Designing Flexible Access Control Models for the Cloud

Salim Khamadja
Laboratoire Systemes
Informatiques
Ecole Militaire Polytechnique
BP-17, Bordj El Bahri, 16111,
Alger, Algérie

ABSTRACT

In Cloud environments, Cloud users have the possibility to
put their sensitive data on Cloud servers, which opens the
door to security challenges concerning data protection. In
this context, access control is of vital importance, since it
provides security mechanisms to protect against inappropri-
ate access to data. Unfortunately, classical access control
models such as DAC, MAC, RBAC or ABAC are not suf-
ficiently expressive for highly flexible and dynamic environ-
ments such as those found in the Cloud. Often, a combi-
nation of elements of these models is necessary in order to
properly express varied data protection needs. In this pa-
per, we present a new approach called CatBAC (Category
Based Access Control), for building dedicated access control
models starting from an abstract meta-model. Hence, in our
approach, a meta-model can be refined in accordance with
the high level security policies of each specific user. Our
framework for building access control models can be imple-
mented as a Cloud service and Cloud providers will then
apply different concrete access control models produced by
each user to process its incoming access requests.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks|: General—

Security and Protection; D.4.6 [Operating Systems]: Se-
curity and Protection—Access Controls

General Terms
Security.

Keywords

CatBAC, Meta-model, Access Control Models, Refinement,
Hybrid Policies, Cloud Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SIN’13, November 26 - 28 2013, Aksaray, Turkey

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-2498-4/13/11...$15.00.
http://dx.doi.org/10.1145/2523514.2527005

Kamel Adi
Laboratoire de Recherche en
Sécurité Informatique (LRSI)

Université du Québec en
Outaouais
Gatineau, QC, Canada
salim.khamadja@gmail.com kamel.adi@uqo.ca

Luigi Logrippo
Laboratoire de Recherche en
Sécurité Informatique (LRSI)

Université du Québec en
Outaouais
Gatineau, QC, Canada

luigi.logrippo@ugo.ca

1. INTRODUCTION

Cloud computing is a concept in the area of “utility com-
puting”, offering a service delivery model integrating differ-
ent dimensions of computing capacity, together with an ad-
ministrative infrastructure proposed to clients. Among the
different definitions of the term “Cloud computing”, we re-
tain the one given by Buyya et al. [7] who define a Cloud as
a “type of parallel and distributed system consisting of a col-
lection of interconnected and virtualized computers that are
dynamically provisioned and presented as one or more uni-
fied computing resources based on service-level agreements
established through negotiation between the service provider
and consumers”. This ambitious approach, considering at
the same time several forms of deployment and a wide spec-
trum of features, emphasizes the use of information tech-
nology decorrelating the applications and other infrastruc-
ture resources underlying its mechanism of distribution. The
Cloud delivery models are based on the Software-Platform-
Infrastructure (SPI) framework. This acronym represents
the three major services that can be provided through the
Cloud: Software-as-a-service (SaaS); Platform-as-a-service
(PaaS); and Infrastructure-as-a-service (IaaS) [12]. More
specifically, the SaaS offers to consumers the software that
is used under a usage-based pricing model. The PaaS pro-
vides the platform for application development, and finally,
the IaaS manages the provision of hardware, software and
equipment necessary to provide a resource usage-based pric-
ing model.

This service oriented context requires that Cloud providers
offer security tools that are sufficiently flexible to meet dif-
ferent needs coming from a wide spectrum of users. When
data and systems are hosted in shared hosting environments,
access control to data, data privacy and data separation be-
come crucial [15]. Hence, access control can play an impor-
tant part for data protection needs in Cloud environments.
Our paper relates to the newer concept of “Security as a
Service”, where security services are provided to Cloud users
[8, 16]. More specifically, we develop the concept of “Access
Control as a Service”.

The main goal of access control is to regulate the different
operations that may be performed by subjects on objects.
Access control models provide a formal representation of ac-
cess control policies and are the result of a constant evolution
in security requirements. Hence, over the last four decades,
various approaches to access control have been developed,
among which:

e Discretionary access control (DAC) [14] where the pri-
mary responsibility for access control belongs to the

users who own the information.

e Mandatory access control (MAC) [14] where access
control permissions are determined by mandatory hi-
erarchies of data and users.

e Role based access control (RBAC) approach [10], where
access control permissions are determined by the role
of users in organizations, this is a widely deployed ap-
proach.

e Extensions of RBAC: These are many: LRBAC [25],
CRBAC [20], CA-RBAC [13], OrBAC [1], etc. They
have been designed to deal with situations not con-
sidered by RBAC such as changeable contexts, mobile
computing, pervasive computing, etc.

e The Attribute based access control (ABAC) [25] ap-
proach, that generalizes the concept of context by in-
troducing the “attribute concept”.

e New access control approaches have emerged in the
Cloud to tackle access control requirements such as:
HABAC for hierarchical ABAC model for Cloud stor-
age [23], and Task RBAC with a constraints model for
Cloud provisioned healthcare systems [18].

As we can see, formal access control models are evolving
along with technology usage and user requirements. Indeed,
access control models are related to existing security con-
cerns at the time of their conception. Thus, classical access
control models cannot easily deal with systems’ evolution.
We should then move towards generic modeling languages
that can be easily adapted to capture this evolution. Hybrid
models, that combine characteristics from existing models,
should be allowed.

Moreover, in the Cloud, users’ data are stored in Cloud
servers. These data can be accessed by users that are geo-

graphically distributed, with different operational constraints.

For example, the working hours can differ from a site to an-
other; consequently, the high level policy of companies must
be abstract and hide the details which are specific to each
site. Such a policy can contain the following rule: “doctors
can consult patients’ files during working hours”. The work-
ing hours must be instantiated according to actual values
for each site.

In this paper, we propose a new method for the specifica-
tion of access control in Cloud environments. This method is
based on a generic access control meta-model called CatBAC
together with a refinement technique. The CatBAC meta-
model allows Cloud providers to formalize the high level pol-
icy of each of their customers by offering each of them an
access control model specific to this policy. This access con-
trol model makes it possible for security administrators in
the various sites of the company to produce a concrete model
taking into account the constraints and specificities of each
site. The passage between meta-model, model and concrete
model is ensured by the refinement process. The concrete
model represents the access control policy in each site and
respects the high level policy of the company. Although we
will show that our technique is particularly useful for the
design of Cloud security services, it is not difficult to see its
applicability in other situations where flexible security ser-
vices are required. The method developed in this paper is
an application of the principles introduced in [11].

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our method for specifying access con-
trol in Cloud environnements. In Section 3, we present the
generic meta-model CatBAC for hybrid access control poli-
cies based on the categorization of basic elements of access
control. In Section 4, we describe a refinement technique
for building access control models from meta-models. In
Section 5, we describe the usage of our method in Cloud en-
vironments through a Cloud Scenarios. Section 6 compares
the work presented in this paper with the relevant work in
the literature. We draw conclusions for this paper in Sec-
tion 7.

2. OUR METHOD

The CatBAC meta-model is based on the concept of cate-
gory and makes it possible to formalize hybrid policies which
can combine several elements of the classical access control
models.

In order to protect the data of a given company, the Cloud
provider initially recovers the high level policy of this com-
pany which must be abstract. The meta-model will be re-
fined in an abstract model of access control representing this
policy. This abstract model will be sent to the various sites
of the company allowing the local security administrators to
refine it in a concrete model by respecting the low level secu-
rity policy and the constraints locally required. The concrete
model will be used to treat the coming access requests from
its corresponding site. Figure 1 shows our method.

CatBA
Meta-Model
Refinement by Cloud provider
Abstract Model
Refinement by Security
Administrators

Concrete Model Concrete Model Concrete Model
Site 1 Site 2 Site N

Figure 1: Our Method

An implementation of our CatBAC framework could be
offered as a Cloud service. We will demonstrate two ad-
vantages for this method: (1) It allows to express hybrid
policies, (2) It makes access control more flexible allowing
to take into account the local constraints and specificities
of each site of a company. The Cloud provider refers to the
concrete model of each site to treat incoming access requests.

3. GENERIC META-MODEL CATBAC

In this section, we present our meta-model CatBAC and
we show how it can be used to define hybrid access control
policies. Beginning with the basic access control concepts,
we propose a new approach to represent these concepts in a
more generic way.

3.1 Basic access control elements

Basic elements of access control are: subjects (S) which
access resources (R) to perform actions (A). An access con-
trol rule associates these elements to express permissions or
prohibitions. For example: “Alice can read file F1”.

By adding contextual conditions, rules and policies can
become more expressive. For example: “Alice can read file
F1 between 8:00 am and 4:00 pm”, or “Doctors can read
medical files of all patients in emergency situations”. Con-
text (C) is an important element to provide realistic policies
for access control. Hence, access control in its most concrete
form is a relationship between these four elements.

3.2 CatBAC meta-model

Many access control models and recent meta-models pro-
posed in the literature are based on the notion of “Category”.
In RBAC [10], role can be considered as a unique category
for classifying subjects. In MAC [14], there is a Security
level categorization for both subjects and resources. Re-
cently, Barker [3, 4] has proposed a generalization of the
category concept in RBAC by considering a large number of
categories such: roles, groups, security levels, localization,
etc. Thus, the category concept can be used to build more
generic access control models.

However, in previous work [3, 4, 10, 24], the concept of
category was applied to specific elements. In this new ap-
proach, we generalize the use of the category concept and
apply it to all basic elements of access control, as shown
in Figure 2. In this way, we have an abstract level that
connects categories to express authorizations (permission,
prohibition), that we call “abstract authorizations”. On the
concrete level, “concrete authorizations” which represent the
access control decisions in relation to concrete entities (sub-
ject, resource, action and context), are based on the assign-
ment of these entities to categories and on the existence of
an abstract authorization between these categories.

On this basis, we can define three types of relations for
modeling access control:

1. Abstract authorization: this relation associates the four
categories (subject category (scat), resource category
(rcat), action category (acat) and context category
(ccat)) to express modalities of access control such as:
permission, prohibition, etc.

2. Assignment relation: this relation associates concrete
elements of access control to their corresponding cate-
gories to express low-level policies.

3. Concrete authorization: this relation associates con-
crete elements to express concrete decisions of access

control; it is based on the two relations presented above.

Following Barker [3], we can formalize our access control
mechanism through first-order logic. We define the relation-
ship between the abstract and concrete levels by the axiom:

A-Auth(scat, acat, rcat, ccat) A SCat(s, scat) A
ACat(a, acat) A RCat(r, rcat) A CCat(c, ccat) A
Valid_Context(s, a, r, ¢) = C-Auth(s, a, r), where:

e A-Auth(scat, acat, rcat, ccat): defines an abstract
authorization between categories scat, acat, rcat and
ccat.

e XCat(x, xcat) for X € {S,A,R,C} and x € {s,a,r,c} is
a predicate that is true iff x € xcat.

e Valid_Context(s, a, r, ¢): is a predicate that tells us
about the validity of context ¢ for concrete elements s,
a and r. If the context is valid, this predicate returns
true.

e C-Auth(s, a, r): defines a concrete authorization be-
tween concrete elements s, a and r, stating that subject
s can or can’t perform action a on the resource r.

In the terminology of access control, the notion of au-
thorization is used to indicate either permission which is a
“positive authorization”, or prohibition which is a “negative
authorization”.

CatBAC (Figure 2) is a UML-based meta-model for spec-
ifying hybrid access control policies. It is based on the ab-
stract level relation. It is composed of four abstract UML
classes: SCat (Subjects Categorization), RCat (Resources
Categorization), ACat (Actions Categorization) and CCat
(Contexts Categorization). These classes are abstract classes
that can be refined into more specific classes. These specific
classes produce a CatBAC model derived from the CatBAC
meta-model, in order to implement the high-level access con-
trol requirements.

The classes in the CatBAC meta-model can be instanti-
ated to sets of classes representing each a category concept
that can be used to classify concrete elements of access con-
trol. In a generic way, we consider that these categories
can regroup many types of categories used in access control
specifications that can cover novel categorization types. For
subject’s categorization, many categories are known, such
as: roles, groups, security levels, etc. On the other hand, cat-
egorization of resources by security levels is one of the main
characteristics of the MAC model. We generalize this by
proposing other categorizations of resources such as: groups,
risk value, etc. In the same way, we define categorizations
of actions to classify them with respect to certain criteria,
like: groups, sensitivity level, risk value, etc. CCat repre-
sents categorization of contextual information such as time,
localization, session, situations, etc. Figure 2 represents, in
UML notation, the four classes in CatBAC.

[
L Nt
[L]

ACat

Figure 2: UML representation of CatBAC meta-
model

The self-association edge on each of the four classes defines
the possibility of allowing categories to be associated with
other categories, which allows a high level of hybridization

between multiple access control models. For example, the
role category can be categorized by groups. Also, we define
hierarchical relationships among categories by the aggrega-
tion relation. This is shown as a self-association edge with
a diamond head. For example, the category for the location
context can include a geographical hierarchy among coun-
tries and continents such as: “Bavaria is in Germany which
is included in Europe”.

The CatBAC meta-model has the advantage of being sym-
metric with comparison to other models proposed in the lit-
erature [3, 4, 24]. This symmetry allows a “clean” separation
of the abstract level from the concrete level; in addition, the
formalization of the model will be simpler.

In Role-based access control (RBAC), when a new subject
is assigned to the system, it is assigned only the roles the
subject will play to benefit from the privileges associated
with these roles. We adopt this principle to all basic access
control elements (subject, resource, action and context) to
further facilitate the administration when there is addition
of new elements. For example, when a new resource is added
into the system, it is assigned its corresponding category
of resource. Therefore, fewer authorization rules will need
to be added. Also, offering several categories for a given
class of access control elements (subject, resource, action
or context) allows combining several access control models,
and therefore producing hybrid policies that can meet new
security requirements. In section 3.4, we present a simple
example of hybrid policy.

3.3 Deriving CatBAC models

In this section, we show how classical, new and hybrid ac-
cess control models can be refined from the CatBAC meta-
model by specializing abstract classes to represent concrete
categories. For instance, XCati in Figure 3 represents a real
category of basic elements of access control such as: Consul-
tant (as Role), Doctors (as Group), Classified (as Security
level), etc.

Classical models of access control can be derived from
our meta-model by specializing abstract classes to represent
elements of these models. When a classical model doesn’t
support categorization for a specific set of basic elements
of access control, we assume that each element in this set
represents a category in itself (XCati = X).

To support hybrid access control models, many categories
can be combined from the meta-model.

Therefore, a company may instantiate the meta-model so
that it represents its structure and its management of access
control. This instantiation can produce an access control
model that responds to specific security needs. The gener-
ated model represents the access control policy within the
company.

For example, the high level policy of an organization may
require the following rule to be enforced: “Employees which
are consultants and have security level ‘Classified’ can read
File_A”. This policy requirement is presented by refinement
of the CatBAC meta-model in an abstract and hybrid model
(Figure 4). In section 4, we present a technique for refine-
ment that we use with CatBAC.

3.4 Low-level policies

CatBAC allows visualizing low-level policies through UML
designed models derived from CatBAC models. Let us sup-
pose that the low level policy contains this rule: “User Alice

I &]
CCatl CCat2
Iﬁy_l_l_u
CCat
SCat RCat
IJY—I—H IJY—I—H
SCatl SCat2 ACat RCat1l RCat2
5 oall r— (o oall
ACatl ACat2

s ol

Figure 3: Derivation of hybrid CatBAC models from
meta-model

SCat RCat
I R I| S5e |! I Ri
f ole. c_Level] esource.
Subject ConsultanJ Classified ACat | File_A_|

=) —=]

Action.
Read

Figure 4: CatBAC model

is a consultant and has security level ‘Classified’ can read
File_A”. Then, this low level rule can be visualized using an
UML concrte model (Figure 5), that it is a refinement of the
CatBAC model presented in Figure 4.

<<Subject>> Role. Sec_level. Resource.
Alice — Consultant |—] Classified File_A

Action.Read

Figure 5: CatBAC concrete model

4. A REFINEMENT TECHNIQUE FOR CAT-
BAC

4.1 Refinement process

As mentioned, the derivation in CatBAC from meta-model
to model necessitates a refinement technique. Refinement is
the process of transforming abstract or high-level specifica-
tions into low-level, concrete ones [17]. Refinement ensures

that all elements, namely classes of models are correctly de-
rived from the elements of their meta-model(s). The main
objectives of any policy refinement technique are:

1. Determine the resources that are needed to satisfy the
access control requirements of the abstract policies,

2. Translate abstract policies into low-level policies,

3. Verify that low-level policies actually meet the require-
ments specified by their corresponding abstract poli-
cies.

In our case, the refinement process involves two steps:
high-level refinement and low-level refinement.

4.1.1 High level refinement

The high level refinement produces an access control model
satisfying the high level policy of the organization, while re-
specting the meta-model. It produces the mechanisms used
to manage access control in accordance with the organiza-
tion’s policy. We will illustrate this by means of an example.
Suppose that the high level security policy of an organiza-
tion is stated as follows: “Employees who are consultants can
consult documents in the group Financial_ Documents dur-
ing Working Hours”. The process of high level refinement
can, then, be decomposed into six steps:

1. Extraction of values of the categories: these are the
values of categories used to manage access control in
the organization. For example, values such as: Consul-

tant, Financial_Documents, Consult and Working_Hours

can be extracted from the policy of our example.

2. Define types of categories: for each value, determine
the type of categorization used (couples (Type, Value)).

For example: Consultant is a Role, Financial_Documents

is a Group of resources, Consult is a Group of actions
and Working_Hours is a Time. Then, we can deter-
mine couples (Type, Value) of different categorizations
used in the organization : (Role, Consultant), (Group,
Financial_Documents), (Group, Consult) and (Time,
Working_Hours). Note that the intervention of experts
or administrators within the organization is needed to
correctly define the type of categorization, because, for
example, Consultant can be considered as a Group of
subjects in another organization.

3. Determine concrete entities: for each couple (Type,
Value) of categorization, determine the correspond-
ing set of basic entities (Subject, Resource, Action or
Context). For example: (Role, Consultant) is a cat-
egorization used for Subjects (Employees in our pol-
icy), (Group, Financial_Documents) is a categorization
used for Resources, (Group, Consult) is a categoriza-
tion used for Actions and (Time, Working_Hours) is a
categorization used for Context.

4. Construct the category set for each basic entity by enu-
merating concrete categories used for this entity; we
use Type.Value to express categories in comprehen-
sive way. We call this set H-Ref.

H-Ref: Basic Entity — Categories.

H-Ref(Subject) = {Role.Consultant},
H-Ref(Resource) = {Group.Financial Documents},
H-Ref(Action) = {Group.Consult},

H-Ref(Context) = {Time.Working Hours} in our ex-
ample.

5. Add to each H-Ref(X) set, the basic entity name X.

H-Ref(X) = H-Ref(X) U {X},
with: X € {Subject, Action, Resource}.

because each set of entities is a special categoriza-
tion where each element represents a category itself.
When for a basic entity X, no categorization is speci-
fied, we take the concrete value for this entity specified
in the high-level policy, such as a concrete category
value (which contains a single element). So we add
X.ConcreteValue to H-Ref(X).

H-Ref(X) = H-Ref(X) U {X.ConcreteValue}.

By applying this step to our example, we get:
H-Ref(Subject) = {Role.Consultant, Subject},
H-Ref(Resource) = {Group.Financial Documents, Re-
source},

H-Ref(Action) = {Group.Consult, Action},
H-Ref(Context) = {Time.Working Hours}.

6. Specialize the super classes XCat of the meta-model
into a set of classes corresponding to the elements
of sets H-Ref to generate the corresponding CatBAC
model. In our example, we specialize, for example,
the SCat (Subject’s Categorization) class into classes
Role.Consultant and Subject by respecting elements
in H-Ref(Subject).

The transformation from Figure 2 into Figure 4 exempli-
fies this process. In section 5, we present an example of the
refinement process for a healthcare scenario with UML rep-
resentation of meta-model, abstract and concrete models.

4.1.2 Low level refinement

Low level refinement allows to instantiate the classes of
the CatBAC model with actual values extracted from the
concrete policy. So each concrete policy is represented by a
concrete model.

The classes of the abstract model representing concrete
category values (Type.Value) or concrete values of basic en-
tities (X.ConcreteValue) will be preserved in this level of
refinement. Other classes will be refined by the concrete
values expressed in the low-level policy.

4.2 Refinement representation

Refinement captures the essential relationship between
specification and implementation. Policy refinement has
been studied in many different research contexts such as
[9, 2]. We have chosen to use the method of [9], since it
proposes a simple way to refine UML based models.

This method proposes an extension of UML to express
complex model refinement by means of a well-defined com-
position of elementary refinements. The extension defines
stereotypes expressed in OCL [19]. In this extension, each
refinement relates two (or more) elements: the abstract and
the refined ones. The stereotype “refinedElement” is the

“path” to express what internal elements of a package - which
regroups UML elements (classes, objects, etc.) - are re-
fined, and a “mapping” to specify the way the refinement
is made. The stereotype “refine” is a refinement relation
between packages representing each model.

5. USE OF OUR FRAMEWORK IN CLOUD
ENVIRONMENT

5.1 Case Study: Electronic Medical Record

A Cloud provider offers Software as a Service (SaaS) for a
healthcare organization “New_Hospital” which contains sev-
eral distant sites. This software allows doctors who are ra-
diologists to view their patients’ electronic medical records
(EMR) by using web browsers. For example, when doctors
open their browsers, they log in as radiologists, and then the
information on their patients is displayed: names, diagnosis,
lab results, imagery and other related information. This in-
formation is stored in Cloud servers provided by the Cloud
provider. Hence, the Cloud provider needs to offer access
control solutions to protect patient EMR data and ensures
that only doctors that were able to authenticate themselves
as radiologists for specific patients can access the EMR of
these patients. Moreover, the Cloud provider must take into
account the various local security requirements imposed in
each site of this organization.

More precisely, in order to protect patients’ EMR data
from unauthorized access, the Cloud provider needs to im-
plement the following abstract high level security policy spec-
ified by organization “New_Hospital”: “doctors who are radi-
ologists can read their own patients’ EMR data, and this data
is classified as private; constraints on location or time can be
applied”. We can conclude that the following access control
concepts must be taken into consideration: the job function
of the user in the organization, known as Role, the Security
Lewvel concept defined by a MAC model to specify data clas-
sification, and Context type information like Location and
Time to specify, if necessary, users’ physical location and
time of access. Extraction of access control requirements
will be achieved by the high-level refinement process.

On the other hand, security administrators who are re-
sponsible for managing the security in their sites are con-
sidered to be Cloud users. They are responsible for speci-
fying the low-level access control policies and enforce them
in Cloud access control systems offered by Cloud providers.
For example, a security administrator can specify the follow-
ing access control policies that respect the abstract security
policy of his/her organization:

Policyl : “Radiologist Alice can read the medical record
EMR1 of her patients classified as private only between 8am
and 5pm”,

Policy2 : “Radiologist Bob can read the medical record
EMR2 of his patients only when he is in the hospital”.

In the following section, we will show how to apply this
scenario in our formal framework.

5.2 Application of the refinement technique

The abstract security policy can be specified by the Cloud
provider as the global policy for organization “New_Hospital”
for high-level requirements. This abstract security policy
is represented in our framework CatBAC as a model that
is refined from our meta-model using the UML extension

[9] as seen in Figure 6. Extraction steps of access control
requirements by the high-level refinement (section 4.1.1) are
summarized in the following table:

Table 1: Categories extraction

Values Categories | Basic Entities
Radiologist | Role Subject

Private Sec_Level Resource

EMR Group Resource

Read - Action

Time Time Context
Location Location Context

Note that no categorization is used for actions. In the or-
ganization policy, the concrete action read is specified and
it is taken in consideration in low level policies, see below.
For Context entity, two categories are specified: Time and
Location, but no value for these categories was given. Real
values are left to the administrators to express local con-
straints applied to various users’ access.

We define sets H-Ref for all basic entities:

e H-Ref(Subject) = {Role.Radiologist},

e H-Ref(Resource) = {Sec_Level.Private, Group.EMR},
e H-Ref(Action) = {}, (no categorization for Actions)
o H-Ref(Context) = {Time, Location}.

By adding the basic entities sets, we obtain the sets of
refinement classes as follows:

e H-Ref(Subject) = {Role.Radiologist, Subject},

e H-Ref(Resource) =
Resource},

{Sec_Level.Private, Group.EMR,

e H-Ref(Action) = {Action.Read},
e H-Ref(Context) = {Time, Location}.

5.3 Representation in CatBAC

Notice that we have used the stereotype “refine” that ex-
ists in UML to define that the package containing the model
is refined from the package that contains the meta-model.
Furthermore, the internal element such as the class of the
package of the model is correctly refined from the corre-
sponding internal element of the package of the meta-model
using stereotype “refinedElement, which_element”. The part
‘which_element’ indicates only which class this internal ele-
ment is refined from.

For instance, classes Subject and Role.Radiologist are
refined from class SCat, class Sec_Level.Private, Group.EMR
and Resource are refined from RCat, class Action.Read is
refined from class ACat and classes Time and Location are
refined from class CCat. This allows us to represent a hybrid
access control that is a combination of different access con-
trol models that define the security concepts role, context,
and security level. Note that this involves security concepts
coming from RBAC, OrBAC and MAC, among others.

Now security administrators can specify their access con-
trol polices or low-level policies as refinements of the above
model. Each low-level policy is represented using a de-
sign model that is correctly refined from the above CatBAC

CatBAC Meta-Model

[2 []

S By
——— 1
1

*
1
1
'
1
1

<<refine>>

CatBAC Abstract Model

CatBAC Abstract Model

<<refinedElement, CCat>>
Location

<<refinedElement, CCat>>|
Time

5Catz> i SCat> i RCat>>, i RCat>>,
Subject | | Role.Radiologist Sec_Level.Private | | Group.EMR

<<refinedElement, ACat>>| <crefinedElement, RCat>>
Action.Read Resource

<< refine »>

««refinedElement, CCat>>
Location

<<refinedElement, CCat>
Time

-————

CatBAC Concrete Model - Policy 1 |

je<refinedElement, Time>>|

>
AccessTimel AccessTimel>8 and

AccessTime1<17

Cat>>| | <<refi SCat> <<refi RCat>>| |<<refi RCat>>
Role.Radiologist Sec_Level.Private Group.EMR

Subject

<<refinedElement, ACat>>
Action.Read

<<refinedElement, RCat>>
Resource

Figure 6: Refinement of the model from meta-model

model. For example, Policyl is represented in the CatBAC
design model as seen in Figure 7. The class Alice repre-
sents the name of the subject which is refined from class
Subject. The context information AccessTimel is refined
from class Time. By using OCL, we can represent the con-
text constraint on the time when Alice can access medical
records of her patients. Furthermore, EMR1 is refined from
class Resource.

6. RELATED WORK

Some Cloud-oriented access control methods have been
proposed in the literature, among others HABAC [23] and
Task RBAC [18]. Most such methods are based on exten-
sions of one of the existing models, for example HABAC
is based on XACML and Task RBAC is based on RBAC.
However, we cannot assume that access control models such
as these will remain stable over time. The evolution of the
technology will lead to the introduction of new formal ac-
cess control models. As proposed by Barker [3], it seems
appropriate to define a modeling language that is capable to
represent these different, yet unknown, access control mod-
els.

Recent research has also resulted in the development of
UML-based modeling languages that incorporate different
security requirements coming from traditional access control
models into system design models [5, 21, 22]. These devel-
opments have motivated our approach that provides support
for modeling the basic concepts of the DAC, MAC, RBAC,
ABAC models, as well as combinations of them, based on
the category notion. Our meta-model is a generalization of
the work of Barker [3, 4] since it proposes a categorization
of all the basic elements of access control while adding the
notion of context, which does not appear in the formalism
of Barker. In addition, our meta-model is open to evolution
and can support new models of access control.

Work that is close to ours on the conceptual level is that

<refinedElement, Subject> - =
Alice | | Role.Radiologist Sec_level.Private | | Group.EMR
I

<crefinedElement, Resource>>

Action.Read EMRL

Figure 7: Refinement of low-level policies in Cat-
BAC — Policy 1

of OrBAC [1], together with its extension in [6]. OrBAC
proposes an abstract level between role, activity and view.
For us, these are specialized categories in CatBAC. Conse-
quently, our meta-model can represent OrBAC policies. Or-
BAC includes the notion of context; we propose that context
be expressed as a category to obtain a symmetric, simple and
intuitive meta-model.

7. CONCLUSION

We have presented a method for the design of security
Cloud services. This method allows specifying access control
models to secure access to data stored in the Cloud. Cloud
providers must offer to their users security mechanisms that
protect them from inappropriate access to their sensitive
data stored on Cloud servers. Given the many possible ap-
plications of Cloud servers, these security mechanisms must
be capable of being configured in many ways.

Our method is based on CatBAC, a generic meta-model
of access control, with two stages of refinement. In the
first stage, the meta-model is refined into an abstract model
according to the high-level policy of the organization, this
stage is completed by the Cloud provider. The second stage
allows to refine the generated abstract model in several con-
crete models by network administrators at the various sites
of the organization, and this by respecting the local con-
straints and specificities of each site.

The method illustrated in this paper gives Cloud providers
an access control security solution that can be seen as a
Cloud service for both providers and users. It allows users
to define their own low-level policies in a way that these
policies can be refined correctly from the abstract policy
defined by their Cloud provider.

An important point on which we cannot dwell in this pa-
per is how to verify that the properties of each model are
preserved in the combination with other models. This will
be the subject of future publications. In future work, we

will also explore the application of our method in the con-
text of multi Cloud environments, where applications and
resources are deployed across different Clouds and in which
Cloud providers may collaborate. This will open the door for
the study of problems of trust and interoperability between
Cloud providers. Other work will be to develop automatic
refinement techniques by using a formatting language for
high-level policies.

8. ACKNOWLEDGMENTS

This work was supported in part by grants of the Natural
Sciences and Engineering Research Council of Canada. We
acknowledge the collaboration of Marwan Cheaito in earlier
phases of this work.

9. REFERENCES

[1] A. Abou-El-Kalam, R. E. Baida, P. Balbiani,

S. Benferhat, F. Cuppens, Y. Deswarte, A. Miege,

C. Saurel, and G. Trouessin. Organization based
access control. In Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE
4th International Workshop on, pages 120-131, 2003.

[2] B. Aziz, A. Arenas, and M. Wilson. Model-Based
Refinement of Security Policies in Collaborative
Virtual Organisations, volume 6542 of Lecture Notes
in Computer Science, pages 1-14. Springer Berlin /
Heidelberg, 2011.

[3] S. Barker. The next 700 access control models or a
unifying meta-model? In Proceedings of the 14th ACM
symposium on Access control models and technologies,
pages 187-196, 1542238, 2009. ACM.

[4] S. Barker. Logical Approaches to Authorization
Policies, volume 7360 of Lecture Notes in Computer
Science, pages 349-373. Springer Berlin / Heidelberg,
2012.

[5] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: From uml models to access control
infrastructures. ACM Trans. Softw. Eng. Methodol.,
15(1):39-91, 2006.

[6] Y. Bouzida, L. Logrippo, and S. Mankovski. Concrete-
and abstract-based access control. Int. J. Inf. Secur.,
10(4):223-238, 2011.

[7] R. Buyya, Y. Chee Shin, and S. Venugopal.
Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities.
In High Performance Computing and
Commumnications, 2008. HPCC ’08. 10th IEEE
International Conference on, pages 5—13, 2008.

[8] M. Carvalho. Secaas-security as a service. [SSA
Journal, pages 2024, 2011.

[9] N. Correa and R. Giandini. A uml extension to specify
model refinements. In CLEI 2006, 2006.

[10] D. Ferraiolo and D. Kuhn. Role-based access control.
In 15th Nat’l Computer Security Conf., pages 554563,
1992.

[11] S. Khamadja, K. Adi, and L. Logrippo. An access
control framework for hybrid policies. In Security of
Information and Networks, 2013. SIN ’13. The 6th
International Conference on, 2013.

[12] R. L. Krutz and R. D. Vines. Cloud Security: A
Comprehensive Guide to Secure Cloud Computing.
John Wiley & Sons, 2010.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

24]

[25]

D. Kulkarni and A. Tripathi. Context-aware
role-based access control in pervasive computing
systems. In Proceedings of the 13th ACM symposium
on Access control models and technologies, pages
113-122, 1377854, 2008. ACM.

P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer,

R. C. Taylor, S. J. Turner, and J. F. Farrell. The
inevitability of failure: The flawed assumption of
security in modern computing environments. In
Proceedings of the 21st National Information Systems
Security Conference, pages 303-314, 1998.

Y.-G. Min, H.-J. Shin, and Y.-H. Bang. Cloud
computing security issues and access control solutions.
SERSC: Journal of Security Engineering, 9:135—142,
2012.

P. Mirchandani. Security-as-a-service - the next
growth area for cloud computing?, Oct 26 2009.

J. D. Moffett and M. S. Sloman. Policy hierarchies for
distributed systems management. I[EEE J.Sel. A.
Commun., 11(9):1404-1414, 2006.

H. A. J. Narayanan and M. H. Gunes. Ensuring access
control in cloud provisioned healthcare systems. In
Consumer Communications and Networking
Conference (CCNC), 2011 IEEE, pages 247251, 2011.
OMG. Object management group. object constraint
language, version 2.2, 2010. omg document number:
formal/2010-02-01.

S.-H. Park, Y.-J. Han, and T.-M. Chung. Context-Role
Based Access Control for Context-Aware Application,
volume 4208 of Lecture Notes in Computer Science,
pages 572-580. Springer Berlin / Heidelberg, 2006.

J. A. Pavlich-Mariscal, S. A. Demurjian, and L. D.
Michel. A framework of composable access control
features: Preserving separation of access control
concerns from models to code. Computers € Security,
29(3):350-379, 2010.

I. Ray, N. Li, D.-K. Kim, and R. France. Using
Parameterized UML to Specify and Compose Access
Control Models, volume 140 of IFIP International
Federation for Information Processing, pages 49-65.
Springer Boston, 2004.

L. Shi-Xin, L. Feng-Mei, and R. Chuan-Lun. A
hierarchy attribute-based access control model for
cloud storage. In Machine Learning and Cybernetics
(ICMLC), 2011 International Conference on,

volume 3, pages 1146-1150, 2011.

N. Slimani, H. Khambhammettu, K. Adi, and

L. Logrippo. Uacml: Unified access control modeling
language. In New Technologies, Mobility and Security
(NTMS), 2011 4th IFIP International Conference on,
pages 1-8, 2011.

H. Zhang, Y. He, and Z. Shi. Spatial Context in
Role-Based Access Control, volume 4296 of Lecture
Notes in Computer Science, chapter 15, pages
166-178. Springer Berlin Heidelberg, 2006.

