

An Agent-Based Architecture for Context-Aware Communication

Romelia Plesa1, Luigi Logrippo2,1

1School of Information Technology and Engineering, University of Ottawa, Canada
2Département d’informatique et ingénierie, Université du Québec en Outaouais, Canada

rplesa@site.uottawa.ca, luigi.logrippo@uqo.ca

Abstract

We propose an agent-based architecture that
allows context-aware communication between users. In
seeking a model that is suitable for the design of the
required functionalities of our framework, we identify
significant overlap between the concepts needed in our
domain and those used in the Belief-Desire-Intention
(BDI) models of agency. We present a comprehensive
attempt to use the BDI model for describing the
architecture and protocols of our context-aware
communication system, which includes a mechanism
for handling conflicting user policies.

1. Introduction

Given the current trends in personal
communication, there is a growing need of services
tailored to a user’s specific needs and preferences.
With devices that enable mobile communication
becoming more popular, there is an increasing
necessity for the users to control and customize their
communication, depending on the context in which the
communication takes place and influencing the user’s
availability and reachability for communication. The
literature distinguishes between context-free and
context-aware communication systems [1]. Context-
aware services take advantage of knowledge of real-
time context regarding the purpose or the
circumstances of a call that one is receiving or
initiating, thus allowing the user to manage his
communication in terms of policies. However, most of
today’s telephony communication services are context
free, they do not have such knowledge.

This paper presents the progress to date in an
attempt to implement a Belief-Desire-Intention (BDI)
agent architecture for communications systems, using
AgentSpeak(L), an agent-oriented programming
language that implements the BDI architecture. We
investigate how the BDI approach may be used to

create an agent-based architecture, providing useful,
intelligent services to users in realistic settings. Our
work tackles different challenges and issues related to
the system architecture, design and programming. The
elements of the architecture were presented in detail in
[2]. Our architecture is applicable to scenarios where
users define complex policies on how their
communication should be handled, based on their
current context, thus offering a very high degree of
customization.

2. BDI and AgentSpeak(L)

One of the most successful theoretical models of

rational agents is the Belief-Desire-Intention model [3].
BDI agents have proven useful in the theoretical study
of rational agents [4] and in practical applications [5].
The BDI framework [6], implemented in several
software platforms (e.g. Jack Intelligent Agents [5])
has a wide appreciation, witnessed by the development
of a BDI logic [7], the definition of BDI-based
languages (AgentTalk [8], AgentSpeak(L) [9]) and the
creation of BDI-based development tools such as PRS
[10] and dMARS [11]. Providing a convenient
terminology for describing intelligent agents, the BDI
framework has had many practical applications,
making the theory clearer and more generic. BDI
agents have been applied to highly dynamic and
unpredictable situations. They remain responsive to
changes in system state, by only partially expanding
alternative plans of actions and also provide ways to
recover from failed actions. They describe how to
handle conflicting goals, and how to modify already
executing actions, all of which are needed in dynamic
simulations.

Even though there is a body of research on
implementing agents on communication devices [12],
[13], no attempt, to our knowledge, has been made at
using the BDI model to implement a communication
system architecture.

The AgentSpeak(L) programming language was
introduced in [9] and it provides an abstract framework
for programming BDI agents. The beliefs, desires, and
intentions of the agent are not explicitly represented.
Instead, they are ascribed to agents written in
AgentSpeak(L). An AgentSpeak(L) agent consists of a
set of beliefs and a set of plans. There are two types of
goals: achievement goals (prefixed with ! - indicate
that the agent wants to achieve a state where the
predicate is true) and test goals (prefixed with ? - test if
the agent is in a certain state). Plans refer to the basic
actions that an agent can perform. A plan p is written
as: p ::= te : ct <- h, where te is the triggering event,
followed by a conjunction ct of belief literals
representing a context. The remainder h of the plan is a
sequence of actions or (sub)goals that the agent has to
achieve. A triggering event initiates the execution of a
plan and is related to the addition (‘+’) and deletion (‘-
’) of beliefs or goals. The AgentSpeak(L) interpreter
also manages a set of intentions (particular courses of
actions to which an agent has committed) and its
functioning requires three selection functions: SE
selects an event from the set of events; SO selects an
applicable plan from a set; SI selects one particular
intention from the set of intentions.

The agents test if the events activate any new plans.
One plan becomes intended in a single reasoning cycle,
and only one intended plan can execute. This can
generate new beliefs, goals, or basic action execution.
New beliefs and goals serve as triggering events for
plans, actions produce changes in the environment.

3. Architecture

In order to provide complex services that are
tailored to users’ specific desires and preferences the
system needs the following functional requirements:
• Collection/dissemination of context information,
publishing of user and devices presence information
• description of user policies and preferences
• ubiquitous handling of communication

Fig. 1 presents the overall system architecture.

Figure 1. The overall architecture
The communication part is a complex system by

itself. One of our goals is to make our solution
independent of the underlying communication protocol
(SIP [14], H.323 [15]). The requirement we impose on

the architecture is that every message that arrives for or
is sent by a user must be intercepted in order to extract
important information contained inside the message,
(i.e. the identity of the caller).

The Context Information Server controls the
context updates, stores and distributes the context
information. The dynamic nature of context
information requires a mechanism for keeping up-to-
date information in the server, in order to allow
services to adapt to the changing context.

The Policy Server manages the user’s personal
policies, including creating, storing, deleting, retrieving
and fetching policies. A number of languages exist for
specifying policies. The Call Processing Language [16]
allows users to define how their calls are handled, but
has limited expressiveness for call control [1]. LESS
[17] inherits the basic structure from CPL enhancing it
with more elements, thus allowing users to program
their own communication services. A policy language
for policies in the communication domain has been
defined in [18]. In Section 5, we will present our
approach to represent policies.

A new functional entity is introduced in the
architecture: a Personal Communication Manager
(PCM), which is a software agent that represents each
user and is responsible for deciding the flow of actions
for the call, based on personal policies and on
information about presence and current context. PCM
treats relevant events that occur in the system
(invitations to a call, updates in presence or changes in
context). PCM is the entity that receives request
messages (such as INVITE messages in a SIP-based
architecture) and decides the actions that should be
taken and how the call should be handled. The
components of the PCM are shown in Fig. 2.

Figure 2. Personal Communication Manager
Presence Information Manager aggregates

presence and context information from different
sources, manages raw presence data in order to build
the “consolidated presence information” [2] for the
user, which represents a unified view of an individual’s
current status. This is achieved by using a rule-based
process that takes into account presence and context
indicators and their ability to reflect the user’s state.
Any change in an entity’s presence causes the PIM to
re-apply the rules and rebuild the user’s presence.

The Presence Directory is a repository in which all
known and deduced presence information is deposited
and can be retrieved. The Policies and Preferences
Manager (PPM) contains the preference logic and rule

Communication
System Policy

Server
Context

Information
Server

Personal
Communication

Manager

Call control context Context update

Personal Communication Manager (PCM)

Presence
Directory

Policies and
Preferences

Manager
(PPM)

Presence
Information

Manager
(PIM)

based processes that respond to requests to contact an
entity. The presence data is interpreted to establish the
best method for contacting the user at a particular
moment.

4. Context-Aware Call Handling

The call model that we propose will include context
update, service selection based on context information
and user personal policies as well as service execution.
Context update is a process that is done continuously.
The feature selection and execution mechanisms will
be incorporated into the Personal Communication
Manager, more precisely in the Policies and
Preferences Manager (PPM) component of it.

Figure 3. Call handling
PPM, which contains the preference logic and rule-

based processes to respond to different requests,
consults the user’s policies and the information stored
in the Presence Directory and decides about the
handling and execution of the call or any other request
that arrives. From the various options and alternatives
available to it at a certain moment in time, PPM needs
to select the appropriate actions or procedures to
execute. We call this the selection function or the
Service Selection Mechanism. In Fig. 3, we show the
actions of the PPM using the Use Case Maps notation
[19]. We use a dynamic stub to represent the complex
mechanism of service selection. After the selection is
done, the actual execution of the action is done by the
Service Execution Mechanism of the PPM.

5. BDI and Context Aware Communication

5.1. BDI Mapping

By looking at the BDI model as well as at the PPM
component of our Personal Communication Manager
and the way we want it to function, we found
significant overlap between the requirements of our
domain and the concepts discussed in the belief-desire-
intention model of agency. We can consider that the

PPM component that we propose as a part of the
system’s architecture is a BDI agent (Fig. 4).

Figure 4. BDI Mapping
The consolidated presence information, stored in

the Presence Directory and representing the
characteristics of the environment as perceived by the
agent, represents the beliefs, updated appropriately
after each sensing action or change in a user’s status.
The policies, stored on the Policy Server and seen as
objectives to be accomplished, can be considered
agent’s desires. The output of the selection function,
which decides, on the basis of the policies, what action
should be executed next, will be the agent’s intentions.

BDI agents fulfill the requirements needed for our
framework, providing a way to interleave deliberation
with responsiveness and limit the amount of forward
deliberation required to act rationally. BDI agents can
partially search and expand planned actions allowing
them to select good alternatives, while avoiding
constant deliberation and its associated time penalty.

5.2. Example

In order to further justify the reasoning for the
adoption of an agent-based approach to support context
aware services, we consider the following situation:

Dr Smith needs to achieve the following tasks on a usual day:
1. Arrive to the hospital
2. Log into the hospital’s system to advertise his presence
3. Get the schedule for his consultations and surgeries
4. Perform his activities, according to his schedule
5. Time permitting, assist in any emergency situation

Within an agent context, these tasks are represented
as goals that need to be fulfilled in a given sequence.
For each goal, a specific sequence of actions must be
executed. There may be a number of plans for
achieving the same goal. As a result, the agent has to
perform plan selection, based on some criteria (for
example, to achieve the second goal, the doctor can log
in from the computer in his office, or he can use his
PDA). Assuming the doctor logs in from his computer,
the corresponding plan becomes an intention that might
require the execution of other sub-tasks, for which,

Context
Information

Server

Communication
System

Personal Communication Manager (PCM)

Presence
Directory

Presence
Information

Manager
(PIM)

Service Selection
Mechanism

Service Execution
Mechanism

Policy
Server

incoming request

obtain presence info

consult policies select next action

execute action

Personal Communication Manager

Presence
Directory

PPM

PIM
Service

Selection
Mechanism

Service
Execution

Mechanism

Context
Information

Server

Communication
System Policy

Server

beliefs

desires

intentions

B
D

I A
ge

nt

again, there might be a number of plans to achieve
them. The process can continue, attempting to achieve
all goals by executing the appropriate plans, which
may trigger other sub-goals, and so on.

While executing the plans, a number of problems
may arise so the agent needs to perform plan failure
recovery (for example, if Dr. Smith can’t log from his
computer, his agent should find alternative plans, e.g.
using another computer, considering the new context).

 Another problem the doctor might face is conflict
between different goals. For example, if the doctor
wishes to play golf, this may conflict with his plan to
attend a presentation. The agent should be able to
resolve this conflict by arranging a different time to
play golf, or it might have to perform goal selection,
by choosing the goal that is more important.

It can be seen from the above scenario that as the
number of goals and alternative plans increases, the
complexity of the reasoning that the agent needs to
perform increases significantly. This creates the
opportunity for providing automated support for the
user, but particular challenges arise due to the dynamic
nature of the environment. Our proposed solution
consists of agents representing each user, which are
capable to perform tasks as the ones described above.
They have access to updated information about the
context of their users. With a library of plans, they are
capable to decide what actions to execute. Some
essential features that an agent will provide are:
• Context-awareness. The choice of plans must take
into account the current context of the user and
decisions are made based on the most recent
information about the environment.
• Plan selection. The agent is able to make a choice
between different plans, in case there are a number of
alternative plans for achieving the same goal.
Appropriate decision procedures must therefore be
supplied for supporting plan selection.
• Plan failure recovery. If a plan fails, the agent is
able to retract properly and select an alternative plan.
• Conflict resolution. When the user has a number
of goals that cannot be achieved simultaneously, the
agent must be able to make a decision about which
goals to try to achieve.

5.3. Proof of Concept

Given the mapping we have presented between the
BDI model and the functionalities of our architecture,
we have implemented the Personal Communication
Managers as a set of BDI agents. In particular, the
agents are programmed in AgentSpeak(L). The major
advantage of this approach is that the BDI mechanism
incorporates both the selection mechanism and the
execution mechanism that are required by the

functionality of the PPM (Fig. 4). The plans that drive
the system’s behavior are expressed in terms of user
context, which makes the definition of new plans more
adaptive and flexible.

To illustrate the essential features provided by the
system and show how the BDI model can provide the
required functionality, we implemented a pilot
demonstration of the framework as the first step in
implementing a fully functional simulation model
based on a real communication system enhanced with
context services. The demonstration consists of six
agents that share a set of beliefs, stored in a relational
database (the Context Information Server in the
architecture). Plans, representing user’s policies, are
defined for each agent. The external events to which an
agent must respond are request messages that come
from or are sent to the Communication System - Fig. 1
(e.g. INVITE requests on a SIP based architecture). We
simulate these requests by feeding the agents with
events that correspond to real requests.

We aim to demonstrate that agents will respond to
contextual information that comes from the system and
will behave accordingly, taking into consideration the
user policies, defined as plans. We also want the agents
to respond to system changes brought about by other
agents and to show that communicating agents can
negotiate in order to avoid possible conflicts.

To avoid discrepancies between the agents’
understanding of the system and the actions they can
perform on it, we need the assumption of a shared data
model among all agents. We defined an Entity-
Relationship data model that provides the means to
hold the context, as well as the semantics to describe
the simulation domain. With this, the agent’s beliefs
will be represented as facts against the data model. The
agent’s desires, in the form of plans, are formulated in
terms of entities, attributes and relationships contained
in the data model. The advantage of using this data
model approach is that each entity class in the data
model can be viewed as a finite domain, with the
object instances as the elements in that domain. The
object’s attributes can be used for specifying
constraints and reasoning in terms of the data model.

Each agent has a set of plans that models the user’s
policies. We will describe in detail the plans for
handling a specific situation:

Dr. Smith is in his office. A colleague calls him from within the
hospital. The system will decide, based on the doctor’s location,
that he is available on several devices: his PDA, his cell phone
or his desktop phone. Since the caller is using a phone, and the
PDA does not have voice capabilities, the choice is narrowed to
two devices. Dr. Smith has a policy that designates his cell
phone for calls from his family. Therefore, the system decides to
transfer the call to Dr. Smith’s desktop phone.
Before we start discussing the plans to realize this

policy, it is worth discussing the initial belief base that
is required in the running version of the program. The

beliefs of the agent are based on the data model that we
have defined, so it will contain information about the
users and the devices available to users, the locations
and the activities that users are involved in.
Relationships between entities are modeled using
databases that contain references to the entities
involved in the relationships. (For example,
PERSON_PERSON specifies the relationships
between two persons identified by their unique ID
number). All this information is available in the
Presence Directory component of the architecture.
From the agent point of view, the information in the
database is mapped into predicates. For example:
PERSON(john, u001, TRUE, av, call, 562-5800, eng, busy, j, doctor)
DEVICE(fix_phone, dev001, ip, bell, 5010, eng, call, open, 563-2345)
PERSON_PERSON(PERSONID_1,PERSONID_2,RELATIONSHIP)

Agents are able to consult, insert or delete values
from this database by simply adding, deleting or
querying the facts as beliefs.

The policy is enforced using a plan for the situation
in which an incoming call arrives, from X, for Dr.
Smith. The triggering event for the plan is incoming_call,
with a parameter specifying the caller.
+incoming_call(X):true <- !get_devices(DeviceList);
 !get_relationship(X,Relationship);
 !get_location(Location);!get_activity(Activity);
 !process_call(X, DeviceList, Relationship, Location, Activity).

First, a list of devices where the doctor can be
reached is obtained, by adding the subgoal get_devices.
+!get_devices(DeviceList) : true
<- .findall(X, device(X,Y,Z,_,_,_,"call",_,_), DeviceList);
 ?name(N);?person(N,ID,_,_,_,_,_,_,_,_);
 !get_user_devices(DeviceList,ID,UserDeviceList).
+!get_user_devices(DeviceList,ID,UserDeviceList) <-

!get_u_devices(DeviceList,ID,[],UserDeviceList).
+!get_u_devices([],ID,L,L).
+!get_u_devices([D|T],ID,L0,L) : device(D,Did,_,_,_,_,_,_,_) &

person_device(ID,Did)<-!get_u_devices(T,ID,[D|L0],L).
+!get_u_devices([D|T],ID,L0,L)<- !get_u_devices(T,ID,L0,L).

A list of all devices having the capability “call” is
obtained by querying the device table. After that, the
subgoal get_user_devices determines which devices
from this list are associated with the user.

Next the relationship between the caller and the
user must be determined, by verifying if there is
information in the PERSON_PERSON table that contains
both the ID of the user and of the caller. If there is no
such information, the relationship is set to unknown.
+!get_relationship(X,R): name(N)&person(N,ID,_,_,_,_,_,_,_,_)
& person(X,Xid,_,_,_,_,_,_,_,_) & person_person(ID,Xid,R)<-
true.
+!get_relationship(X,R) <- R = "unknown".

The current location of the user and the activity
also need to be determined.
+!get_location(LName): name(N)&person(N,ID,_,_,_,_,_,_,_,_)

& person_location(ID,L) & location(L,LName,_,_,_,_) <- true.
+!get_location(L) <- L = "unknown".

+!get_activity(ANAme) : name(N)&person(N,ID,_,_,_,_,_,_,_,_)
& person_activity(ID,A) & activity(A,AName,_,_) <- true.

+!get_activity(A) <- A = "unknown".

Having all the information, the actual routing of the
call, is done by the plan triggered by the addition of the
subgoal process_call. Certain conditions are verified and
the action to be executed depends on this conditions.
There is also a default plan, applicable when none of
the conditions are true.
+!process_call(X, DeviceList, Relationship, Location, Activity) :

Location=="office"&Relationship=="family"<- ring_mobile.
+!process_call(X, DeviceList, Relationship, Location, Activity) :

Location=="office"&Relationship=="colleague"<- ring_fixed.
+!process_call(X, DeviceList, Relationship, Location, Activity) :
true <- ring_mobile.

In a similar fashion, a set of plans is defined for
each agent in order to cover all the policies for the user
it represents.

AgentSpeak(L) includes a mechanism that allows
agents to communicate, thus sharing plans and
consulting about the content of their beliefs base. We
use the power of this mechanism to handle conflicting
policies. To illustrate, we use an example with two
features, Originating Call Screening (OCS) and Call
Forwarding (CF). OCS forbids calling numbers on a
screening list. CF forwards incoming calls to another
number. A conflict occurs if a user A, whose OCS list
includes user X, calls user B, who forwards calls to X
through CF, thus overruling A’s policy. To illustrate
how this conflict is solved in our simulator, we assume
that Bob has OCS and forbids any calls to Charles and
Alice has CF and forwards her call to Charles. Thus,
agent bob will have in its beliefs set a line saying:
ocs(charles).

Similarly, agent alice will have a belief:
call_forward(charles).

When Bob tries to dial, the event that is generated
(dial(X), where X is the person he wants to reach) will
trigger the execution of a plan. It is checked if X is on
the screening list and only if not the call is completed.
+dial(X) : ocs(X) <- .print("You are forbidden to call ", X).
+dial(X): true <- .send(X,tell,incoming_call(bob)).

At the other end, when Alice receives an incoming
call, her agent checks if the call should be forwarded.
If this is affirmative, it will ask the originator of the
call if this can be done (it actually asks if the person
where the call is about to be forwarded is on the
originator’s screening list) and upon confirmation, the
call will get through.
+incoming_call(X) : true <- ?call_forward(F);

.send(X,askIf,ocs(F),Answer); !ans(Answer,X,F).
+!ans(true,X,Y,F) : true<-.print ("no connection ", X, " to ", F).
+!ans(false,X,Y,F) : true <-.print("forwarding call from " , X, "
to", F);.send(F,tell,incoming_call(X)).

This simple example shows how the mechanism for
agent communication can be used in negotiation of

preferences for users and allows for resolution of
conflicts. The introduction of context allows for much
richer policies that may handle calls depending on
presence, availability, role, call type or call content.
Conflicts can occur also between these policies and the
built-in mechanism for agent communication in
AgentSpeak(L) allows for easy resolution. We have
applied the approach to other features and
combinations of features not described here.

6. Conclusions and Related Work

Several projects have addressed the increasing
interest of users to customize their services. The
Universal Inbox project [20] defines an architecture for
building personal and service mobility features. The
Mobile People Architecture [21] is based on a Personal
Proxy for achieving person-level routing. Mercury [22]
is a system that supports unified communication,
allowing a person to initiate a conversation using any
available device. The system routes the call based on
which device the other party prefers to use in a given
context. While Mercury uses SIP as the underlying
mechanism for managing sessions, our goal was to
make our architecture protocol independent. The
functional entities that we established in our design for
context acquisition, storage and deployment, for
policies storage and for communication handling, have
attributions that are independent of the underlying
communication. One of the contributions of our work
is that it provides an enhanced definition of the term
“presence” [2]. Consolidating all the available
information for users and their environment provides a
unified view of the status of the user at a given time.
Our architecture allows real-time use of this
information, offering the possibility for a large
spectrum of services.

Although our motivation is similar to that of other
researchers, as we aim to propose solutions for
providing enhanced services for users, we have
focused on the use of AgentSpeak(L), following
important developments in the area of agent-oriented
programming. Communication and telephony are areas
where, to the best of our knowledge, the BDI
architecture has not been used, yet their complexity
require the sophisticated reasoning that AgentSpeak(L)
agents display. As opposed to other BDI models,
AgentSpeak(L) has an exact notation and a precise
logical semantics, which resulted in the successful
implementation of its abstract interpreter. It provides
an elegant specification of the BDI agents and allows
the agents to search and expand planned actions in
order to select good alternatives. AgentSpeak(L) is an
excellent candidate for the high level design of new
context-aware communication systems.

Acknowledgment. This research was supported in
part by the Natural Sciences and Engineering Research
Council of Canada.

References
[1] Turner, K., Magill, E., Marples, D. – Service Provision.
Technologies for next generation communications, Wiley Series
in Communications Networking & Distributed Systems.
[2] Plesa, R., Logrippo, L. – Enhanced communication services
through context integration, short paper, MATA 2005, Montreal
[3] Rao A. S., Georgeff, M. P. - BDI-agents: from theory to
practice. In Proceedings of the First International Conference on
Multiagent Systems, San Francisco, USA, 1995.
[4] Wooldridge, M. J. - Reasoning about Rational Agents. MIT
Press, 2000
[5] Howden, N., Ronnquist, R., Hodgson, R., Lucas, A. - JACK
Intelligent Agents: Summary of an Agent Infrastructure. In
Proceedings of the 5th International Conference on Autonomous
Agents, 2001.
[6] Georgeff, M., Lansky, A. - Procedural Knowledge.
Proceedings of the IEEE Vol 74 (10)
[7] Rao, A.S., Georgeff, M.: Decision procedures for BDI
logics. Journal of Logic and Computation 8 (1998) 293 – 342
[8] Winikoff, M. - AgentTalk Home Page.
http://goanna.cs.rmit.edu.au/ ~winikoff/agenttalk (2001)
[9] Rao, A.S. - AgentSpeak(L): BDI agents speak out in a
logical computable language. In de Velde, W.V., Perram, J.W.,
eds.: Agents Breaking Away. Springer Verlag (1996) 42–55
LNAI 1038.
[10] Myers, K.L. - User guide for the procedural reasoning
system. Technical report, Artificial Intelligence Center, Menlo
Park, 1997.
[11] d’Inverno, M., Kinny, D., Luck, M., Wooldridge, M. - A
formal specification of dMARS. In Proc. of the 4th International
ATAL Workshop, Springer Verlag (1997) 155–176 LNAI 1365
[12] Caire, G., Lhuillier, N., Rimassa, G. - A communication
protocol for agents on handheld devices. In Proceedings of the
Workshop on Ubiquitous Agents on Embedded, Wearable and
Mobile Devices, 2002.
[13] Maamar, Z., Mansoor, W., Mahmoud, Q. H. - Software
agents to support mobile services. In Proceedings of the First
International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pages 666–667, 2002.
[14] Rosenberg, J., Schulzrinne H. - SIP – The Session Initiation
Protocol, RFC 2543, 1999
[15] H.323 Site-http://www.packetizer.com/ voip/h323/
[16] Lennox, J., Schulzrinne, H. - Call Processing Language
Framework and Requirements, Int. Draft CPL-Framework-02.
[17] Wu, X., Schulzrinne, H., - LESS: Language for End System
Services in Internet Telephony, Internet Draft, 2005
[18] Reiff-Marganiec, S., Turner, K. J. - APPEL: The ACCENT
project policy environment/language, Technical Report CSM-
161, University of Stirling, UK, 2004
[19] Use Case Mps, www.usecasemaps.org
[20] Raman, B., Katz, R., Joseph, A. - Universal Inbox:
Providing Extensible Personal Mobility and Service Mobility, in
Proc.of the 3th Workshop on Mobile Computing Systems and
Applications, 2000.
[21] Roussopoulos, M. - Personal-level Routing in the Mobile
People Architecture, in Proceedings of the USENIX Symposium
on Internet Technologies and Systems, 1999.
[22] Lei, H., Ranganathan, A. - Context-Aware Unified
Communication, 2004 IEEE International Conference on Mobile
Data Management

