavior expression B after executing action a.
Similarly, a; A [] b; B evolves into behavior expression A after executing action a.

1.4 Notation

 Throughout this paper, we use upper case letters (A, B, C,) to denote behavior expressions and
lower case letters (a, b, c, ...) to denote actions. Process names are written in Bold_italics with
capital initials, LOTOS keywords are written in bold.

- 6 -

2. Basic LOTOS

Basic LOTOS, also called pure LOTOS, is a subset of the language where process
synchronization is achieved, but with no data exchange (in other words, no data types are used). In
basic LOTOS, an action denotation is simply the identification of a gate.

2.1 The Example

The example that we have chosen for this tutorial is the classic problem of a producer and a
consumer communicating by means of a channel. In order to explore all LOTOS operators, we
will use the same problem with different formulations to suit our illustrative needs.

Formulation 1: A LOTOS specification for the producer-consumer problem with a two-place
channel is to be provided. The channel, which handles two types of messages, is FIFO (First In,
First Out); it may not lose or reorder messages. The producer must produce exactly two elements
and then terminate. Similarly, the consumer must consume both elements and then terminate. The
channel synchronizes with the consumer only after it has finished interacting with the producer.

2. 2 Structure of the Specification

One way to structure the producer-consumer specification is to decompose the problem into three
processes, specify each process separately and then compose them to obtain the final solution. At
this point, the reader should not be concerned with the question of how the three processes fit
together. Rather, it is more important to understand how each process behaves independently with
respect to its own environment. Section 2.7 deals with process composition.

2.3 The Action Prefix Operator

The action prefix operator, written as a semi-colon ;, expresses sequential composition of actions.
This operator is used to sequentially order actions. For example, a; B denotes a behavior where
action a must be executed before the behavior expression B. The producer, as a separate entity,
can be seen as a black box, which synchronizes with its environment through two synchronization
points, pc1 and pc2. It performs three actions: it produces two elements and then exits. The process

pc1

pc2

cc1

cc2

ConsumerChannelProducer

- 7 -

Producer can then be specified as follows:

process Producer [pc1, pc2] : exit :=
 pc1; pc2; exit

endproc

Producer synchronizes with its environment through two gates pc1 and pc2, which are
formal gates. Actual gates must be specified at instantiation time (Section 2.10). The keyword
exit, in the process definition, indicates that the process is able to execute an exit at the end, i.e. to
successfully terminate. In LOTOS terminology, we say that this process has functionality exit. The
functionality of a process can be either exit if the process is able to successfully terminate or
noexit otherwise [BB 87]. Successful termination means that execution can continue to other
processes, as will be seen in Section 2.5.

 Similarly, the behavior of Consumer can be written as:

process Consumer [cc1, cc2] : exit :=
 cc1; cc2; exit

endproc

Finally, the behavior of the Channel, which synchronizes on its left with Producer and
then synchronizes on its right with Consumer, is given by the following process:

process Channel [pc1, pc2, cc1, cc2] : exit :=
 pc1; pc2; cc1; cc2; exit

endproc

At this point we are ready to compose all three processes to obtain the complete system.
However, this requires the knowledge of some other operators, called parallel composition
operators, which are suited for exactly that purpose. The composition will be given in Section 2.7.

2.4 Choice Operator

To illustrate the use of the choice operator, let us reformulate the problem.

Formulation 2: Modify the specification so that the channel may deliver the first element,
produced by the producer, to the consumer before the second element is put in the channel.

To satisfy this new requirement, we need the choice operator [], which denotes the choice
between two or more alternative behaviors. In this case, the Channel process must first

- 8 -

synchronize with the Producer on gate pc1 and then either synchronize with the Producer a second
time, on gate pc2, or synchronize with the Consumer, on gate cc1. Once the choice between pc2
and cc1 is made, the other alternative is ignored. In other words, if pc2 is chosen, then the behavior
of Channel becomes cc1; cc2; exit otherwise, the behavior of the channel becomes pc2; cc2; exit.
The choice operator is commutative and associative. So, A [] B is equivalent to B [] A and
A [] B [] C is equivalent to both (A [] B) [] C and A [] (B [] C).

In this paper, the term behavior A is equivalent to behavior B means that the sequences of
actions which behavior A is capable of offering, according to an outside observer, are the same as
those which behavior B is capable of offering. For example, a; i; b; stop is equivalent to a; b; stop.
For a formal discussion of observational equivalence, see [BB 87][Mil 89].

process Channel [pc1, pc2, cc1, cc2] : exit :=
pc1;
(

pc2; cc1; cc2; exit
[]

cc1; pc2; cc2; exit
)

endproc

Note that the choice can be nondeterministic. For example, compare the behaviors of three
vending machines:

insert_quarter; get_coffee; stop [] insert_dime; get_milk; stop (* 1 *)

insert_quarter; get_coffee; stop [] insert_quarter; get_milk; stop (* 2 *)

insert_quarter; (get_coffee; stop [] get_milk; stop) (* 3 *)

Machine 1 offers the client (the environment) a choice between inserting a quarter and inserting
a dime. If the environment offers a quarter, the behavior of the machine evolves to get_coffee;
stop. If it offers a dime it evolves to get_milk; stop. Machine 2 accepts quarters only, and after
synchronization with the environment (i.e., once the client inserts a quarter), the behavior of the
machine can evolve to either get_coffee; stop or get_milk; stop depending on a nondeterministic
choice (in other words, once the client inserts a quarter the choice to synchronize on either
get_coffee or get_milk would no longer exist). Machine 3 accepts quarters only as well, but it is
more democratic. Once the client inserts a quarter, the behavior of the machine evolves to
(get_coffee; stop [] get_milk; stop), meaning that the client can still choose between coffee and
milk. Another way to express nondeterminism in LOTOS is by using the internal action, as shown

- 9 -

in Section 2.6.

Nondeterminism is a powerful abstraction mechanism, since it allows to withdraw
specification of details that are not relevant at a given level of abstraction. An implementation of
(2) will have to decide under what conditions each of the two choices is taken, however for
specification purposes such a decision may be unessential.

2.5 Enable Operator

The LOTOS enable operator >> has a similar function as the action prefix operator, which
expresses the sequential composition of an action with a behavior expression. The >> is used to
express the sequential composition of two behavior expressions. For example, if P1 and P2 are
two processes, P1 >> P2 is read P1 enables P2. Process P1 must terminate successfully in order
for P2 to be enabled. This is the only condition under which process P2 is enabled. Execution of
an exit in P1 results in an action on a special gate δ. The enable causes δ to become an i, and
execution to continue with P2. For example,

a ; b ; exit >> c ; stop
is equivalent to a; b; i; c; stop, i.e., a; b; c; stop, whereas,

a ; b ; stop >> c; stop
is equivalent to a; b; stop. The expression on the right hand side of the enable operator cannot be
executed, because the expression on the left-hand side cannot terminate successfully.

The process Channel was written using the action prefix and choice operators only. Using
the >> operator, we can replace (for the sake of illustration) the process Channel with a process
which exhibits an equivalent behavior. The following informal solution results:

 process Channel [. . .] : exit :=
(Get first element;

(Get second element; Put first element; exit
[]
 Put first element ; Get second element; exit

)
)
>> Put second element

endproc

As explained previously, the first synchronization must occur at gate pc1. After
synchronizing on pc1, the Channel offers to synchronize on pc2 and cc1 in any order. Finally, the
channel must synchronize on cc2. Translated into LOTOS, we have:

- 10 -

process Channel [pc1, pc2, cc1, cc2] : exit :=
pc1;
(

pc2; cc1; exit
[]
cc1; pc2; exit

)
>> cc2; exit

endproc

Note that both branches of the choice have an exit as the last action. Therefore, if either alternative
reaches the exit, the behavior cc2; exit becomes enabled.

2.6 Internal Action

Let us add new constraints to the requirements of the producer-consumer problem.

Formulation 3: Modify the specification so that the channel may lose either or both elements.
Losing an element can be modelled by an internal action of the channel. Once an element is put in
the channel, it may either be consumed by the consumer or lost as a result of an unexplained
internal action of the channel. Note that the internal action i is not controlled by the environment
and therefore, in conjunction with the [] operator, it represents a nondeterministic choice.
Informally, the process Channel becomes:

 process Channel [. . .] : exit :=
(Get the first element;

(Get the second element ; Put the first element; exit (* 1 *)
[]
Get the second element; Lose the first element; exit (* 2 *)
[]
Put the first element; Get the second element; exit (* 3 *)
[]
Lose the first element; Get the second element; exit (* 4 *)

)
)
>> (Put the second element; exit [] Lose the second element; exit)

endproc

Note that from an observational point of view, there is no difference between 2 and 4. This
is an application of an equivalence law by which a; i; exit [] i; a; exit is equivalent to i; a; exit.

- 11 -

Therefore, these two alternatives are merged into a single behavior expression. In LOTOS, we
have:

process Channel [pc1, pc2, cc1, cc2] : exit :=
pc1; (pc2 ; cc1; exit [] cc1; pc2; exit [] i; pc2; exit)

 >> (cc2; exit [] i; exit)
endproc

However, after changing the Channel specification, the Consumer is no longer correct,
because the Channel is now ready to synchronize first on cc1, if the first element is not lost, or on
cc2, if the first element is lost. Therefore, the consumer must be specified to synchronize on the
following sequences of actions: cc1, cc2 then exit, cc1 then exit, cc2 then exit, or simply exit when
both elements are lost. In LOTOS:

process Consumer [cc1, cc2] : exit :=
cc1; (cc2; exit [] exit)
[]
cc2; exit

 []
exit

endproc

Being able to execute independently of the environment, internal actions provide an
additional way of specifying nondeterminism in LOTOS.

coffee; exit [] milk; exit (*1*)
is a process that is ready to synchronize on both coffee and milk.

i; coffee; exit [] milk; exit (*2*)
is a process that is ready to synchronize on coffee, but may not be able to synchronize on milk. If
the environment proposes milk, synchronization may be impossible if the process has already
decided to execute i; however, if the environment proposes coffee, it can be assumed that the
internal action will be executed eventually, and synchronization will then occur. Similarly,

i; coffee; exit [] i; milk; exit (*3*)
is a process that may be unable to synchronize on either coffee or milk, depending on an internal
decision.

An interesting application of this concept is the specification of priorities. (*2*) can be
interpreted that coffee has priority over milk. If, in addition, one wants to specify that milk is still
possible after coffee, this could be written

i; coffee; milk; exit [] milk; exit
By using more complicated cascades of alternatives with internal actions, one can specify priorities

- 12 -

with respect to any predetermined and finite number of events.

There are three parallel composition operators in LOTOS: a basic one, the selective
composition operator, and two derived ones, the interleaving and the full synchronization
operators.

The interleaving operator (|||) is used to express the concept of parallelism between
behaviors when no synchronization is required.

(out1; out2; exit) ||| (in1; in2; exit)

is equivalent to (recall the discussion in Section 1.3 regarding the interleaving concurrency model
of LOTOS):

out1; (out2; in1; in2; exit
[]

 in1; (out2; in2 ; exit [] in2; out2; exit))
[]
in1; (in2; out1; out2; exit

[]
 out1; (in2; out2; exit [] out2; in2; exit)

The interleaving operator mimics a divorced couple, where lifestyles are completely
independent. Some married couples maintain the engagement to do together certain things, for
example breakfasts and movies every Thursday night. When processes must synchronize on
common actions, the selective parallel operator, denoted by |[L] |, is used, where L is the list of
actions on which synchronization must occur. For example:

 a; b; c; exit (* subprocess 1 *)
 |[a]|
 d; a; c; exit (* subprocess 2 *)

is equivalent to
d; a; (b; c; exit ||| c; exit)

or to
d; a; (b; (c; c; exit [] c; c; exit) [] c; b; c; exit)

or of course to
d; a; (b; c; c; exit [] c; b; c; exit)

This is so because both subprocesses execute independently until one of them reaches a

- 13 -

common action, at which point it must wait to synchronize with the other subprocess. Once the
second subprocess reaches the same point, synchronization is possible (depending on the context
in which the process occurs, participation of other processes may be necessary also) and if it occurs
both subprocesses proceed to offer their next actions. In this example, the first action of subprocess
1 is a. Since action a is common to both subprocesses, it must wait for subprocess 2 to reach action
a, before offering action b. On the other hand, action d of subprocess 2 is not in the
synchronization set, so no synchronization is required. The same is true for action c which is
offered independently by both subprocesses. Therefore, after synchronization on a, both
subprocesses continue independently, with all possible interleavings of the remaning actions.
Clearly, when L is the empty list the selective parallel composition operator becomes the
interleaving operator.

A special case is provided by the action δ, which is produced by exits. The action δ is
always considered to be a common gate, for any parallel composition operator. Therefore, all
behaviors composed in parallel must synchronize on their exits. In the case of enable, the action δ
is transformed into an internal action, after the synchronization with other exits has occurred. For
example,

a; exit ||| b; c; exit
is equivalent to

a; b; c; exit [] b; (a; c; exit [] c; a; exit)
Both of these behaviors are ready to synchronize with the environment on any of the following
sequences:
 a b c δ b a c δ b c a δ

Let’s take another example:
(a; exit ||| b; exit) >> c; stop

is equivalent to
a; b; i; c; stop [] b; a; i; c; stop

after synchronization on δ which has been transformed into i by the enable operator. The behavior
c; stop is enabled only after the two exits synchronize.

There are couples where the two partners are so attached to each other that they always do
everything together. If at a given moment a possible behavior of one partner is impossible for the
other partner, then the first partner will not exercise that behavior. If no possible common behavior
can be found, an impasse (a deadlock) occurs. The full synchronization operator, denoted ||, is used
when the processes involved in synchronization must synchronize on every observable action.
Clearly, when L is the list of all gates, the selective parallel composition operator becomes identical
to the full synchronization operator. For example, the behavior: a; b; c; exit will synchronize with
the behavior: a; b; c; exit. Therefore, a; b; c; exit || a; b; c; exit is equivalent to a; b; c; exit.
As a second example, the behavior a; b; exit || d; a; c; exit is equivalent to stop (deadlock!),

- 14 -

because the left hand side offers a while the right hand side offers d. However,
 a; b; exit || (a; c; exit [] a; b; exit)
is equivalent to

a; stop [] a; b; exit
in other words it can lead to either deadlock or success, depending on a nondeterministic choice:
if synchronization occurs on the first and second a, further synchronization is impossible.

In the presence of a choice, all the alternatives that lead to a deadlock are not considered.
This can be expressed by the law: B [] stop is equivalent to B. For example,

a; b; exit || (a; c; exit [] c; b; exit)
is equivalent to a; stop. The first alternative was selected because the second would have led to
immediate deadlock, however the deadlock occurred after the first action.

As a further example, note that
(a; b; stop [] c; d; stop) |[a,b]| (a; b; stop [] d; f; stop)

is equivalent to
a; b; stop [] (c; d; stop ||| d; f; stop)

It is also interesting to consider the role of the internal action in this respect. For example,
a; exit || (a; exit [] i; b; exit)

is equivalent to
a; exit [] i; stop

i.e., it may deadlock if the system chooses to execute the internal action before agreeing on a. On
the other hand,

(a; exit [] b; exit) || (a; exit [] i; b; exit)
is equivalent to

a; exit [] i; b; exit
i.e. it will not deadlock (if the environment cooperates), while

a; exit || (i; a; exit [] i; b; exit)
is equivalent to

i; a; exit [] i; stop
i.e. it may deadlock depending on what internal action is executed.

These examples show that, as already mentioned, there is only interleaving on internal
actions.

The parallel composition operators /// and // are commutative and associative. |[L] | is
commutative, and may be associative depending on the gates in L.

- 15 -

2.7 Putting The Modules Together

Now that we have gained some experience with LOTOS operators and specified the behavior of
each process separately, we can compose them using the parallel composition operators. But first,
let us look at the complete specification and then elaborate on it.

1 specification Producer_Consumer [pc1, pc2, cc1 cc2] : exit
2
3 behavior
4 (
5 Producer [pc1, pc2]
6 |||
7 Consumer [cc1, cc2]
8)
9 ||
10 Channel [pc1, pc2, cc1, cc2]
11
12 where

13 process Producer [out1, out2] : exit := . . . (*As defined previously*)

14 process Consumer [in1, in2] : exit := . . . (*As defined previously *)

15 process Channel [le1, le2, , re1, re2] : exit := . . . (*As defined previously *)
16 endspec

Before introducing the rest of LOTOS operators, we must explain some of the notions that
we have just introduced. Line 1 introduces the specification Producer_Consumer, which
synchronizes with the environment through four gates pc1, pc2, cc1, cc2. Line 3, behavior,
indicates the beginning of Producer_Consumer’s behavior expression. Any global data
abstractions would have to be declared on line 2. The behavior expression of this specification is
the composition of three instances of three processes. Line 12, the where clause, defines the
processes that are used in the behavior expression of the specification. Lines 13, 14 and 15
introduce the definitions of the three processes Producer, Consumer and Channel. Note that each
process definition has a list of formal gates, which must be relabelled with actual gates.

It is important to know that relabelling is done dynamically as each action is executed,
rather than statically as the process is instantiated. For example, let:

process P [a, b, c] : noexit :=
a; b; stop |[a]| a; c; stop

endproc

- 16 -

The static relabelling of instantiating P with P[c, c, a] would be equivalent to c; c; stop |[c] | c;
a; stop, i.e. to c; a; stop. In LOTOS’ dynamic relabelling instead, the substitution is done before
the actions are offered to the environment of the relabelled behavior. So, the execution of a; b;
stop |[a] | a; c; stop results in a; (b; stop ||| c; stop), which is equivalent to a; (b; c; stop [] c;
b; stop). This , of course, becomes c; (c; a; stop [] a; c; stop) after the relabelling.

The behavior given on lines 3 to 12 can be replaced with the following equivalent
behavior.

behavior
(

Producer [pc1, pc2]
|[pc1, pc2]|

 Channel [pc1, pc2, cc1, cc2]
|[cc1, cc2]|

Consumer [cc1, cc2]
)
 where . . .

Note that the parallel composition operators have provided us with a powerful new tool to
better specify the concepts introduced above. For example, a channel that can take and deliver, in
any order, can be written as:

pc1; cc1; exit ||| pc2; cc2; exit

while a similar channel, which can also lose an element, can be written as:

pc1; (cc1; exit [] i; exit) ||| pc2; (cc2; exit [] i; exit)

2.8 Disable operator

The LOTOS disable operator [> models an interruption of a process by another process. So, P1
[> P2 means that, at any point during the execution of P1, there is a choice between executing one
of the the next actions from P1 or one of the the first actions from P2. Once an action from P2 is
chosen, P2 continues executing, and the remaining actions of P1 are no longer possible. If P1
terminates unsuccessfully, the first actions from P2 are offered, while if P1 terminates
successfully, P2 does not start execution. For example,

a; b; exit [> c; d; stop

- 17 -

is equivalent to
a; (b; (exit [] c; d; stop) [] c; d; stop) [] c; d; stop

As a final requirement, let us assume that the channel may also fail at any time.

To model this fact, we put a disable [> at the end of the channel’s behavior expression. We
use the internal action i, to express an internal decision by the channel.

process Channel [pc1, pc2, cc1, cc2] : exit :=
(

(* same behavior expression as in Section 2.6 *)
)
[> (i; (* channel goes down *)

exit
)

endproc

Also, to ensure that the Consumer terminates successfully when the Channel goes down,
we must disable the existing behavior of the Consumer with an exit which is always ready to
synchronize with the exit after the [> in the Channel. The Consumer then becomes:

process Consumer [cc1, cc2] : exit :=
 (

(* same behavior expression as in Section 2.6 *)
)

 [> exit
endproc

Note that the Consumer behavior is still equivalent to the one of Section 2.6. The difference would
appear if the Consumer enabled itself recursively.

A corresponding change is necessary in the Producer.

2.9 Hiding operator

The hide operator allows abstracting from the internal functioning of a process, by hiding actions
that are internal to it. In particular, when the top-down approach is used, the designer can compose
the system using LOTOS operators while hiding the details of interprocess communications that
are irrelevant at a higher level of abstraction. For the sake of illustration, let us assume that the
process Producer is composed of two subprocesses (actually two instances of the same process)

- 18 -

process Producer [pc1, pc2] : exit :=
hide mem_val in
(

Compute [pc1, mem_val]
|[mem_val]|
Compute [mem_val, pc2]

)
where

process Compute [v1, v2] : exit :=
v1; v2; exit

endproc
endproc

The expansion of Producer is: pc1; i; pc2; exit, which is the behavior that we wish to model. It
offers the observable action pc1, it performs an internal action i which represents a hidden action
(the result of synchronization between v2 and v1 relabelled mem_val), then it offers action pc2.
Note that the cooperation of the environment is required for both actions pc1 and pc2, but not for
i. Generally speaking, an action requires cooperation of all processes that must synchronize on that
action by virtue of the parallel composition operators, unless a hide hides it from external
processes. If an action is not hidden with respect to the environment, cooperation of the
environment is also required. The attentive reader will have noted that the absence of hiding in our
Producer_Consumer specifications makes it necessary for the environment to participate in
actions on gates pc1, pc2, cc1, cc2. This can be prevented by hiding these four gates at the top level
of the specification.

As an additional example of the hide, note the following:

pc1

pc2

Compute

Compute

mem_val

Producer

- 19 -

(hide b in a; b; c; exit) || a; c; exit
is equivalent to a; i; c; exit because b is turned into an internal action which does not synchronize.
Also,

hide b in (a; b; c; exit || a; c; exit)
is equivalent to a; stop.

2. 10 Process Instantiation

Let us restate the problem requirements to illustrate process instantiation in LOTOS.

Formulation 4: Give a recursive LOTOS specification for the producer-consumer problem with a
one-slot channel. The channel may lose messages and may go down at any time (in which case, a
deadlock occurs).

specification Pro_Cha_Con [Put, Get] : noexit

behavior
(Producer [Put] ||| Consumer [Get])
||
(Channel [Put, Get] [> Channel_Down)

 where
process Channel_Down : noexit :=

i; (* channel goes down *) stop
endproc

process Producer [Put] : noexit :=
Put; Producer [Put]

endproc

process Consumer [Get] : noexit :=
Get; Consumer [Get]

endproc

process Channel [Put, Get] : noexit :=
Put;

(Get; exit [] i; (* lose msg *) exit)
>> Channel [Put, Get]

endproc
endspec

- 20 -

3. Full LOTOS

In full LOTOS, it is possible to describe process synchronization involving the exchange of data
values. Data structures and value expressions are defined by using the abstract data type
specification language ACT ONE [EM 85][MRV 91]. We do not describe ACT ONE, but we use
some data types (called sorts in LOTOS) and value expressions. In our examples, we use only two
sorts: Booleans and Natural numbers, whose domains are true, false and 0, 1, 2, ... respectively.
We also use some operations on these sorts.

The reader should note that, for the sake of clarity, in this section we shall take some
licences with LOTOS syntax, mostly concerning the representation of natural numbers and the use
of some operation symbols. Hopefully these "licences" will become accepted syntax in the
expected enhancements of the language.

LOTOS variables are, more properly, value identifiers, i.e., place holders for value
expressions to be generated during execution. The definition of a variable in LOTOS has the form
Var_Name: Sort where Var_Name is a variable name that can take any value expression of sort
Sort. For example, X: Nat is a variable whose values are in the domain of Nat. The expression 1 +
2 has a value 3 which is in the domain of Nat.

3.1 Actions in full LOTOS

In basic LOTOS, we defined an action to be synonym with gate. In full LOTOS an action, an
example of which is shown in the diagram below, is formed of three components: a gate, a list of
events, and an optional predicate. Processes synchronize their actions, provided that they name the
same gate, that the lists of events are matched, and that the predicates, if any, are satisfied. An
event can either offer (!) or accept (?) a value. Predicates establish a condition on the values that
can be accepted/offered.

 g ?Get : Type ! Put

action

event 1gate event 2

[Get <> 0]

PredicateOptional

- 21 -

As an example, consider the following action a:

 g ?X:Nat !1 [X =< 2]

This is a LOTOS action that occurs at gate g and expects from the environment a value for X of
sort Nat restricted to be less than or equal to 2, while at the same time offering the value 1. This is
equivalent to offering a choice between the following three actions:

 g ! 0 ! 1
 g ! 1 ! 1
 g ! 2 ! 1

We express this by the notation:
 tuples(a) = {!0 !1, !1 !1, !2 !1 }.
Of course, tuples can be an infinite set, e.g.

tuples(g ?x:nat).

3.2 Synchronization with value establishment

Interprocess synchronization with value exchange occurs when two or more processes agree on a
single tuple of values to be established on a gate. This is the case of matching actions. More
precisely, if a set of processes, say P1, ... , Pn , is composed in parallel and G represents the list of

common gates on which synchronization must occur, then these processes can synchronize if the
following conditions hold:

 1. P1, ... , Pn are all offering actions a1, ... , an respectively;

 2. The gate of actions a1, ... , an is the same and is in G; and

 3. T = tuples(a1) ∩ ... ∩ tuples(an) ≠ ∅.

For example if P1 and P2 are two communicating processes, and P1 offers action a above, and, at
the same time, P2 offers the following action b:

g ?Y:Nat ?Z:Nat [Z >= Y and Z < 2]
then,

tuples(b) ={ !0 !0, !0 !1, !1 !1 }
and

T = tuples(a) ∩ tuples(b) = {!0 !1, !1 !1 } ≠ ∅

This means that synchronization can occur with the environment on one of two actions, i.e.

- 22 -

g !0 !1 or g !1 !1

This will cause all variables appearing in the actions to acquire the corresponding value, and these
values will be replaced for the variables throughout the behavior expression. Suppose that the first
action is chosen, then 0 is established as the value for X in action a and Y in action b. As a
consequence, X becomes 0 in the behavior expression containing action a and also Y becomes 0 in
the behavior expression containing action b.

3.3 Behavior expressions in full LOTOS

In this section we provide an introduction to full LOTOS by constructing a new version of the
producer-consumer problem.

Formulation 5: Give a Full LOTOS specification for the process Consumer. The consumer
accepts a single message, with an even sequence number, then exits.

The consumer specification becomes:

 process Consumer [In_Ele]:exit:=
 In_Ele ? Msg:Nat ? Msg_Seq:Nat [(Msg_Seq mod 2) = 0];

exit
endproc

The action on the second line is described in terms of one gate In_Ele, two events ?Msg:Nat and
?Msg_Seq:Nat, which represent the readiness of the process to accept two values, and the predicate
[(Msg_Seq mod 2) = 0] which restricts the sequence number to be even. This process is equivalent
to the following infinite one:

process Consumer [In_Ele] : exit:=
 In_Ele ?Msg:Nat !0; exit

[]
 In_Ele ?Msg:Nat !2; exit

[]
 In_Ele ?Msg:Nat !4; exit

[]
.

endproc

- 23 -

3.3.1 Successful Termination with parameters

This is denoted by exit(E1, ... ,En). This behavior offers the action: δ !E1 ... !En. E1, ... ,En are

value expressions, the results of the process that executes the exit. These results are passed to the
enabled behavior if the process enables another process. The following Consumer specification
reflects the behavior of a consumer that accepts a single message with an even sequence number,
then terminates successfully with that sequence number.

 process Consumer [In_Ele] : exit (Nat):=
 In_Ele ?Msg:Nat ?Msg_Seq:Nat [(Msg_Seq mod 2) = 0];

exit(Msg_Seq)
endproc

Note the syntax of the exit. The number of parameters, their order and their types in the exit that
appears in the process definition must be compatible with those in the exit that appears in the
process body. The expansion of this specification is an infinite one, i.e.:

 process Consumer [In_Ele] : exit(Nat):=
 In_Ele ?Msg:Nat !0; exit(0)

[]
 In_Ele ?Msg:Nat !2; exit(2)

[]
.

endproc

Processes that are composed by way of any of the parallel composition operators must
synchronize on δ, in order to successfuly terminate. That is, all processes must offer exits with the
same number of parameters and these must match in the same way as events do in an action
synchronization, described earlier. A parameter that can match with any value of sort S is denoted
by any S. For example if P1 and P2 are composed in parallel, and P1 exits with exit (any Boolean,

1) producing the action δ ?dummy:Bool !1 and P2 exits with exit (true, any Nat) producing δ
!true ?dummy:Nat, then these two actions will match and their environment must offer an action
that matches the resulting action of P1 and P2 which is δ!true!1. Such matching actions could
be provided by other exits, or by an accept, as will be seen in Section 3.3.4.

The corresponding changes for the Channel and Producer are straightforward.

- 24 -

3.3.2 Process Instantiation with Parameters

Formulation 6: Modify the consumer so that it receives messages with sequence numbers and
counts the number of messages with odd sequence numbers and messages with even sequence
numbers. It exits with the total number of messages received, which may be zero.

 process Consumer[In_Ele](Odd_Num_Msg, Even_Num_Msg:Nat):exit(Nat, Nat):=
 In_Ele ?Msg:Nat ?Msg_Seq:Nat [(Msg_Seq mod 2) = 0];

Consumer[In_Ele] (Odd_Num_Msg, Even_Num_Msg + 1)
[]
In_Ele ?Msg:Nat ?Msg_Seq:Nat [(Msg_Seq mod 2) <> 0];
Consumer[In_Ele] (Odd_Num_Msg + 1, Even_Num_Msg)
[]
exit(any Nat, Odd_Num_Msg + Even_Num_Msg)

 endproc

3.3.3 Guarded behavior

A behavior expression can be preceded by a guard that must be true in order for the former to be
enabled. For example

g?x:Nat [x =< 5];
([X = 2 or X = 3] -> g !X !0; stop

 []
[X < 3] -> g !X !1; stop)

is equivalent to

 g!0; g!0!1; stop
[] g!1; g!1!1; stop
[] g!2; (g!2!0; stop [] g!2!1; stop)
[] g!3; g!3!0; stop
[] g!4; stop
[] g!5; stop

The Consumer can be specified equivalently using guards as follows:

process Consumer[In_Ele](Odd_Num_Msg, Even_Num_Msg:Nat):exit(Nat,Nat):=
 In_Ele ?Msg:Nat ?Msg_Seq:Nat ;

(
 [(Msg_Seq mod 2) = 0] ->

- 25 -

Consumer[In_Ele] (Odd_Num_Msg, Even_Num_Msg + 1)
 []
 [(Msg_Seq mod 2) <> 0] ->

Consumer[In_Ele] (Odd_Num_Msg + 1, Even_Num_Msg)
)
[]
exit(any Nat, Odd_Num_Msg + Even_Num_Msg)

 endproc

In general,

a[P1]; B1 [] a[P2]; B2 [] ... [] a[Pn]; Bn

where Pi stands for a predicate and Bi stands for a behavior expression, is equivalent to

a;
([P1] -> B1
[]

[P2] -> B2
[]

. . .
[]

[Pn] -> Bn
)

if and only if exactly one of P1 or P2 ... or Pn is true for any values agreed on by an action a. This
is the case in our example, where any message sequence agreed on must be even or odd.

3.3.4 Sequential Composition with Value Passing (enable with accept)

This has the form:

B1 >> accept X1:S1, ... ,Xn:Sn in B2

B1 will be executed until it terminates. If it exits, then the next behavior expression is B2 where
the variables X1 to Xn in B2 are substituted for the value results of B1 (i.e. the exit parameters).
The number and sorts of the values that are passed at the successful termination of B1 must be the
same as those of the variable declarations in the accept statement. The enable produces an internal

- 26 -

action as seen previously.

Here is an example of a producer that generates a message and sends it with a sequence
number or may exit with the number of messages sent.

 process Producer [Out_Ele](Msg_Seq:Nat) : exit(Nat, Nat) :=
 (Generate_Ele >> accept Msg:Nat in

Out_Ele !Msg !Msg_Seq;
 Producer[Out_Ele](Msg_Seq + 1)

)
[]
exit(Msg_Seq, any Nat)

 endproc

The process Generate_Ele has no external gates, its mission is to generate internally a value that
is going to be accepted by the Producer and sent to the Consumer.

 process Generate_Ele : exit(Nat) :=
 exit(any Nat)

endproc

3.3.5 Summation on values

This has the form

choice X:S [] B

which is equivalent to
[t1/X]B []... [] [tn/X]B

where t1,...,tn are all possible value expressions of sort S. [ti/X]B is the resulting behavior by

substituting ti for X in B.

For example

choice x: Nat []
[x mod 2 = 0] -> g!x; stop

- 27 -

is equivalent to

 g !0; stop
[]
 g !2; stop
[]
 g !4; stop
[]
. . . .

and therefore to
g ?x [x mod 2 = 0]; stop

The choice operator, in conjunction with the internal action, can be used in order to specify
nondeterministic choice. For example,

choice x:Nat [] [x mod 2 = 0] -> i; g!x; stop
specifies nondeterministic choice of just one even integer.

An elegant example of the usefulness of the choice operator is given in [Tur 88a], where a
sorting process is specified in LOTOS as

input ?UnsortedList: NatList;
choice SortedList: NatList []
 [IsPermuted (SortedList, UnsortedList) and IsOrdered (SortedList)] ->
 output !SortedList

(of course, definition of the data type operators IsPermuted and IsOrdered must be provided to
complete this specification).

Nested choices can be used in order to impose different constraints on the set of offerings,
depending on some predicates. For example:

g?x:Nat;
choice y:Nat []

[y > x]-> (choice w,z:Nat []
[w * z = y]-> g!z; exit

[] [prime(y)]-> i; g!y; exit
)

The process partially specified above first selects a value for x in collaboration with the
environment, and then can: either be ready to offer any z that is a factor of any y greater than x; or

- 28 -

decide to offer a nondeterministically chosen prime y greater than x.

Here is another version for Consumer using the choice operator, which is equivalent to the
previous two specifications.

 process Consumer[In_Ele](Odd_Num_Msg, Even_Num_Msg:Nat):exit(Nat,Nat):=
(
choice Msg_Seq:Nat []
 [(Msg_Seq mod 2) = 0] ->

 In_Ele ?Msg:Nat !Msg_Seq ;
Consumer[In_Ele] (Odd_Num_Msg, Even_Num_Msg + 1)

 []
 [(Msg_Seq mod 2) <> 0] ->

 In_Ele ?Msg:Nat !Msg_Seq ;
Consumer[In_Ele] (Odd_Num_Msg + 1, Even_Num_Msg)

)
[]
exit(any Nat, Odd_Num_Msg + Even_Num_Msg)

 endproc

To complete the specification of producer-consumer, we specify an unreliable one-place
channel which may lose messages, as specified by an internal action i, or simply exit.

process Channel [In_Ele, Out_Ele] : exit (Nat, Nat) :=
 In_Ele ?Msg:Nat ?Msg_Seq:Nat;

(
 Out_Ele !Msg ! Msg_Seq; (* deliver message *)
 Channel[In_Ele, Out_Ele]
 []
 i; (* lose message *)
 Channel[In_Ele, Out_Ele]
)
[]
exit(any Nat, any Nat)

 endproc

The global behavior of the producer-consumer can be specified as

specification Producer_Consumer [Ele1, Ele2] : exit(Nat, Nat)

- 29 -

behavior
Producer [Ele1](0)

|[Ele1]|
Channel [Ele1, Ele2]

|[Ele2]|
Consumer [Ele2](0,0)

where
(* Definitions of Producer, Consumer, Generate_Ele, and Channel go here. *)

endspec

Or equivalently it can be specified as

specification Producer_Consumer [Ele1, Ele2] : exit (Nat, Nat)

behavior
(Producer [Ele1](0)

|||
Consumer [Ele2](0,0))

||
Channel [Ele1, Ele2]

where
(* Definitions of Producer, Consumer, Generate_Ele, and Channel go here *)

endspec

The above two specifications are equivalent since Ele1 and Ele2 are the only gates used by
Producer, Consumer and Channel. The exit in the Producer, Consumer and Channel can only
be executed when the three processes are ready to offer exit at the same time, that is when
Producer offers

exit(Number_Of_Messages_Sent, any Nat)

and the Consumer offers

exit(any Nat, Number_Of_Messages_Received)

and the Channel offers

exit(any Nat, any Nat)

- 30 -

the resulting exit due to the synchronization of the above three exits is

exit(Number_Of_Messages_Sent,Number_Of_Messages_Received)

If this specification was part of a larger one, process Producer_Consumer could enable
another process, which could determine the number of messages lost by the Channel by
computing:

Number_Of_Messages_Sent - Number_Of_Messages_Received

4. Priority of Operators

As in most languages, a priority of operators exists in LOTOS in order to reduce the number of
parentheses needed. In order of decreasing priority, we have:

; -> [] |[L]| [> >> hide par choice let
operators of equal priority associate to the right.

5. Further Readings

Two unpublished tutorials which have achieved different degrees of distribution are [ISO1 89]
[Tur 88b], and we should also mention [Hog 90], which is in German. [ISO4 89] will soon become
available as an ISO technical Report. It contains substantial examples of LOTOS specifications.
The series of books Protocol Specification, Testing, and Verification and Formal Description
Techniques published yearly by North-Holland, contains many papers on LOTOS and related
subjects. The book [VVD 89] is a collection of research papers on LOTOS produced within the
European community’s SEDOS project.

The reader must have observed that in this paper we repeatedly showed different ways of
writing behaviorally similar LOTOS specifications. In fact, several specification styles can be used
in LOTOS. This point is developed further in [VSVB 91].

6. LOTOS Applications

Although protocols have been and still are the main area of utilization of LOTOS, a number of
papers have been published recently that show that the language eventually may be useful well
beyond that area.

Among others: [FLS 90] shows the application of the language to the formal specification
of telephone call processing. [Va 89] shows an application to the specification of security
mechanisms. [P 90] discusses the application to the specification of a distributed operating system.
[HL 91] shows how LOTOS can be used for the specification of distributed algorithms.

- 31 -

7. LOTOS Tools

A number of software tools has been developed for supporting the use of LOTOS. Two were
mentioned in Section 1.2. LOLA [QPF 89] is a "parameterized expander". TOPO [MM 89] is a
translator from LOTOS to C. TETRA [BB 89][BDD 90] is a "trace checker", i.e. it checks whether
a given event trace can be executed by a given specification. Among the verification tools we note:
Squiggles, a tool to verify strong and weak observation equivalence between basic LOTOS
specifications having finite-state representations [BC 89]; and CAESAR/ALDEBARAN, a
model-checking tool using an intermediate Petri Nets representation [GS 90]. We refer again to the
books mentioned in Section 4 for a more complete view of the tools available.

- 32 -

Acknowledgment. Funding sources for our work include the Natural Sciences and Engineering
Research Council of Canada, the Telecommunications Research Institute of Ontario (Design of
Validation Environments project) and the Canadian Department of Communications. We are
indebted to Souheil Gallouzi, Jacques Sincennes and the anonymous referees for their useful
comments.

REFERENCES
[BB 87] Bolognesi, B., and Brinksma, E. Introduction to the ISO Specification Language

LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59. Also reprinted in
[VVD89] 23-73.

[BB 89] Bochmann, G.v., and Bellal, O. Test Result Analysis in Respect to Formal
Specifications, Proc. 2nd Int. Workshop on Protocol Test Systems, Berlin, Oct. 1989,
pp.272-294.

[BC 89] Bolognesi, T., and Caneve, M. Equivalence Verification: Theory, Algorithms, and a
Tool. In [VVD] 303-326.

[BDD 90] Bochmann, G.v. , Desbiens, D., Dubuc, M., Ouimet, D., and Saba, F. Test Result
Analysis and Validation of Test Verdicts. To appear in the Proceedings of the
Workshop on Protocol Test Systems, McLean, Virginia, (Oct. 1990).

 [EM 85] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specification 1, Springer-Verlag,
Berlin, 1985.

[FLS 90] Faci, M., Logrippo, L., and Stepien, B. Formal Specification of Telephone Systems in
LOTOS: The Constraint-Oriented Approach. To appear in Computer Networks and
ISDN Systems.

[GS 90] Garavel, H., and Sifakis, J. Compilation and Verification of LOTOS Specifications. In:
Logrippo, L., Probert, R.L., and Ural, H. (eds.) Protocol Specification, Testing, and
Verification, X. North-Holland, 1990, 379-394.

[Hoa 85] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985.
[Hog 89] Hogrefe, D. Estelle, LOTOS und SDL. Springer Verlag, 1989
[HL 91] Haj-Hussein, M., and Logrippo, L. Specifying Distributed Algorithms in LOTOS. To

appear in the Proceedings of Computer Networks, Wroclaw 1991.
[ISO1 89] International Organization for Standardization. IS 8807: LOTOS: A Formal

Description Technique Based on the Temporal Ordering of Observational Behavior
(1989).

[ISO2 89] International Organization for Standardization. ISO/IEC JTC1/SC6 N 6116: Revised
Text of ISO/DTR 10023 - Formal Description of ISO 8072 in LOTOS (1990)

[ISO3 89] International Organization for Standardization. IS 9074: Estelle, A Formal Description
Technique Based on an Extended State Transition Model (1989).

[ISO4 89] International Organization for Standardization. ISO/IEC JTC 1/SC21 N 3252:
Guidelines for the Application of Estelle, LOTOS and SDL (1989).

[LOBF 88] Logrippo, L., Obaid, A., Briand, J.P., and Fehri, M.C. An Interpreter for LOTOS, a

- 33 -

Specification Language for Distributed Systems. Software-Practice and Experience, 18
(1988) 365-385.

[Mil 80] Milner, R. A Calculus of Communicating Systems. Lecture Notes in Computer
Science No.92, Springer-Verlag, 1980.

[Mil 89] Milner, R. Communication and Concurrency. Prentice-Hall, 1989.
[MM 89] Mañas, J.A., and de Miguel-More, T. From LOTOS to C. In: K.J.Turner (ed.) Formal

Description Techniques, North-Holland, 1989, 79-84.
[MRV 91] deMeer, J., Roth, R., and Vuong, S. Introduction to Algebraic Specifications Based on

the Language ACT ONE, this issue.
[P 90] Pecheur, C. An Overview of the LOTOS Specification of Chorus V3. Report No.

S.A.R.T. 89 - 03 -13, Université de Liège, B28, Département de Systèmes et
Automatique, Mai 1989.

[QPF 89] Quemada, J., Pavón, S., and Fernandez, A. Transforming LOTOS Specifications with
LOLA. In: Turner, K.J. (ed.) Formal Description Techniques, North-Holland, 1989,
45-54.

[Tur 88a] Turner, K. Constraint-Oriented Style in LOTOS. In: Proc. of the British Computer
Society Workshop on Formal Methods in Standards, Didcot, April 1988.

[Tur 88b] Turner, K., The Formal Specification Language LOTOS: A Course for Users, Course
notes, University of Stirling, June 1988.

[V 88] van Eijk, P. Software Tools for the Specification Language LOTOS. Doctoral Thesis,
Universiteit Twente (1988).

[Va 89] Varadharajan, V. Use of a Formal Description Technique in the Specification of
Authentication Protocols. Computer Standards and Interfaces 9 (1989/90), 203-205.

[VCA 89] Vissers, C. A., LOTOS Background, in [VVD 89] 15-22.
[VSVB 91]Vissers, C. A., Scollo, G., van Sinderen, M., and Brinksma, E. On the Use of

Specification Styles in the Design of Distributed Systems. To appear in Theoretical
Computer Science.

[VVD 89] van Eijk, P., Vissers, C.A., and Diaz, M. The Formal Description Technique LOTOS.
North-Holland, 1989.

- 34 -

Pictures and vita of M. Faci and L. Logrippo should be in North-Holland files (see your reference
COMNET 00866).

Mazen Haj-Hussein holds a Bachelor and Master degree in the Computer Science Departement
of the University of Ottawa, where he is now working towards his PhD.

The picture of Mazen will follow with the galley proofs.

	L. Logrippo, M. Faci, M. Haj-Hussein
	University of Ottawa
	Protocols Research Group
	Department of Computer Science
	Ottawa, Ontario, Canada K1N 6N5
	E-mail: lmlsl@uottawa.bitnet
	1 specification Producer_Consumer [pc1, pc2, cc1 cc2] : exit
	2
	3 behavior
	4 (
	5 Producer [pc1, pc2]
	6 |||
	7 Consumer [cc1, cc2]
	8)
	9 ||
	10 Channel [pc1, pc2, cc1, cc2]
	11
	12 where
	13 process Producer [out1, out2] : exit := . . . (*As defined previously*)
	14 process Consumer [in1, in2] : exit := . . . (*As defined previously *)
	15 process Channel [le1, le2, , re1, re2] : exit := . . . (*As defined previously *)
	16 endspec

