
Metamodelling with Formal Semantics with Application
to Access Control Specification

Jamal Abd-Ali, Karim El Guemhioui and Luigi Logrippo
Computer Science and Engineering Department, Université du Québec en Outaouais, Gatineau, QC, Canada

Keywords: Metamodelling, Access Control.

Abstract: The visual aspect of metamodelling languages is an efficient lever to deal with the complexity of specifying
systems. In many application domains, these systems are generally characterized by the sensitivity and
criticality of their contents, hence precision and formalism are essential goals. This paper considers the domain
of access control specification languages and proposes a metamodelling paradigm with capabilities for
specifying both semantics and structuring elements. We describe how to specify semantics of domain specific
systems at the metamodel and model levels. The paradigm defines reusable rules allowing mapping the
models, including their semantics, to first order logic programs. It represents a methodical approach to
elaborate domain specific languages endowed with visual aspects and means of reasoning on formal
specifications. The paradigm is applicable to a wide range of systems. We show in this paper its application
in the area of decision systems.

1 INTRODUCTION

In specific domains, there are specific concepts that
range from simple to rich, and even complex. Domain
specific metamodels capture such concepts, and their
instances (i.e. models) are interpreted in the light of
these underlying metamodelling concepts. Formally
specifying these concepts as part of a metamodel
allows the creation of metamodel instances,
augmented with formal specifications of concepts
that may express their semantics.

In many domains, like access control (AC) and
decision system specification, metamodelling has an
unexploited potential to contribute to the formal
specification of systems. However two shortcomings
can be noticed: (1) the metamodels are often not
formally specified, and therefore they cannot endow
the specification languages they underlie with the
formal semantics they do not have themselves; (2)
When metamodels are formally specified, the
semantics of their elements are often inexistent.

As a response to these two shortcomings, we
propose a metamodelling pattern that supports the
specification of metamodels with integrated formal
semantics conveyable to their instances. Such
metamodels are very important as domain specific
languages that join the graphical aspect to the formal

semantics. The formalism allows ambiguity free
systems specifications that suit automated
verification and processing which are vital in many
critical application domains like AC, transportation,
and intensive care monitoring.

As an illustration of this pattern we propose an
elaboration of formally specified AC metamodels.
Then we integrate these metamodels in a unique AC
metamodel that, according to our metamodelling
pattern, allows the definition of a textual language.
This language draws its syntax and grammar from the
structural elements of the metamodel, and draws its
semantics from formally specified decision logic
carried by these elements.

Although UML (OMG, 2010) is not the only
modelling language that suits our approach, we will
follow its notation and terminology for the sake of its
large adoption as a de facto modelling language
standard. However, for figures that do not describe
metamodels we use a free illustrative style.

In Section 2, we introduce the concept of AC
metamodelling through examples of AC metamodels;
in Section 3, we detail our approach to formally
specifying our models. Section 4 introduces the
integration metamodel. Section 5 considers related
work. Section 6 concludes the paper with a review of
its contribution.

354 Abd-Ali J., El Guemhioui K. and Logrippo L..
Metamodelling with Formal Semantics with Application to Access Control Specification.
DOI: 10.5220/0005272903540362
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 354-362
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

2 ACCESS CONTROL
METAMODELS

Access Control (AC) is concerned with the restriction
of the activities of legitimate and authenticated users
of a system. More specifically, AC aims to restrict
access to objects in order to protect their integrity and
prevent their undesired use or disclosure. For
example, we can mention the principle of granting
access privileges based on the subject’s role (i.e.,
position or mission) in an organization. This principle
is embodied in the well-known Role Based Access
Control model (RBAC) (Sandhu et al., 1996). This
model involves the following concepts: Subject,
Object, Role, Permission, and their associations. In
this model, the subjects are associated with their
roles, and each role is associated with its appropriate
access permissions on objects. Several other AC
models are well-known in a variety of activity
domains; amongst others we can mention Bell
LaPadula (BLP) (Bell & LaPadula, 1976), BIBA
(BIBA, 1977), and Chinese Wall (CW) (Brewer,
1989). Although these models are seldom used in
their ‘pure’ form, they are at the basis of many
practical models.

An AC model spares us the effort of specifying
repeatedly the underlying AC logic; this latter is
specified once for all when the AC model is
elaborated. Nevertheless, many AC specification
languages whose syntax and semantics are based on
AC models (e.g., XACML (OASIS, 2013), Ponder
(Damianou et al., 2001)) are self-contained and don’t
take advantage of any formally specified model.

Furthermore, since AC specification can enforce
several AC principles concurrently (e.g., RBAC and
Chinese Wall at the same time), we need a modelling
approach that is not tailored to a single AC model. In
the remainder of this paper, AC specifications
(respectively policies) that apply more than one AC

model are called hybrid specifications (respectively
policies). In addition, we call integration the process
of enforcing concurrently multiple AC models.

The concepts captured in AC models pertain to
two groups: (1) those related to the AC domain in
general like “Object”, “Subject” or “AccessMode”,
and (2) those specific to each particular AC model,
like “Role” in the RBAC model. An instance of an
AC model is itself a model at a lower abstraction
level, created by replacing the AC model elements
with their specific corresponding instances; e.g., in
Figure 1, Sam is an instance of Subject, and CEO is
an instance of Role. According to the metamodelling
paradigm (Kleppe, Warmer & Bast, 2002), a model
can have many instances at a lower abstraction level;
each specifying a particular application (utilization)
of that model. Such a model is called a metamodel
and it defines a language to specify lower abstraction
level models called its instances. For example, an
instance of the RBAC model would be one that
specifies the utilization of the RBAC model in a
specific organization with its specific role hierarchy,
its specific employees as subjects, and its specific
objects.

Figure 1 shows an example of a metamodel and a
model, instance of that metamodel. This very simple
metamodel represents the principle that a subject
must be associated to a role. It consists of the
elements: Subject, Role, and their association. At a
lower abstraction level, the model, instance of the
metamodel, is composed of Sam and Tom as
instances of the element Subject, and CEO and Teller
as instances of Role. Dotted arrows indicate
instantiation, the arrows pointing toward the
instances.

Furthermore, the associations between,
respectively, Sam and CEO, and Tom and Teller, are
instances of the higher-level association between
their metamodelling elements Subject and Role.

Figure 1: Metamodelling levels.

Metamodelling�with�Formal�Semantics�with�Application�to�Access�Control�Specification

355

Finally, Sam, CEO, Tom, Teller, and their
respective associations represent themselves a model
of some reality resulting from the application of
RBAC in a specific organization. From this
perspective, RBAC constitutes a metamodel that
defines a language for the specification of lower level
abstraction models called its instances. Of course, the
modelling principles illustrated in this example
extend to all the AC models introduced in this
Section; and therefore these latter ones will be more
accurately called AC metamodels in the remainder of
this paper.

2.1 AC Metamodels and Decision
Systems

In addition to elements representing concepts and
their associations, our AC metamodels encompass the
logic behind AC decisions in response to access
requests. Decisions are issued by applying logical
rules expressed in terms of AC metamodel elements,
hence our introduction of the concept of decision
system. A decision system is a system that returns a
decision in response to a query. Specific decisions are
instances of the metamodelling element Decision

which is specified according to the application
domain. In the AC domain, Decision represents the
type of any possible AC response to an access
request. In our approach, an AC metamodel instance
is also a decision system. Every AC metamodel has a
special element named DecisionHandler whose
mission is to encapsulate the decision logic allowing
to determine the AC decision in response to an access
request. Thus, a DecisionHandler instance is itself a
decision system. Each AC metamodel specializes the
DecisionHandler according to its specific decision
making needs, as shown in Figure 2.

Figure 2The element ACmetaModelElement is a
generalization of any element of the AC metamodels
other than DecisionHandler. It is shown in this view
to indicate that every DecisionHandler specifies its
decision logic in terms of other AC metamodel
elements. This explains the association “uses”
between DecisionHandler and ACmetamModel. In
the following AC metamodels illustrations, and for
the sake of simplicity and readability, we will not
show all the associations between DecisionHandler
and the remaining AC metamodel elements. These
associations are represented by the association “uses”
in Figure 2.

Figure 2: DecisionHandler specialisations in AC metamodels.

Figure 3: Kernel AC elements.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

356

In the remainder of this section we present the
elements shared by the following four AC
metamodels: Chinese Wall, Bell LaPadula, BIBA,
and RBAC, but for the sake of space limitation we
only present the Chinese Wall metamodel. We adopt
the following convention: metamodel elements start
with an uppercase letter, while their instances start in
lowercase. Thus subject and object represent
respectively instances of the elements Subject and
Object.

2.2 Kernel Access Control Elements

We introduce here AC elements that represent shared
and fundamental elements of our AC metamodels.
These elements are called kernel AC elements and
they are defined below and illustrated in Figure 3.
Object: represents the concept of an object as a
resource of a system.

ObjectsGroup: represents a set of objects sharing
some properties.

Subject: represents the concept of a subject as an
entity that may request access to an object.

SubjectsGroup: represents a set of subjects
sharing some characteristics.

AccessMode: specifies the different access
modes as actions that a subject may perform on an
object. In this paper, we only consider the instances
of AccessMode representing the following actions:
Read, Write, and Execute.

AdditionalAttribute: represents a construct
associated to a metamodel element to support the
specification of some property of that element.
AdditionalAttribute has a name and a type that suits
the specification of a property.

Query: represents an access request on an object
by a subject. The object aimed to by the access
request is called the targeted object.

Query associations to respectively Object,
Subject, and AccessMode (see Figure 3) indicate that
we respectively associate to an instance of Query: (1)
An instance of Object representing the targeted

object; (2) An instance of Subject representing the
subject requesting the access; (3) An instance of
AccessMode representing the requested action by the
subject. The Query attribute isCurrent, of Boolean
type, allows identifying the current Query instance as
the query to process. This attribute is needed when we
have to take into account other queries than the
current one, since previous queries of a subject may
influence an AC decision.

EnvironmentalAttribute: similar to
AdditionalAttribute, but used to describe some
property of any relevant entity of the environment
that is not represented in the AC metamodel elements.
It is used to hold information related to access request
events such as time, place, emergency level of a
context, temperature, etc. Hence, the association
between EnvironmentalAttribute and Query (see
Figure 3), since an AC decision may depend on the
state of the environment.

Decision: represents the concept of a decision as
a response issued by the AC about an access request.
In this paper, only the following instances of Decision
are considered: Permit, Deny, Indeterminate,
NotApplicable

The kernel elements are part of every AC
metamodel. Thus in a hybrid policy, the subjects, the
objects, and the query content are part of every AC
metamodel instance. Furthermore notice the key role
of Query instance in the specification of the decision
logic, regardless of the considered AC metamodel.

2.3 Chinese Wall AC Metamodel

According to the Chinese Wall (CW) AC principle, in
order to avoid a conflict of interests, after a subject
has accessed some objects, it must be prevented from
accessing some other particular objects.
Consequently, we separate the objects in subsets
called classes. These classes constitute a conflict
group. The Chinese Wall AC logic can be formulated
as follows:

Figure 4: Chinese Wall metamodel.

Metamodelling�with�Formal�Semantics�with�Application�to�Access�Control�Specification

357

Considering the classes C1, C2, …, Cn of a conflict
group CG; if a subject s has accessed any object
belonging to a class Ci of CG, s will not be allowed
to access any object belonging to another class Ck of
CG, with k≠ i. In other words ((AccessedBy-s ∩ (C1
∪ C2 …∪ Cn)) ⊆ Cx) must remain true for any
subject s, where AccessedBy-s designates the set of
objects s has accessed, and Cx designates a single
ConflictClass instance which belongs to the conflict
group CG.

The CW metamodel shown in Figure 4 illustrates
the above mentioned concepts. ConflictClass denotes
a class in a conflict group. The represented
associations and their multiplicities reflect notable
facts: Several conflict groups may coexist in the same
CW model (instance of the depicted metamodel), but
a conflict class may belong to only a single conflict
group; furthermore, a subject cannot access more than
one class in any conflict group. Nevertheless, a
subject can access many classes pertaining to distinct
conflict groups, although it should be blocked if it can
lead to unwanted information propagation. Subject
and ObjectsGroup are already introduced as kernel
AC elements. CWdecisionHandler is the
specialization of DecisionHandler for CW.

3 FORMAL SPECIFICATION OF
AC METAMODELS AND
DECISION LOGIC

We consider the metamodels whose representation
relies on a subset of UML limited to classes, attributes
and classes associations. Such modelling representa-
tion is neither complete nor ambiguity-free. Indeed, a
metamodel is generally endowed with elements
representing informally specified semantics of a
domain. We propose percolating these semantics
from metamodel elements to their instances by
attaching formal semantics to metamodel elements.
Our approach aims to express both modelling
elements and their semantics in the same formal
language that we call target language.

As a target language, we have adopted the First
order logic since it is known to be suitable for relating
individuals to their types, for specifying relationships
between individuals, and for expressing rules like
decision logic.

That said, we propose a metamodelling pattern
based on two complementary folds: the first maps the
modelling elements to First Order Logic (FOL) as a
target language, the second attaches to each
modelling element a special dedicated attribute that

holds FOL clauses expressing semantics. Such
attributes are called “Clause attributes” and they carry
the semantics at both metamodel and model levels.

For every element of the considered UML subset
and for every instantiation operation of this element,
we use a dedicated predicate to formally specify it.

Furthermore, the Clause attribute type is called
“Clause”, and an instance of it is a clause as logical
expression. The left hand side of a clause is a
predicate (called head), while its right hand side
(called body) is a conjunction of predicates that
entails the truth of the head. For example, consider
the following clause:

Human(X) Walk(X), Talk(X). (1)

Clause (1) indicates that, for an individual X when
the predicates Walk(X) and Talk(X) evaluate to true,
then Human(X) is true. Human is the head of the
clause, while the body consists of the logical
conjunction of the two predicates Walk and Talk. The
comma separator denotes the logical AND operator.
When a predicate or a logical conjunction of
predicates are followed by a dot this means that they
are set to true. Furthermore, our modelling language
is a subset of UML limited to classes, attributes,
associations, generalization, and specialization, but
augmented with the type Clause as a predefined type
of Clause attributes. We map this subset of UML to
FOL. It is in most cases a direct one to one mapping
that we can present with a concise introduction and
simple examples as follows.

We distinguish FOL clauses with the special font
“Courier new”, and when confusion is possible, we
use “/*” and “*/” to delimit comments. For better
readability, we also write in bold the clauses heads.

The declaration of a Class X having a list of
attributes atti with their respectivie types Yi, is
mapped to IsType(X)and Declared Attribute
(X, atti, Yi). In addition every Clause attribute
is mapped without changes except the replacement of
“Self” by the current instance when the class is
instantiated. When the Clause Attribute is static the
mapping will be generated once for all instances of
the Class X.

A named Association LName between Classes X
and Z is mapped to:

DeclaredLink(X, LName, Z).

At the implementation level, additional rules must
be added to handle unnamed associations, and
association directions like:

DeclaredLink(Z, LName, X)
DeclaredLink(X, LName, Z).

DeclaredLink(X, Z) DeclaredLink(X,
LName, Z).

Class X inheritance from Class Z is mapped to:

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

358

IsOfType(O, Z) IsOfType(O, X).
DeclaredAttribute(X, Attname,

Attype) DeclaredAttribute (Z,
Attname, Attype).

DeclaredLinK(W, LName, X)
DeclaredLink(W, LName, Z).

This mapping reflects that: (1) every instance of
X is instance of Z; (2) Z attributes and associations
are also inherited by X. For the sake of simplicity and
readability, we limit ourselves to main mappings,
omitting some obviously similar mappings like those
of rules to handle unnamed associations and
association directions. Based on the aforementioned
mapping of AC metamodels, the next step is to map
the creation of instances of classes and instances of
their association, taking into consideration the Clause
attributes.

Hence, an instance X1 of a Class X having the
attributes noted atti set to the values Vi is mapped to:

 IsOfType(X1, X) and for every attribute atti
Attribute(X1, atti, Vi).

We Check whether: DeclaredAttribute(X,
atti, Yi), IsOfType(Vi ,Yi).

And, for every Clause attribute, we map a new
clause replacing “Self” by the current instance X1.
When the Clause attribute is static the generation is
made once per class.

An association linking two class instances X1 and
X2 with eventually an association name Lname is
mapped to Link(X1, Lname, X2) in addition to
other FOL rules to handle eventual association
direction and name. We also check whether the
association is declared.

That said, we can now apply our metamodelling
pattern to our AC metamodels, in order to specify
their semantics consisting of AC decision logic.
Every element of an AC metamodel is mapped to an
FOL individual or predicates truth values relating
individuals. At this stage, the semantic of the AC
metamodel is not yet specified neither in the UML
representation nor in the elements mapping. Hence,
we use the Clause attribute of DecisionHandler, and
we assign it a clause representing the decision logic
of the considered AC metamodel. The clause is
expressed in terms of predicates applied to the
individuals resulting from the mappings of the AC
metamodel elements. Thus, the semantic of the
metamodel is formally specified as an AC decision
logic.

In addition, every instance of an AC metamodel
has an instance of DecisionHandler whose Clause
attribute is a copy of the DecisionHandler Clause
attribute in which “Self” is replaced by the individual
representing itself as the current instance of
DecisionHandler.

4 AN INTEGRATION
METAMODEL OF AC
METAMODELS

In a real context, AC decisions depend on more than
one principle, for instance, observing the level of trust
in the subject, the need to access an object in order to
accomplish a task, and the risk of disclosure of private
or critical information. An AC decision generally
depends on more than one AC metamodel, and a
complete AC control specification must state how to
consider multiple AC decisions resulting from
multiple AC metamodel instances. We recall that
such policies and specifications have been called
“hybrid”.

Our integration approach consists of clustering
the DecisionHandler instances of hybrid AC policies
in order to apply to them combining algorithms
(ComAl) in a multistage way, as explained in the
remainder of this section. A combining algorithm
specifies how to generate only one AC decision as
output, in response to a set of multiple AC decisions
as input. Thus, a ComAl is a decision system.

To specify the integration of several AC
metamodels of a hybrid AC policy, we propose an
integration metamodel (IM) that encompasses in
addition of the already explained metamodelling
elements the ComAlNode and DecisionSystem
elements as illustrated in Figure 5.

DecisionSystem: this element represents the
concept of a decision system defined in Section 2 and
whose instances are decision systems.

DecisionHandler: this is the already introduced
element of AC metamodels whose instances are
carrying the decisions of AC metamodels.

ComAlNode: this represents an element whose
instance holds a ComAl specification as Clause
attribute. It applies this ComAl to the decisions issued
by its associated DecisionSystem with the association
named child. This means that every instance of
ComAlNode can issue a decision resulting from
applying ComAl to one or more instances of
DecisionSystem. This explain why a ComAlNode
instance is itself a decision system, and consequently
it is a specialization of DecisionSystem.

To summarize, the IM metamodel has the needed
components to specify a hybrid AC policy as a tree of
decision systems, with the capacity to specify each
decision system node in terms of its specific modelling
elements. Consequently, an AC policy can be
specified visually as a tree we call Ascending Decision
Tree (ADT) in which one can unfold or collapse:

Metamodelling�with�Formal�Semantics�with�Application�to�Access�Control�Specification

359

• A node (as a decision system) to view or hide
metamodel element instances or a ComAl
specification;

• A sub-tree to view or hide a subset of decision
systems at a direct lower level

Figure 5: The IM metamodel main view.

5 RELATED WORK

Barker’s papers (Barker, 2009), (Barker, 2012) are
among the best known on the subject of AC
modelling. Barker proposes a metamodel that
identifies the AC primitives: subject, resource, and
action augmented with an abstract element called
“Category”. Category can represent any AC concept
which is not predefined as one of the above mentioned
primitives; such concept should be specific to a certain
AC metamodel. Category is a generic element that can
represent the concepts of role, clearance, sensitivity,
or any other AC concept. We mention also an
extension to Barker’s metamodel (Slimani & al.,
2011) that adds to the metamodel an element allowing
the specification of constraints on metamodel
elements. Our work is compatible with Barker’s
metamodel or its extension; it rather allows the
specification of each AC metamodel with a set of
predefined elements including the underlying decision
logic. Another aspect of comparison between our
metamodel and Baker’s work resides in the capacity
to envision a structured use of combined algorithms
(ComAls) to support hybrid AC policies.

We mention also other work based on logic to
specify AC requirements, such as the contributions of
Graven and al. (Graven et al., 2009), and Gelfond and
Lobo (Gelfond & Lobo, 2008). These contributions
have interesting features but they do not consider a
modelling approach for depicting the AC concepts and
relating them to language features. The SecPAL
approach (Becker, 2007) proposes a general
declarative framework for specifying AC

requirements with an intuitive syntax similar to that of
logic programming, but it neither relies on, nor
proposes a modelling approach.

Several attempts to extend UML to address AC
design and implementation should be mentioned also.
Epstein and Sandhu (Epstein & Sandhu, 1999) use
UML to specify RBAC requirements. Shin and Ahn
(Shin & Ahn, 2000) propose techniques using the
UML notation to achieve RBAC modelling. Doan et
al. provide support for incorporating mandatory AC
into UML diagrams (Doan et al., 2004).

In his UMLsec approach to model secure systems
with a UML extension, Jurjens (Jurjens, 2001) makes
room for specifying AC with formally specified
annotations attached to UML elements. SecureUML
is proposed by Basin (Basin, Doser & Lodderstedt,
2006) as a proof of concept for using a model driven
approach to model secure systems; but SecureUML is
limited to RBAC specification with no support for
other policies.

(Pavlich-Mariscal, Demurjian & Michel, 2010)
proposes a UML extension in order to represent some
AC concepts of RBAC, Bell LaPadula, and privileges
delegation. The metamodel written in MOF is
considered as a core metamodel that can be
augmented, in future work, with any new AC
metamodelling elements. They propose means to
express simple combining algorithms to deal with
conflicts among multiple AC metamodels. In spite of
the apparent similarity with their work, our research is
more focused on the elaboration of a comprehensive
integrating approach of AC metamodels and their
logic mapping for property verification, whereas
Pavlich-Mariscal et al. focus on the generation of the
code enforcing an AC policy in the context of an
application.

Jajodia et al. (Jajodia et al., 2001) propose a model
encompassing hierarchies of roles, subjects and
objects. The proposed model takes into account the
history of granted accesses which can be used to
express particular AC metamodels like CW. This
model allows specifying conflicts between AC
requirements, but with a limited expressivity based on
precedence of denial or permission, or on an absolute
priority to a specified authorization.

6 CONCLUSIONS

Through metamodelling for the access control
specifications domain, this paper has presented a
metamodelling pattern capable of supporting the
semantics of the modelled systems. The adopted
mapping between modelling elements and FOL is by

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

360

defining a two way mapping, and is domain
independent. The proposed pattern promotes
reutilization by offering a technique allowing to
convey logic rules, like decision logic, from
metamodel elements to their instances. This allows
upgrading from illustrative metamodels to formal
specification languages with semantic expressiveness
capabilities and visual representation.

Applying this pattern, we have elaborated an
access control metamodel IM as a comprehensive
metamodel for hybrid AC policies. Although other
metamodels were proposed in the literature, IM
represents a realistic advance toward an AC
specification language that allows formal verification
of properties, promotes non-ambiguity, reduces
complexity and supports readability and clarity. This
is achieved by operating on four axes. First, the formal
semantics carried by the FOL mapping provides the
base for property verification using reasoning on FOL
clauses. Second, the IM integration capability allows
reducing the complexity of AC specification by
separating the specification into well-structured and
well-defined AC metamodel instances. Third, IM
supports refinement and modularity with a visual
representation based on an ADT tree structure that can
be unfolded to selectively display progressively more
detailed elements in AC metamodel instances or
combining algorithms. Fourth, each AC metamodel
allows the reutilization of its encapsulated AC
decision logic and relevant elements.

We plan to develop an IM specification editing
tool supporting the generation of IM instances with
their corresponding synchronized textual specifica-
tions. This tool will also support syntax validation and
property verification techniques.

ACKNOWLEDGEMENTS

This research was funded in part by the Natural
Sciences and Engineering Research Council of
Canada.

REFERENCES

Barker, S. (2012) Logical Approaches to Authorization
Policies. In: Artikis, A., Craven, R., Çiçekli, N. K.,
Sadighi, B., Stathis, K.(eds.) Logic Programs, Norms
and Action. LNCS, vol. 7360, pp. 349-373. Berlin
Heidelberg: Springer.

Barker, S. (2009) The next 700 access control models or a
unifying meta-model?. In: Proceedings of 14th ACM

Symposium on Access Control Models and
Technologies (SACMAT’09). pp. 187–196.

Basin, D., Doser, J., Lodderstedt, T. (2006) Model driven
security: From UML models to access control
infrastructures. ACM Transactions on Software
Engineering and Methodology. Vol.15, pt. 1, pp. 39–
91.

Becker, M. Y., Fournet, C. & Gordon, A. D. (2007) Design
and semantics of a decentralized authorization
language. In: CSF. pp. 3–15.

Bell, D. & LaPadula, L. (1976) Secure Computer Systems:
Unified Exposition and Multics Interpretation. Mitre
Corporation: Bedford, MA. (March 1976).

Biba, K. (1977) Integrity Considerartions for Secure
Compouter Systems. The Mitre Corporation. (April
1977).

Brewer, D. F.C & Nash, M. J. (1989) The Chinese Wall
security policy. In: Security and Privacy 1989,
Oakland, CA. pp. 206-214.

Damianou, N., Dulay, N., Lupu, E. & Sloman, M. (2001)
The Ponder specification language. In: Workshop on
Policies for Distributed Systems and Networks, Jan
2001.

Doan, T., Demurjian, S., Ting, T.C. & Ketterl, A. (2004)
MAC and UML for secure software design. In:
Proceedings of 2004 ACM workshop on Formal
methods in security engineering (FMSE’04) 2004. pp.
75–85.

Epstein, P. & Sandhu, R. 1999 Towards a UML based
approach to role engineering. In: Proceedings of 4th
ACM workshop on Role-based Access Control
(RBAC’99) 1999. pp. 135–143.

Gelfond, M. & Lobo, J. (2008) Authorization and
Obligation Policies in Dynamic Systems. In: Garcia de
la Banda, M., Pontelli, E. eds. ICLP 2008. LNCS, vol.
5366, pp. 22–36. Heidelberg: Springer.

Graven, R., Lobo, J., Ma, J., Russo, A., Lupu, E.C. &
Bandara, A.K. (2009) Expressive policy analysis with
enhanced system dynamicity. In: ASIACCS
proceedings of the 4th international Symposium on
Information Computer, and Commuication Security
2009. pp. 239–250. New York: ACM.

Jajodia, S., Samarati, P., Sapino, M. & Subrahmaninan, V.
(2001) Flexible support for multiple access control
policies. Vol. 26, pt.2, pp.214–260 ACM TODS.

Jurjens, J. (2001) Towards development of secure systems
using UMLsec. In: Hussmann, H. (eds.) Proceedings of
4th International Conference on Fundamental
Approaches to Software Engineering (FASE/
ETAPS’01) 2001. volume of LNCS, vol. 2029, pp.187–
200. Heidelberg: Spring.

Kleppe, A., Warmer, J. & Bast, W. (2002). MDA
Explained, The Model Driven Architecture: Practice
And Promise. Addison-Wesley.

OASIS (2013) eXtensible Access Control Markup
Language XACML version 3.0. OASIS standard.

Object Management Group, (2010) Unified Modeling
Language, version 2.3. OMG Document Number:
formal/2010-05-03.

Metamodelling�with�Formal�Semantics�with�Application�to�Access�Control�Specification

361

Pavlich-Mariscal, J., Demurjian, S. & Michel, L. (2010) A
framework of composable access control features:
Preserving separation of access control concerns from
models to code. Computers & Security. Vol. 29, pt.3,
pp.50–379.

Sandhu, R., Coyne, E., Feinstein, H. & Youman, C. (1996)
Role-based access control models. Computer. Vol. 29,
pt.2, pp.38–47.

Shin, M., &Ahn, G. (2000) UML-based representation of
role-based access control. In: Proceedings of 9th IEEE
International Workshops on Enabling Technologies
(WETICE’00) (2000). pp. 195–200.

Slimani, N., Khambhammettu, H., Adi, K. & Logrippo, L.
(2011) UACML: Unified Access Control Modeling
Language. In: New Technologies, Mobility and Security
(NTMS), 2011 4th IFIP International Conference. pp.
1-8. Paris: IEEE press.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

362

