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Abstract: The visual aspect of metamodelling languages is an efficient lever to deal with the complexity of specifying 
systems. In many application domains, these systems are generally characterized by the sensitivity and 
criticality of their contents, hence precision and formalism are essential goals. This paper considers the domain 
of access control specification languages and proposes a metamodelling paradigm with capabilities for 
specifying both semantics and structuring elements. We describe how to specify semantics of domain specific 
systems at the metamodel and model levels. The paradigm defines reusable rules allowing mapping the 
models, including their semantics, to first order logic programs. It represents a methodical approach to 
elaborate domain specific languages endowed with visual aspects and means of reasoning on formal 
specifications. The paradigm is applicable to a wide range of systems. We show in this paper its application 
in the area of decision systems. 

1 INTRODUCTION 

In specific domains, there are specific concepts that 
range from simple to rich, and even complex. Domain 
specific metamodels capture such concepts, and their 
instances (i.e. models) are interpreted in the light of 
these underlying metamodelling concepts. Formally 
specifying these concepts as part of a metamodel 
allows the creation of metamodel instances, 
augmented with formal specifications of concepts 
that may express their semantics.  

In many domains, like access control (AC) and 
decision system specification, metamodelling has an 
unexploited potential to contribute to the formal 
specification of systems. However two shortcomings 
can be noticed: (1) the metamodels are often not 
formally specified, and therefore they cannot endow 
the specification languages they underlie with the 
formal semantics they do not have themselves; (2) 
When metamodels are formally specified, the 
semantics of their elements are often inexistent.  

As a response to these two shortcomings, we 
propose a metamodelling pattern that supports the 
specification of metamodels with integrated formal 
semantics conveyable to their instances. Such 
metamodels are very important as domain specific 
languages that join the graphical aspect to the formal 

semantics. The formalism allows ambiguity free 
systems specifications that suit automated 
verification and processing which are vital in many 
critical application domains like AC, transportation, 
and intensive care monitoring.  

As an illustration of this pattern we propose an 
elaboration of formally specified AC metamodels. 
Then we integrate these metamodels in a unique AC 
metamodel that, according to our metamodelling 
pattern, allows the definition of a textual language. 
This language draws its syntax and grammar from the 
structural elements of the metamodel, and draws its 
semantics from formally specified decision logic 
carried by these elements.  

Although UML (OMG, 2010) is not the only 
modelling language that suits our approach, we will 
follow its notation and terminology for the sake of its 
large adoption as a de facto modelling language 
standard. However, for figures that do not describe 
metamodels we use a free illustrative style. 

In Section 2, we introduce the concept of AC 
metamodelling through examples of AC metamodels; 
in Section 3, we detail our approach to formally 
specifying our models. Section 4 introduces the 
integration metamodel. Section 5 considers related 
work. Section 6 concludes the paper with a review of 
its contribution.  
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2 ACCESS CONTROL 
METAMODELS  

Access Control (AC) is concerned with the restriction 
of the activities of legitimate and authenticated users 
of a system. More specifically, AC aims to restrict 
access to objects in order to protect their integrity and 
prevent their undesired use or disclosure.  For 
example, we can mention the principle of granting 
access privileges based on the subject’s role (i.e., 
position or mission) in an organization. This principle 
is embodied in the well-known Role Based Access 
Control model (RBAC) (Sandhu et al., 1996). This 
model involves the following concepts: Subject, 
Object, Role, Permission, and their associations. In 
this model, the subjects are associated with their 
roles, and each role is associated with its appropriate 
access permissions on objects. Several other AC 
models are well-known in a variety of activity 
domains; amongst others we can mention Bell 
LaPadula (BLP) (Bell & LaPadula, 1976), BIBA 
(BIBA, 1977), and Chinese Wall (CW) (Brewer, 
1989). Although these models are seldom used in 
their ‘pure’ form, they are at the basis of many 
practical models. 

An AC model spares us the effort of specifying 
repeatedly the underlying AC logic; this latter is 
specified once for all when the AC model is 
elaborated. Nevertheless, many AC specification 
languages whose syntax and semantics are based on 
AC models (e.g., XACML (OASIS, 2013), Ponder 
(Damianou et al., 2001)) are self-contained and don’t 
take advantage of any formally specified model. 

Furthermore, since AC specification can enforce 
several AC principles concurrently (e.g., RBAC and 
Chinese Wall at the same time), we need a modelling 
approach that is not tailored to a single AC model.  In 
the remainder of this paper, AC specifications 
(respectively policies) that apply more than one AC 

model are called hybrid specifications (respectively 
policies). In addition, we call integration the process 
of enforcing concurrently multiple AC models. 

The concepts captured in AC models pertain to 
two groups: (1) those related to the AC domain in 
general like “Object”, “Subject” or “AccessMode”, 
and (2) those specific to each particular AC model, 
like “Role” in the RBAC model. An instance of an 
AC model is itself a model at a lower abstraction 
level, created by replacing the AC model elements 
with their specific corresponding instances; e.g., in 
Figure 1, Sam is an instance of Subject, and CEO is 
an instance of Role.  According to the metamodelling 
paradigm (Kleppe, Warmer & Bast, 2002), a model 
can have many instances at a lower abstraction level; 
each specifying a particular application (utilization) 
of that model. Such a model is called a metamodel 
and it defines a language to specify lower abstraction 
level models called its instances. For example, an 
instance of the RBAC model would be one that 
specifies the utilization of the RBAC model in a 
specific organization with its specific role hierarchy, 
its specific employees as subjects, and its specific 
objects.  

Figure 1 shows an example of a metamodel and a 
model, instance of that metamodel. This very simple 
metamodel represents the principle that a subject 
must be associated to a role.  It consists of the 
elements: Subject, Role, and their association. At a 
lower abstraction level, the model, instance of the 
metamodel, is composed of Sam and Tom as 
instances of the element Subject, and CEO and Teller 
as instances of Role. Dotted arrows indicate 
instantiation, the arrows pointing toward the 
instances.  

Furthermore, the associations between, 
respectively, Sam and CEO, and Tom and Teller, are 
instances of the higher-level association between 
their metamodelling elements Subject and Role.

 
Figure 1: Metamodelling levels. 
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Finally, Sam, CEO, Tom, Teller, and their 
respective associations represent themselves a model 
of some reality resulting from the application of 
RBAC in a specific organization. From this 
perspective, RBAC constitutes a metamodel that 
defines a language for the specification of lower level 
abstraction models called its instances. Of course, the 
modelling principles illustrated in this example 
extend to all the AC models introduced in this 
Section; and therefore these latter ones will be more 
accurately called AC metamodels in the remainder of 
this paper. 

2.1 AC Metamodels and Decision 
Systems 

In addition to elements representing concepts and 
their associations, our AC metamodels encompass the 
logic behind AC decisions in response to access 
requests. Decisions are issued by applying logical 
rules expressed in terms of AC metamodel elements, 
hence our introduction of the concept of decision 
system. A decision system is a system that returns a 
decision in response to a query. Specific decisions are 
instances of the metamodelling element Decision 

which is specified according to the application 
domain. In the AC domain, Decision represents the 
type of any possible AC response to an access 
request. In our approach, an AC metamodel instance 
is also a decision system. Every AC metamodel has a 
special element named DecisionHandler whose 
mission is to encapsulate the decision logic allowing 
to determine the AC decision in response to an access 
request. Thus, a DecisionHandler instance is itself a 
decision system. Each AC metamodel specializes the 
DecisionHandler according to its specific decision 
making needs, as shown in Figure 2. 

Figure 2The element ACmetaModelElement is a 
generalization of any element of the AC metamodels 
other than DecisionHandler. It is shown in this view 
to indicate that every DecisionHandler specifies its 
decision logic in terms of other AC metamodel 
elements. This explains the association “uses” 
between DecisionHandler and ACmetamModel. In 
the following AC metamodels illustrations, and for 
the sake of simplicity and readability, we will not 
show all the associations between DecisionHandler 
and the remaining AC metamodel elements. These 
associations are represented by the association “uses” 
in Figure 2.  

 
Figure 2: DecisionHandler specialisations in AC metamodels. 

 
Figure 3: Kernel AC elements. 
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In the remainder of this section we present the 
elements shared by the following four AC 
metamodels: Chinese Wall, Bell LaPadula, BIBA, 
and RBAC, but for the sake of space limitation we 
only present the Chinese Wall metamodel. We adopt 
the following convention: metamodel elements start  
with an uppercase letter, while their instances start in 
lowercase. Thus subject and object represent 
respectively instances of the elements Subject and 
Object. 

2.2 Kernel Access Control Elements 

We introduce here AC elements that represent shared 
and fundamental elements of our AC metamodels. 
These elements are called kernel AC elements and 
they are defined below and illustrated in Figure 3. 
Object: represents the concept of an object as a 
resource of a system. 

ObjectsGroup: represents a set of objects sharing 
some properties. 

Subject: represents the concept of a subject as an 
entity that may request access to an object. 

SubjectsGroup: represents a set of subjects 
sharing some characteristics. 

AccessMode: specifies the different access 
modes as actions that a subject may perform on an 
object. In this paper, we only consider the instances 
of AccessMode representing the following actions: 
Read, Write, and Execute. 

AdditionalAttribute: represents a construct 
associated to a metamodel element to support the 
specification of some property of that element. 
AdditionalAttribute has a name and a type that suits 
the specification of a property. 

Query: represents an access request on an object 
by a subject. The object aimed to by the access 
request is called the targeted object.  

Query associations to respectively Object, 
Subject, and AccessMode (see Figure 3) indicate that 
we respectively associate to an instance of Query: (1) 
An instance of Object representing the targeted 

object; (2) An instance of Subject representing the 
subject requesting the access; (3) An instance of 
AccessMode representing the requested action by the 
subject. The Query attribute isCurrent, of Boolean 
type, allows identifying the current Query instance as 
the query to process. This attribute is needed when we 
have to take into account other queries than the 
current one, since previous queries of a subject may 
influence an AC decision. 

EnvironmentalAttribute: similar to 
AdditionalAttribute, but used to describe some 
property of any relevant entity of the environment 
that is not represented in the AC metamodel elements. 
It is used to hold information related to access request 
events such as time, place, emergency level of a 
context, temperature, etc. Hence, the association 
between EnvironmentalAttribute and Query (see 
Figure 3), since an AC decision may depend on the 
state of the environment.  

Decision: represents the concept of a decision as 
a response issued by the AC about an access request. 
In this paper, only the following instances of Decision 
are considered:  Permit, Deny, Indeterminate, 
NotApplicable 

The kernel elements are part of every AC 
metamodel. Thus in a hybrid policy, the subjects, the 
objects, and the query content are part of every AC 
metamodel instance. Furthermore notice the key role 
of Query instance in the specification of the decision 
logic, regardless of the considered AC metamodel.  

2.3 Chinese Wall AC Metamodel 

According to the Chinese Wall (CW) AC principle, in 
order to avoid a conflict of interests, after a subject 
has accessed some objects, it must be prevented from 
accessing some other particular objects. 
Consequently, we separate the objects in subsets 
called classes. These classes constitute a conflict 
group. The Chinese Wall AC logic can be formulated 
as follows:  

 

 
Figure 4: Chinese Wall metamodel. 
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Considering the classes C1, C2, …, Cn of a conflict 
group CG; if a subject s has accessed any object 
belonging to a class Ci of CG, s will not be allowed 
to access any object belonging to another class Ck of 
CG, with k≠ i.  In other words ((AccessedBy-s ∩  (C1 
∪ C2 …∪ Cn)) ⊆ Cx) must remain true for any 
subject s, where AccessedBy-s designates the set of 
objects s has accessed, and Cx designates a single 
ConflictClass instance which belongs to  the conflict 
group CG. 

The CW metamodel shown in Figure 4 illustrates 
the above mentioned concepts. ConflictClass denotes 
a class in a conflict group. The represented 
associations and their multiplicities reflect notable 
facts: Several conflict groups may coexist in the same 
CW model (instance of the depicted metamodel), but 
a conflict class may belong to only a single conflict 
group; furthermore, a subject cannot access more than 
one class in any conflict group. Nevertheless, a 
subject can access many classes pertaining to distinct 
conflict groups, although it should be blocked if it can 
lead to unwanted information propagation. Subject 
and ObjectsGroup are already introduced as kernel 
AC elements. CWdecisionHandler is the 
specialization of DecisionHandler for CW. 

3 FORMAL SPECIFICATION OF 
AC METAMODELS AND 
DECISION LOGIC 

We consider the metamodels whose representation 
relies on a subset of UML limited to classes, attributes 
and classes associations. Such modelling representa-
tion is neither complete nor ambiguity-free. Indeed, a 
metamodel is generally endowed with elements 
representing informally specified semantics of a 
domain. We propose percolating these semantics 
from metamodel elements to their instances by 
attaching formal semantics to metamodel elements. 
Our approach aims to express both modelling 
elements and their semantics in the same formal 
language that we call target language. 

As a target language, we have adopted the First 
order logic since it is known to be suitable for relating 
individuals to their types, for specifying relationships 
between individuals, and for expressing rules like 
decision logic. 

That said, we propose a metamodelling pattern 
based on two complementary folds: the first maps the 
modelling elements to First Order Logic (FOL) as a 
target language, the second attaches to each 
modelling element a special dedicated attribute that 

holds FOL clauses expressing semantics. Such 
attributes are called “Clause attributes” and they carry 
the semantics at both metamodel and model levels. 

For every element of the considered UML subset 
and for every instantiation operation of this element, 
we use a dedicated predicate to formally specify it.        

Furthermore, the Clause attribute type is called 
“Clause”, and an instance of it is a clause as logical 
expression. The left hand side of a clause is a 
predicate (called head), while its right hand side 
(called body) is a conjunction of predicates that 
entails the truth of the head. For example, consider 
the following clause: 

Human(X)   Walk(X), Talk(X).  (1) 

Clause (1) indicates that, for an individual X when 
the predicates Walk(X) and Talk(X) evaluate to true, 
then Human(X) is true. Human is the head of the 
clause, while the body consists of the logical 
conjunction of the two predicates Walk and Talk. The 
comma separator denotes the logical AND operator. 
When a predicate or a logical conjunction of 
predicates are followed by a dot this means that they 
are set to true. Furthermore, our modelling language 
is a subset of UML limited to classes, attributes, 
associations, generalization, and specialization, but 
augmented with the type Clause as a predefined type 
of Clause attributes. We map this subset of UML to 
FOL. It is in most cases a direct one to one mapping 
that we can present with a concise introduction and 
simple examples as follows.  

We distinguish FOL clauses with the special font 
“Courier new”, and when confusion is possible, we 
use “/*” and “*/” to delimit comments. For better 
readability, we also write in bold the clauses heads.  

The declaration of a Class X having a list of 
attributes atti with their respectivie types Yi, is 
mapped to IsType(X)and Declared Attribute 
(X, atti, Yi). In addition every Clause attribute 
is mapped without changes except the replacement of 
“Self” by the current instance when the class is 
instantiated. When the Clause Attribute is static the 
mapping will be generated once for all instances of 
the Class X. 

A named Association LName between Classes X 
and Z is mapped to:  

DeclaredLink(X, LName, Z). 

At the implementation level, additional rules must 
be added to handle unnamed associations, and 
association directions like: 

DeclaredLink(Z, LName, X)  
DeclaredLink(X, LName, Z).   

DeclaredLink(X, Z)  DeclaredLink(X, 
LName, Z). 

Class X inheritance from Class Z is mapped to: 
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IsOfType(O, Z)  IsOfType( O, X).                             
DeclaredAttribute(X, Attname, 

Attype)  DeclaredAttribute (Z, 
Attname, Attype). 

DeclaredLinK(W, LName, X)   
DeclaredLink(W, LName, Z).  

This mapping reflects that: (1) every instance of 
X is instance of Z; (2) Z attributes and associations 
are also inherited by X. For the sake of simplicity and 
readability, we limit ourselves to main mappings, 
omitting some obviously similar mappings like those 
of rules to handle unnamed associations and 
association directions. Based on the aforementioned 
mapping of AC metamodels, the next step is to map 
the creation of instances of classes and instances of 
their association, taking into consideration the Clause 
attributes.  

Hence, an instance X1 of a Class X having the 
attributes noted atti set to the values Vi  is mapped to: 

 IsOfType(X1, X) and for every attribute atti   
Attribute(X1, atti, Vi).  

We Check whether:  DeclaredAttribute(X, 
atti, Yi), IsOfType(Vi ,Yi). 

And, for every Clause attribute, we map a new 
clause replacing “Self” by the current instance X1. 
When the Clause attribute is static the generation is 
made once per class. 

An association linking two class instances X1 and 
X2 with eventually an association name Lname is 
mapped to Link(X1, Lname, X2) in addition to 
other FOL rules to handle eventual association 
direction and name. We also check whether the 
association is declared.   

That said, we can now apply our metamodelling 
pattern to our AC metamodels, in order to specify 
their semantics consisting of AC decision logic. 
Every element of an AC metamodel is mapped to an 
FOL individual or predicates truth values relating 
individuals. At this stage, the semantic of the AC 
metamodel is not yet specified neither in the UML 
representation nor in the elements mapping. Hence, 
we use the Clause attribute of DecisionHandler, and 
we assign it a clause representing the decision logic 
of the considered AC metamodel. The clause is 
expressed in terms of predicates applied to the 
individuals resulting from the mappings of the AC 
metamodel elements. Thus, the semantic of the 
metamodel is formally specified as an AC decision 
logic.  

In addition, every instance of an AC metamodel 
has an instance of DecisionHandler whose Clause 
attribute is a copy of the DecisionHandler Clause 
attribute in which “Self” is replaced by the individual 
representing itself as the current instance of 
DecisionHandler. 

4 AN INTEGRATION 
METAMODEL OF AC 
METAMODELS 

In a real context, AC decisions depend on more than 
one principle, for instance, observing the level of trust 
in the subject, the need to access an object in order to 
accomplish a task, and the risk of disclosure of private 
or critical information. An AC decision generally 
depends on more than one AC metamodel, and a 
complete AC control specification must state how to 
consider multiple AC decisions resulting from 
multiple AC metamodel instances. We recall that 
such policies and specifications have been called 
“hybrid”. 

Our integration approach consists of clustering 
the DecisionHandler instances of hybrid AC policies 
in order to apply to them combining algorithms 
(ComAl) in a multistage way, as explained in the 
remainder of this section. A combining algorithm 
specifies how to generate only one AC decision as 
output, in response to a set of multiple AC decisions 
as input. Thus, a ComAl is a decision system. 

To specify the integration of several AC 
metamodels of a hybrid AC policy, we propose an 
integration metamodel (IM) that encompasses in 
addition of the already explained metamodelling 
elements the ComAlNode and DecisionSystem 
elements as illustrated in Figure 5. 

DecisionSystem: this element represents the 
concept of a decision system defined in Section 2 and 
whose instances are decision systems.  

DecisionHandler: this is the already introduced 
element of AC metamodels whose instances are 
carrying the decisions of AC metamodels.   

ComAlNode: this represents an element whose 
instance holds a ComAl specification as Clause 
attribute. It applies this ComAl to the decisions issued 
by its associated DecisionSystem with the association 
named child. This means that every instance of 
ComAlNode can issue a decision resulting from 
applying ComAl to one or more instances of 
DecisionSystem. This explain why a ComAlNode 
instance is itself a decision system, and consequently 
it is a specialization of DecisionSystem.  

To summarize, the IM metamodel has the needed 
components to specify a hybrid AC policy as a tree of 
decision systems, with the capacity to specify each 
decision system node in terms of its specific modelling 
elements. Consequently, an AC policy can be 
specified visually as a tree we call Ascending Decision 
Tree (ADT) in which one can unfold or collapse:  
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• A node (as a decision system) to view or hide 
metamodel element instances or a ComAl 
specification; 

• A sub-tree to view or hide a subset of decision 
systems at a direct lower level 

 
Figure 5: The IM metamodel main view. 

5 RELATED WORK 

Barker’s papers (Barker, 2009), (Barker, 2012) are 
among the best known on the subject of AC 
modelling. Barker proposes a metamodel that 
identifies the AC primitives: subject, resource, and 
action augmented with an abstract element called 
“Category”. Category can represent any AC concept 
which is not predefined as one of the above mentioned 
primitives; such concept should be specific to a certain 
AC metamodel. Category is a generic element that can 
represent the concepts of role, clearance, sensitivity, 
or any other AC concept. We mention also an 
extension to Barker’s metamodel (Slimani & al., 
2011) that adds to the metamodel an element allowing 
the specification of constraints on metamodel 
elements. Our work is compatible with Barker’s 
metamodel or its extension; it rather allows the 
specification of each AC metamodel with a set of 
predefined elements including the underlying decision 
logic. Another aspect of comparison between our 
metamodel and Baker’s work resides in the capacity 
to envision a structured use of combined algorithms 
(ComAls) to support hybrid AC policies. 

We mention also other work based on logic to 
specify AC requirements, such as the contributions of 
Graven and al. (Graven et al., 2009), and Gelfond and 
Lobo (Gelfond & Lobo, 2008). These contributions 
have interesting features but they do not consider a 
modelling approach for depicting the AC concepts and 
relating them to language features. The SecPAL 
approach (Becker, 2007) proposes a general 
declarative framework for specifying AC 

requirements with an intuitive syntax similar to that of 
logic programming, but it neither relies on, nor 
proposes a modelling approach. 

Several attempts to extend UML to address AC 
design and implementation should be mentioned also. 
Epstein and Sandhu (Epstein & Sandhu, 1999) use 
UML to specify RBAC requirements. Shin and Ahn 
(Shin & Ahn, 2000) propose techniques using the 
UML notation to achieve RBAC modelling. Doan et 
al. provide support for incorporating mandatory AC 
into UML diagrams (Doan et al., 2004).  

In his UMLsec approach to model secure systems 
with a UML extension, Jurjens (Jurjens, 2001) makes 
room for specifying AC with formally specified 
annotations attached to UML elements. SecureUML 
is proposed by Basin (Basin, Doser & Lodderstedt, 
2006) as a proof of concept for using a model driven 
approach to model secure systems; but SecureUML is 
limited to RBAC specification with no support for 
other policies.  

(Pavlich-Mariscal, Demurjian & Michel, 2010) 
proposes a UML extension in order to represent some 
AC concepts of RBAC, Bell LaPadula, and privileges 
delegation. The metamodel written in MOF is 
considered as a core metamodel that can be 
augmented, in future work, with any new AC 
metamodelling elements. They propose means to 
express simple combining algorithms to deal with 
conflicts among multiple AC metamodels.  In spite of 
the apparent similarity with their work, our research is 
more focused on the elaboration of a comprehensive 
integrating approach of AC metamodels and their 
logic mapping for property verification, whereas 
Pavlich-Mariscal et al. focus on the generation of the 
code enforcing an AC policy in the context of an 
application. 

Jajodia et al. (Jajodia et al., 2001) propose a model 
encompassing hierarchies of roles, subjects and 
objects. The proposed model takes into account the 
history of granted accesses which can be used to 
express particular AC metamodels like CW. This 
model allows specifying conflicts between AC 
requirements, but with a limited expressivity based on 
precedence of denial or permission, or on an absolute 
priority to a specified authorization.  

6 CONCLUSIONS 

Through metamodelling for the access control 
specifications domain, this paper has presented a 
metamodelling pattern capable of supporting the 
semantics of the modelled systems. The adopted 
mapping between modelling elements and FOL is by 
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defining a two way mapping, and is domain 
independent. The proposed pattern promotes 
reutilization by offering a technique allowing to 
convey logic rules, like decision logic, from 
metamodel elements to their instances. This allows 
upgrading from illustrative metamodels to formal 
specification languages with semantic expressiveness 
capabilities and visual representation.    

Applying this pattern, we have elaborated an 
access control metamodel IM as a comprehensive 
metamodel for hybrid AC policies. Although other 
metamodels were proposed in the literature, IM 
represents a realistic advance toward an AC 
specification language that allows formal verification 
of properties, promotes non-ambiguity, reduces 
complexity and supports readability and clarity. This 
is achieved by operating on four axes. First, the formal 
semantics carried by the FOL mapping provides the 
base for property verification using reasoning on FOL 
clauses. Second, the IM integration capability allows 
reducing the complexity of AC specification by 
separating the specification into well-structured and 
well-defined AC metamodel instances. Third, IM 
supports refinement and modularity with a visual 
representation based on an ADT tree structure that can 
be unfolded to selectively display progressively more 
detailed elements in AC metamodel instances or 
combining algorithms. Fourth, each AC metamodel 
allows the reutilization of its encapsulated AC 
decision logic and relevant elements.  

We plan to develop an IM specification editing 
tool supporting the generation of IM instances with 
their corresponding synchronized textual specifica-
tions. This tool will also support syntax validation and 
property verification techniques.  
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