Available online at www.sciencedirect.com

d .Iournaloof

: sciENc cTo NETWORK

x‘? e) IENCE C DIRECT and
Sl Journal qf Network and ggﬂ(;\lﬂ;)%jr‘s’

ELSEVIER Computer Applications I (EIIN) INE-1EN

www.elsevier.com/locate/jnca

Detecting feature interactions in CPL

Yiqun Xu®, Luigi Logrippo™®*, Jacques Sincennes®

4School of Information Technology and Engineering (SITE), University of Ottawa, Ottawa, Ont., Canada KIN 6 N5
®Department of Computer Science and Engineering, University of Quebec in the Outaouais, Gatineau, Que.,
Canada J8X 3X7

Received 1 September 2004; received in revised form 3 October 2005; accepted 4 October 2005

Abstract

An approach for detecting feature interactions in IETF’s Call Processing Language (CPL) scripts
is presented. The approach is logic based in the sense that it uses a logic representation of CPL
scripts, of requirements and of detection rules and, in several cases, specific detection rules are shown
to be derived from requirements by logical deduction. The Simple Formal Specification Language
(SFSL) is introduced to express the intentions of CPL scripts in logic format. A method for
translating CPL into SFSL is presented. The rules address both interactions within a single script,
and interactions between two scripts. An automatic feature interaction detection tool applying these
rules was implemented in SWI-Prolog. The general method is not specific to CPL and could be used
in other feature interaction research.
© 2005 Elsevier Ltd. All rights reserved.

Keywords. Internet telephony; VolIP; Features; Services; Feature interaction; CPL; Call Processing Language

1. Introduction

Internet telephony (International Engineering Consortium, 2005) is the subject of
intense research and development by telecom operators, telecom manufacturers and
consumer groups. It promises sophisticated telephony services over the Internet with lower
prices and higher flexibility (Turner et al., 2004). However, the methods of deploying

*Corresponding author. Department of Computer Science and Engineering, University of Quebec in the
Outaouais, Gatineau, Que., Canada J8X 3X7. Tel.: +18195953900x1885; fax: + 18197731638.

E-mail addresses: yixu@site.uottawa.ca (Y. Xu), luigi@uqo.ca (L. Logrippo), jack@site.uottawa.ca
(J. Sincennes).

1084-8045/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
d0i:10.1016/j.jnca.2005.10.001

www.elsevier.com/locate/jnca

2 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

services in Internet telephony are far from mature. On one hand, the Internet platform and
new signaling systems enable more opportunities for new services and new features; on the
other hand, the Internet telephony network is more distributed and less controlled. One of
the problems caused by immaturely deployed services is feature interaction, which we
describe as the situation where the requirements of features or services are inconsistent.
Such interactions were possible in traditional telephony (and they have been extensively
studied, sece Amyot et al., 2005; Calder et al., 2003a; Reiff-Marganiec and Ryan, 2005;
Zave, 2004, http://www.research.att.com/~pamela/fag.html) but the risk increases
significantly in Internet telephony, where users may have the power to program their
own features (Calder et al., 2003a; Lennox and Schulzrinne, 2000; Reiff-Marganiec and
Turner, 2004; Turner et al., 2004).

A typical example of single-user feature interaction in Internet telephony is the case
where a user programs a service to have all incoming calls forwarded to a colleague at her
regular meeting times. She also sets another feature to forward calls from her spouse to her
personal voice mail for the same meeting time. If the first feature is set with higher priority
than the second one, the spouse’s call will be forwarded to her colleague instead of her
voicemail during the meeting period (see Section 4.1).

An example of feature interaction involving more than one user is the case where a user
tries to reach another user immediately, therefore he uses call forking to broadcast three
simultaneous calls to the callee’s cell phone, office phone and home phone, knowing that
all other calls will be aborted once one call is answered. However, the callee programs his
cell phone to transfer all incoming calls to his voice mail automatically. It is likely that the
voicemail will take the incoming call before the second user answers personally. Therefore,
the first user’s purpose is violated and feature interaction occurs (see Section 5.3).

Several approaches are being developed for creating telephony services on Internet
telephony. The Call Processing Language (CPL, Lennox and Schulzrinne, 2002), is one of
the best known. CPL is XML-based (Zisman, 2000), signalling independent and designed
for safety. It is under study as an IETF standard, being at the Request for Comments
(RFC) stage. Feature interactions are possible in CPL, and therefore methods should be
developed to detect feature interactions in CPL scripts before they are activated. Related
work has already been done focusing on either semantic ambiguities (Nakamura et al.,
2003) or conflicts inside single CPL scripts (Amyot and Logrippo, 2003). In this paper, we
propose a feature interaction detection method based on logic and we present the
implementation of an automatic filtering tool to detect potential feature interactions in
single and pairs of CPL scripts.

The method proposed here is a generalization, with adaptation to CPL, of ideas
presented in Felty (2001), Gorse (2000) and Gorse et al. (to appear). We apply to CPL a
general method of feature interaction detection. This consists of translating CPL into a
logic representation. Feature interactions are either immediate logic contradictions, or
contradictions with respect to basic requirements to which phone systems are expected to
conform. In several cases, detection rules are given, which are justified by the fact that the
truth of the condition detected by the rule, together with the basic requirements, leads to a
contradiction. Because the detection rules are simple to check, the detection process is
efficient.

What is an appropriate choice of requirements in the Internet telephony world? This is
often touted as a ‘free world’ where anything will be possible and perhaps tolerated. If this
is really true, then there will be no reason to look for feature interactions. If, however,

http://www.research.att.com/~pamela/faq.html
http://www.research.att.com/~pamela/faq.html

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 3

some situations are still considered to be undesirable (especially according to user
expectations), then we must establish requirements and methods that can be used to find
their violation.

Further details on many aspects of this work can be found in Xu (2003).

2. Overview of CPL and features in Internet telephony
2.1. The Call Processing Language

CPL can be used to describe and control Internet telephony services. It is designed to be
implementable on either network servers or user agent servers (Lennox and Schulzrinne,
2002). In order to limit the potential for disastrous errors in highly distributed systems such
as the Internet, CPL was designed with many limitations: for one, loops and recursion are
not possible in CPL scripts. The example in Fig. 1 presents a common structure of CPL
scripts:

A CPL script can be considered as a decision-tree, where a set of conditions constitutes a
branch and a single action constitutes a leaf at the end of each branch as shown in Fig. 2.

In this figure, ellipses represent actions (leaves) and rectangles stand for conditions (part
of branches). “reject” and ‘“proxy” are the only two leaves shown in this tree, whose
corresponding branches are “‘incoming — address-switch” and ‘“‘outgoing — time-switch”,
respectively. Condition and action are the two types of lexicalities in CPL: conditions are
used to determine the executing path whereas actions indicate what will be executed or the
results that the path will lead to. In Fig. 1 “reject” and “proxy” are the only two actions.
They will be executed only if their corresponding sets of conditions are true, in which case,
we say that the action is executable and that the leaf is reachable. In Fig. 1, for action
“reject”, the corresponding set of conditions (or precondition) is that there is an incoming
call and the address attribute of this call matches the criteria set by the address-switch; for

<cpl>
<incoming>
<address-switch field="origin " subfield="user">
<address is="anonymous">
<reject status="reject" reason="1 don’t accept anonymous calls." />
</address>
</address-switch>
<f/incoming>
<outgoing>
<time-switch tzid="America/New_York"
tzurl="http://zones.example.com/tz/America/New_York">
<time dtstart="20000703T090000" duration="PT8H">
<location url="sip:jones @voicemail.example.com">
<proxy />
</location>
</time>
</time-switch>
</outgoing>
</cpl>

Fig. 1. An example of CPL script’s structure.

4 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

7

| incoming | outgoing |

address-switch time-switch

Fig. 2. Decision-tree of the CPL script in Fig. 1.

action “proxy’’, the set of conditions is that there is an outgoing call and the time attribute
of this call matches the criteria set by the time-switch.

Although CPL only has two top-level conditions (“incoming’ and “‘outgoing’’) and the
switch conditions such as address-switch and time-switch can be either “matched” or “not
matched”, a decision tree does not have to be binary since more than two switch conditions
may be present at the same level after incoming or outgoing and the outcome of some
actions may have more than two possibilities.

2.2. Policy, intention, features and feature interactions in CPL

The concepts of policy and intention are key concepts in the study of features and feature
interactions. Policies have been defined as “high-level statements to support personal,
organizational, or system goals” (Reiff-Marganiec and Turner, 2004). An intention is one
of these goals. A feature is a functionality offered by a system and is specified by means of
policies, which can be implicit or explicit.

In our view, a CPL script represents the overall policy of a user, which contains two sub-
policies: incoming and outgoing. It specifies the user’s intentions for incoming and
outgoing calls. Intentions will be represented by us as rules of the form conditions— action.
We will take into consideration intentions that are directly derived from the CPL code, and
also intentions that can be deduced from it. Note that the word intention has been used in a
wider sense in feature interaction research, e.g. in Stepien and Logrippo (1995) intentions
are not necessarily expressed in policies or features, neither directly nor indirectly, rather
they are user or system requirements, more like the contradictions we will encounter later.

Just as one tree may contain several branches, one policy may include one or more
intentions. For the example in Fig. 1, the incoming policy expresses one intention that
indicates that all the incoming calls will be rejected if their address meets the condition
denoted by the address-switch; the outgoing policy expresses one intention as well, which
indicates that all the outgoing calls will be transferred during the period of time defined by
the time-switch.

The well-known feature Call Forward on Busy (CFB) can be specified in terms of user
intentions in this way: if I am busy, then transfer all the incoming calls to a colleague.
Feature Outgoing Call Screening (OCS) can be specified as: if a user tries to connect to that
number from my phone, then block the call.

For the study of feature interactions, it is useful to consider a type of constraint that has
been called incoherence in Gorse et al. (to appear). These identify situations that are
considered to be undesirable in a system, from the user’s point of view or from the system’s

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 5

point of view. In this work, they will be contradictions between intentions. Basic rules BR1
and BR2, introduced in Section 5.2, are examples.

In the light of these definitions, feature interactions can be defined as situations of
inconsistency in the set of logical statements that includes the intentions of coexisting
features and the stated contradictions. Inconsistency means that logically, the conjunction
of these statements in unsatisfiable (Felty, 2001; Gorse et al., to appear). With these
definitions, intention inconsistency (or contradiction) and feature interaction are
essentially synonyms.

The topics of policies, intentions and features in the context of forthcoming Internet
telephony services are discussed in Dini et al. (2004) and Reiff-Marganiec and Turner
(2004).

We will consider feature interactions in single CPL scripts, and feature interactions in
pairs of CPL scripts (roughly, this corresponds to the distinction between single user and
two-user feature interactions (Cameron et al., 1993)). CPL prevents feature interactions in
single scripts by setting feature priorities within CPL scripts. Simply, the script is traversed
top-down and the first applicable action is executed, while actions appearing further down
in the tree are ignored (except under some circumstances). For instance, a subscriber in a
traditional system might unthinkingly request both “Call Forward Always” and “CFB”,
which leads to uncertainty under the condition of line busy. This problem does not occur in
the context of CPL since the CPL script is only able to ““trigger one action in response to
the condition ‘a call arrives while the line is busy”’(Lennox and Schulzrinne, 2000), and
this will be the first action encountered. However, the user might have wanted a different
behaviour as we have seen in the introduction.

3. Simple Formal Specification Language (SFSL): a logic-based language for abstracting
CPL scripts

Our approach to address the feature interaction problem is based on logic analysis, for

which a formal, logic-based specification of the intentions represented by CPL scripts is
useful. This latter purpose is fulfilled by our SFSL.

3.1. The syntax of SFSL

Briefly, SFSL represents the intentions of CPL scripts in the following format:

condition1 A condition2 A ... — action.

On the left of symbol — is the set of enabling conditions while on the right is their result.
Details about the SFSL syntax can be found in Xu (2003).

3.2. Translating CPL scripts into SFSL

Translating a CPL script into SFSL involves splitting a decision tree into branches as
shown in Fig. 3. A CPL script may contain one or more intentions and each intention can
be considered as a branch in the CPL structure.

6 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

CPL scripts

condition21 A condition22A...> |
action2

Fig. 3. CPL scripts divided into several independent branches.

condition11 Acondition12A... >
action1

From Fig. 3, we see that each intention contains one and only one action, and conditions
do not exist independently; on the contrary, they are always attached to actions.
Consequently, the first step of translating CPL into SFSL is to recognize actions, which are
leaves in a decision tree.

3.2.1. Identifying and translating actions

There are six types of actions in CPL but we only take into account the three signalling
ones. Since the three non-signalling actions do not influence call processing, they and the
attached conditions are ignored during the translation process.

For the signalling action “proxy”, there may be a URL location present prior to
“proxy” to indicate a new destination of this action; otherwise the initial destination
address would be used, namely the callee’s number if the proxy instruction is in the
outgoing branch, or the caller’s number if the proxy instruction is in the incoming branch.
We use proxy(x, url-location) to represent the following CPL excerpt, where “x”’ denotes
all the incoming calls which could be from any user and ‘‘url-location” denotes the
forwarding destination:

<location url = "url-location” >
<proxy/>
</location >

If there are operational parameters such as “ordering’ associated with proxy, they are
always present right behind proxy and are easy to identify.

CPL’s signalling action “‘reject” is represented in SFSL by reject(caller, callee). If it is for
incoming policy, we use reject(x, owner); if it is for outgoing policy, we use reject(owner,
x), where “owner” stands for the subscriber of the current CPL script. “x” is the
attempting user whose attributes satisfy the conditions in ““address-switch” and “address”.

For instance, assume that the following segment of CPL script is located in Alice’s
incoming policy:

<address-switch field = **..."" subfield ="..."" >
<addressis="..." >
<reject status = "*...” reason = "'...
</address >

< /address-switch >

12

/>

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 7
We can use reject(x, Alice) to represent the sentence <reject status = ““...”" reason-
“...7/>, where x represents any user whose address attributes match the address
conditions. The ancillary information such as status and reason is ignored in order to
simplify the target specification.
For action “redirect”, there should also be a URL location prior to the “redirect” in the
CPL script to indicate the destination of the redirection. Similarly to action “proxy”, we
can use redirect(x, url-location) to represent these three lines in CPL:

n

<location url ="..." >
<redirect/>
</location >

CPL also has a specific notation ‘“‘subaction’ that is defined for script re-use and
modularity. It acts like a sub-function, consisting of conditions and actions also. We
assume that all subactions are replaced by their definition before CPL scripts are
translated.

3.2.2. Translating associated conditions

The second step of translating CPL to SFSL is to select all the associated conditions for
each identified action and concatenate them in a conjunctive formula. This requires tracing
from the position of that action back to the decision-tree root to include all preconditions.
These preconditions may consist of seven types of switches and two types of labels.

Address-switches may be followed by the keyword “‘subfield” and an address. Thus, the
following CPL sentences can be translated in the form of: address-switch(user.field.subfield
operator address):

<address-switch field = **..."" subfield = "“..."" >

n

<address is="..."">
</address >
</address-switch >

Here, the operator should be *“ = ”* to represent “is” in the address sentence. The “‘user”,
which gives the host address of “field”” and “‘subfield”, can be represented by a variable in
case the user is determined only at running time. An expression such as this is a truth
function, which is true if the enclosed expression is true. Examples are given below.

The structure of the other types of switches and labels is similar. We translate them with
similar conventions, and the resulting functions are easy to interpret according to their
intuitive meanings. Therefore we will not discuss them in detail.

Finally, semicolons are used to separate coexisting intentions.

8 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111
3.3. Examples of CPL scripts and their translation to SFSL

This section presents examples of features expressed in CPL, together with their
translation into SFSL.

3.3.1. Outgoing call screening in CPL and its translation to SFSL
The first example presents the case where the CPL script of Alice@uottawa.ca behaves
like OCS with Carl@phone.example.com in the screening list:

<cpl>
<outgoing >
<address-switch field = “original-destination” subfield = “user’”’ >
<address is = “sip:Carl@phone.example.com ' >
<reject status = “reject”
reason = ““Not allowed to make a call to Carl.”’/>
</address >
</address-switch >
</outgoing >
</cpl>

For translation, we first identify the action, which is “reject” in this case, and then
combine it with its enabling conditions. Finally, the CPL script is translated into the
following intention:

Outgoing(“sip:Alice@uottawa.ca’”’, x)

/\ address-switch(x.original-destination.user = “’sip:Carl@phone.example.com”’)
N

reject("’sip:Alice@uottawa.ca’’, x)

3.3.2. Call forward always in CPL and its translation to SFSL

The second example describes a situation where the CPL script of Bob@uottawa.ca
behaves like Call Forward Always, with incoming calls forwarded to Carl@phone.
example.com:

<cpl>
<incoming>
<location url = “sip:Carl@phone.example.com’” >
<proxy/>
</location >
</incoming >
</cpl>

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 9

b}

For translation, we first identify the action, which is ““proxy” in this case, and then
combine it with its enabling conditions. Finally, the CPL script is translated as:

Incoming(x, “sip:Bob@uottawa.ca’”’) —» proxy (x, “sip:Carl@phone.example.com’’)

4. Identification of interactions and inconsistencies in single CPL scripts
4.1. Interactions in single CPL scripts

Single-user feature interactions (Cameron et al., 1993) appear in CPL as inconsistencies
within a single CPL script. We will discuss them here to show how they can be handled by
using our method. This analysis leads to rules L1, L2 and L3 which are implemented in our
tool. In Section 4.3 we will identify several cases requiring further study. We use the letter
L to denote ‘local’ inconsistencies.

As already mentioned, because the order of execution of intentions and features is
determined by CPL’s mechanism, many interactions are avoided, and in the case of
contradiction of two intentions only the one that is encountered first in the decision tree
will be executed. This predetermined execution order, however, may prevent intentions
with lower-priority from ever being executed. For instance, if Alice@uottawa.ca has two
intentions in the order as follows:

incoming(x, “sip:Alice@site.uottawa.ca’’)
/\address-switch(x.origin.user = “’sip:Carl@uottawa.ca’’)

-

proxy(x, “‘sip:Bob@uottawa.ca”’);

incoming(x, “sip:Alice@site.uottawa.ca’’)
/\ address-switch(x.origin.user = “sip:Carl@uottawa.ca’)
N\ time-switch(x.tstart = ““8:30 am”’, x.dtend = “/5:00 pm"’)

—

reject(x, “sip:Alice@uottawa.ca’’).

We see that the second intention will never be executed because if its preconditions
are satisfied, the first intention’s preconditions are also satisfied, and the latter
has the priority. There appear to be conflicting intentions, a logical contradiction. It can
be fixed by reversing the order of the intentions, and probably the user should be asked
whether she wishes to do so. Rule L1 provides an approach to identify this type of
interaction.

Rule L1 (shadowing):
Single-user Feature Interaction is present if the following characteristics hold:

(1) User 4 has at least two intentions.

10 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

(2) The precondition of the first intention is implied by that of the second intention (in the
order of occurrence in the script).

Formally:

(1) incoming (x, A) A conditions]l — actionl; incoming(x, A) A conditions2 — action2
or
outgoing(A4, x) A conditions] — actionl; outgoing(4, x) /\ conditions2 — action2
(2) conditions2 — conditions]

where we assume that actionl and action?2 are different CPL actions, and conditions] and
conditions2 are sets of enable-conditions which can be true together.

Specialization is the converse situation where we have a high priority special intention
with a low priority general intention. An example of specialization can be obtained by
simply interchanging the two intentions in the example above. Specialization may be
intentional, however, the user may not be aware of it and so it is a good idea to signal its
presence. Our rule L2 deals with specialization and its precise enunciation will be left to the
reader. Shadowing and specialization, their detection and their resolution in CPL are
further discussed in Amyot et al. (to appear).

4.2. Redundancy

Another type of logical problem that can occur between intentions in a single CPL script
is redundancy (Nakamura et al., 2003). It describes the case where

conditionl A\ condition2 — actionl and
conditionl A —condition2 — actionl

are redundant since these two intentions reduce to one
conditionl — actionl.

Redundancy is not a feature interaction, at least not in the usual sense (Zave, 2004,
http://www.research.att.com/~pamela/faq.html) since it results in repetitions rather than
conflicts. Definitely, it is not a conflict of intentions. However, redundancy demonstrates
disorganized script logic and reduces performance; therefore detecting it is useful for
improving the quality of CPL scripts. Rule L3 is used for this purpose.

Rule L3 (redundancy)
Intention redundancy is present if the following characteristics hold:

User 4 has two intentions that have the same action.
A part of the first intention’s preconditions is the opposite of a part in the second
intention’s preconditions; and the rest of these two preconditions are the same.

Formally:

conditions] /\ condition2 — actionl
conditions] A —condition2— actionl

http://www.research.att.com/~pamela/faq.html
http://www.research.att.com/~pamela/faq.html

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 11

4.3. Inconsistency in CPL

Logical inconsistency can exist in the set of conditions in a feature. We can identify two
main types of inconsistency: unexecutable actions and redundant conditions. Again, these
are not interactions according to common definitions but are cases of disorganized script
logic, probably due to improperly specified intentions. Our tool does not detect these
conditions at present, and tool support is left for further study. Some kind of user-
provided information, as well as theorem-prover support, seems to be necessary to identify
cases of implication and contradiction.

4.3.1. Unexecutable actions and corresponding solutions

The case of unexecutable actions describes the situation where an action cannot be executed
because its associated conditions (preconditions) cannot be satisfied. These are unfeasible
paths in CPL scripts, i.e. contradictions inside CPL intentions. We classify the contradictions
in one intention into two main types: direct contradictions and indirect contradictions.

In the case of direct contradiction, some conditions in one intention contradict directly.
An example is:

Incoming(x, “sip:Alice@site.uottawa.ca’’)

/\ —address-switch(x.origin.user = “sip:Carl@phone.example.com”’)
A-..

/\address-switch(x.origin.user = “’sip:Carl@phone.example.com’’)
5

reject(x, ““sip:Alice@site.uottawa.ca’’).

The action “reject” will never be executed since no incoming calls could satisfy the two
contradictory conditions.

Indirect contradiction describes the case where an action’s preconditions conflict with
system axioms, “which describe properties that should be true of any reasonable system
implementations” (Calder et al., 2003a). For example, suppose that an intention is defined
as follows:

...outcome(proxy(x, “sip:Carl@site.uottawa.ca’’), “busy’’)
/\ outcome(proxy(x, ““sip:Carl@site.uottawa.ca’’), “noanswer”’)

A...

-

redirect(x, “sip:Bob@uottawa.ca’’)

We can see that the action “‘redirect(x, ‘sip:Bob@uottawa.ca’)”’ can never be executed
under the reasonable assumption that the conditions “busy”” and “noanswer” cannot be
true for a user simultaneously.

4.3.2. Redundant conditions and corresponding solutions
Redundant conditions characterize the case where conditions are repeated in an
intention. The only consequence of this is to reduce the performance of a CPL script.

12 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

Similar to unexecutable actions, there are two types of redundant conditions: conditions
repeated directly or indirectly.

Repetition of direct conditions can be detected easily after CPL scripts are translated
into SFSL specifications. For indirect repetition, theoretically, we can enumerate all
possible conditions implied by existing ones and then detect redundancy. However, in
practice, to consider all implied conditions is time consuming. For instance, x.origin.
user = “‘sip:Carl@site.uottawa.ca” also implies that x.origin.host = “‘site.uottawa.ca”,
x.origin.host O ‘“uottawa.ca”, x.origin.user = “Carl”, x.origin.user 2 ‘“‘ca”, x.origin.user
S “uvottawa”, etc. This type of redundancy requires more study.

5. Identification of feature interactions in pairs of CPL scripts
5.1. General characteristics of feature interactions in pairs of CPL scripts

The characteristics of CPL must be taken into consideration in the study of the feature
interaction problem between CPL scripts.

First of all, CPL has no state and relinquishes control once the call has been established,
which implies that some traditional features cannot be defined in CPL, such as Call
Waiting, 3-Way Call and Conference Call. This means that several types of feature
interactions in traditional telephony involving these features cannot exist in CPL.

Second, CPL scripts of different users may be located in the same server if these users
belong to the same organization, or may also be in different servers. Even worse, one user
may have several addresses from several organizations, such as yahoo.com and
hotmail.com, therefore the CPL scripts attached to these e-mail addresses are located in
different servers although they belong to the same real user. This distributed deployment of
CPL increases the risk of occurrence of feature interactions significantly.

Further, two users between which feature interaction occurs must be involved in one call
rather than two separate ones. This does not mean that one of the two users has called the
other directly, but the two users must have become involved in one call somehow. Second,
there must be a contradiction, in the sense mentioned above.

As explained in Section 2.1, a CPL script includes two distinct policies, outgoing and
incoming, dealing with outgoing calls and incoming calls respectively. Considering this
context and on the basis of the above analysis, one could envisage three types of
interactions between policies, which are:

@ interactions between one user’s outgoing policy and another user’s incoming policy or,
® interactions between one user’s incoming policy and another user’s incoming policy or,
e interactions between one user’s outgoing policy and another user’s outgoing policy.

Again, in all these cases, interaction can mean not only that two users’ policies
contradict mutually but also that they conflict with explicitly stated contradictions.

As shown in Fig. 4, the first case specifies the situation where user B’s outgoing policy
conflicts with user 4’s incoming policy; it occurs when user B calls user A directly or user
B’s call to somebody else is forwarded to user 4. The example of OCS vs. Call Forwarding
illustrates this case.

The second case demonstrates the situation where there are interactions between two
users’ incoming policies as shown in Fig. 5. It can be caused by the fact that one user’s

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 13

User B’s User A’s
[outgoing incoming >
policy policy

Fig. 4. Interaction between B’s outgoing policy and A’s incoming.

User A’s User B’s
[_incoming > < incoming |

policy policy

Fig. 5. Interaction between the incoming policies of A and B.

incoming policy results in invoking another user’s incoming policy as it happens in the case
of forwarding loop.

The third case must be excluded, because it implies that there could be two originators
for a call. We believe that this is impossible in current or predictable telecom architectures.

5.2. General rules of feature interaction and contradiction, and their consequences

Our method of feature interaction detection is based on identifying certain contra-
dictions between intentions. The following two basic rules are two contradictions that we
postulate.

Basic rule BR1 (incompatibility of reject and proxy): An intention which results in
rejecting a call from user A to user B conflicts with an intention which results in
establishing a call from user A to user B. This rule can be specified in SFSL as:

conditionsl — reject(4, B)
contradicts
conditions2 — proxy(4, B)

Notes:

1. These two intentions may belong to one or two users, but we only consider the situation
of two users in this paper.
2. Conditionsl and conditions2 must be such that they can be true simultaneously.

We consider the coexistence of these two intentions to be pathological because a reject
implies unsuccessful call establishment, while proxy implies continuation of the call
establishment.

Basic Rule BR2 (forwarding loops): Endless forwarding loops among users are
undesirable. Since in this paper we confine ourselves to the case of two users, this rule
can be simplified by stating that the possibility of forwarding loops between two users is a
contradiction. In SFSL, this rule can be specified as:

A: conditions] — proxy(x, B) and B: conditions2 — proxy(x, A) is a contradiction.

14 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111
Notes:

1. “A4:” means that the following intention belongs to user A, and “B:” means that the
following intention belongs to user B.

2. “x” represents the originator of the incoming call, which could be any user.

3. In principle, unlike the case of BR1, the two conditions need not to be true together;
however, this fact could lead to timing considerations, so we simplify the discussion by
assuming that conditionsl can be enabled by action proxy(x, 4) while proxy(x, B) can
enable conditions2.

Technically, both rules have been described as situations of deadlock, i.e.
situations where the system cannot continue without violating constraints that
represent reasonable expectations on its behaviour. Interestingly however, the second rule
describes also a situation of livelock (unproductive infinite loop), which we have turned
into a situation of deadlock by introducing a constraint on the unacceptability of such
loops.

It could be possible to use basic rules BR1 and BR2 directly to detect feature
interactions; however, this would involve the use of some type of constraint satisfaction
engine for which in general efficiency or even termination could not be guaranteed. Rather,
we will use more specific rules which can lead to efficient detection. According to what was
said in Section 5.1, these rules are confined to two sets of policies, particularly to one user’s
incoming policy vs. the other user’s outgoing policy or one user’s incoming policy vs. the
other user’s incoming policy. The logical relation between these rules and BR1, BR2 will be
discussed in Section 5.4.

We will deal separately with rules for incompatibility of reject and proxy, which derive
from Basic rule BR1, and rules for forwarding loops, which derive from BR2.

5.2.1. Rules of incompatibility of reject and proxy

Three concrete rules for detecting interactions related to incompatibility of reject and
proxy in CPL scripts of two different users have been identified. The letter D in these rules
stands for Detection.

5.2.1.1. Rule DI. Rule D1 identifies potential interactions between features subscribed
by two different users, and addresses the case of interaction between OCS and Call
Forwarding. This type of interaction is present if the following characteristics hold:

(1) User A’s outgoing policy has a reachable action reject(4, C) where C represents the
blocked destination user. In other words, at least one action reject(4, C) can be
executed in user A’s outgoing policy.

(2) User B’s incoming policy has a reachable action proxy(x, C) where x means the
originator could be any user and C represents the same user C as in (1). In other words,
at least one proxy(x, C) action can be executed in user B’s incoming policy.

(3) A4, B are different users.

Formally:

(1) outgoing(4, C) A conditionsl — reject(4, C)

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 15

(2) incoming(x, B) A conditions2 — proxy(x, C)

(3) A#B

Notes:

. A, B, C and x are variables, but 4, B and C are global for all formulas in this rule while
x’s range is limited to formula (2).

. Conditions1 and conditions2 are other possible enabling conditions, which can be
empty but cannot be mutually contradictory.

. This interaction will take place when A calls B or A’s original call to the other subscriber
is forwarded to B.

. Attempts to reduce the number of involved users to less than three cannot
lead to interaction. Assume user A’s outgoing policy is outgoing(4, B) A condi-
tionsl — reject(4, B) and user B’s incoming policy is (incoming(x, B) A
conditions2 — proxy(x, B)). No interaction is going to occur since the attempt of 4
calling B will be stopped by A4’s outgoing policy and B’s incoming policy will not be
invoked.

As an example, suppose that the CPL script for Alice@uottawa.ca rejects all calls to

Carl@uottawa.ca, which can be specified as:

outgoing(“sip:Alice@uottawa.ca’’, x)

/\ address-switch(x.original-destination.user = “’sip:Carl@uottawa.ca’)
N

reject("’sip:Alice@uottawa.ca’’, x)

We see that only Carl@uottawa.ca can make the enabling conditions true and if so the

consequence reject(“‘sip:Alice@uottawa.ca”, x) holds. Hence, the above formula is
equivalent to the following one by replacing the variable x with the constant
“sip:Carl@uottawa.ca’:

rrooa

outgoing(“sip:Alice@uottawa.ca’, “sip:Carl@uottawa.ca’’)
/\ address-switch((“’sip:Carl@uottawa.ca”).original-destination.user = “’sip:Carl@uottawa.ca”)
N

o

reject("’sip:Alice@uottawa.ca’’, “sip:Carl@uottawa.ca’’)

Meanwhile, Bob@uottawa.ca’s CPL script forwards all the incoming calls to

Carl@uottawa.ca, which can be specified as:

incoming(x, “sip:Bob@uottawa.ca”)
—

proxy (x, “sip:Carl@uottawa.ca’’)

16 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

Therefore, Rule D1 is satisfied since:

o1

(1) outgoing(*“sip:Alice@uottawa.ca’”, “sip:Carl@uottawa.ca”)
/\ address-switch((“’sip:Carl@uottawa.ca).original-destination.user = “sip:Carl@uottawa.ca’’)
N

o1

reject("’sip:Alice@uottawa.ca’”’, “sip:Carl@uottawa.ca’’)

(2) incoming(x, “sip:Bob@uottawa.ca’’) - proxy(x, “sip:Carl@uottawa.ca”)
(3) Alice@uottawa.caZBob@uottawa.ca

This example describes a situation where Alice does not want to talk to Carl whereas
Bob forwards all the incoming calls to Carl. When Alice calls Bob or Alice’s call is
forwarded to Bob, both Alice’s outgoing policy and Bob’s incoming policy are invoked
and both actions reject(“‘sip:Alice@uottawa.ca”, “sip:Carl@uottawa.ca’) and proxy
(“‘sip:Alice@uottawa.ca”, “‘sip:Carl@uottawa.ca’’) should be executed. However, accord-
ing to our BR1, we know that these two contradicting intentions cannot be satisfied at the
same time. Therefore, feature interaction occurs.

The following rules will be given in less complete form for the sake of conciseness.

5.2.1.2. Rule D2. Rule D2 identifies another type of potential interaction which also can
occur between CPL scripts of two users because of direct intention contradiction. It
addresses the case of interaction between incoming Call Screening and Call Forwarding.
Formally:

(1) incoming(C, 4) A conditionsl — reject(C, A4)
(2) incoming(x, B) A conditions2 — proxy(x, 4)
(3) A#B

An example is such a scenario where Alice refuses to take any call originating from Carl
whereas Bob forwards all the incoming calls to Alice in case he is busy. When Carl calls
Bob or Carl’s call is forwarded to Bob, and Bob is busy, both incoming policies of Bob
and Alice are invoked and both actions of reject(*‘sip:Carl@uottawa.ca”, “‘sip:Alice@
uottawa.ca”) and proxy(‘“sip:Carl@uottawa.ca’, ‘“‘sip:Alice@uottawa.ca’’) should be
executed. However, according to BRI, these two contradicting intentions cannot be
satisfied at the same time. Therefore, we have a feature interaction.

5.2.1.3. Rule D3. Rule D3 identifies another type of potential interaction which also can
occur between two CPL scripts of two users because of direct intention contradiction.
It also addresses the case of interaction between incoming Call Screening and Speed
Dialing.

As an example, suppose that the CPL script of Alice@uottawa.ca rejects all calls from
Bob@uottawa.ca; also suppose that Bob’s CPL scripts sets up a speed dial number “12”
for help desk. When Bob needs technical support, he simply dials ““12”” and his call will be
automatically forwarded to the appropriate person, which happens to be Alice@
uottawa.ca. When Bob dials “12”, both incoming policies of Bob and Alice can be

EEENY3

invoked and both actions of reject(‘‘'sip:Bob@uottawa.ca”, “sip:Alice@uottawa.ca’) and

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 17

proxy(“‘sip:Bob@uottawa.ca”, ‘‘sip:Alice@uottawa.ca’’) can be executed. However,
according to BRI, these two contradicting intentions cannot be satisfied at the same
time. Therefore, feature interaction occurs.

5.2.2. Forwarding loops
We have identified one rule leading to the detection of loops of call forwards, which is
derived from BR2.

5.2.2.1. Rule FI. Rule F1 identifies potential interactions which can occur between two
users’ incoming policies. It describes a situation of endless loop when A’s action enables B’s
conditions and also B’s action enables A’s conditions.

Formally:

(1) incoming(x, 4) A conditionsl — proxy(x, B)
(2) incoming(x, B) A conditions2 — proxy(x, 4)
(3) A#B

As an example, suppose that the CPL script of Alice@uottawa.ca forwards all the
incoming calls to Bob, but the CPL script of Bob@uottawa.ca forwards all the incoming
calls to Alice. Assume that Alice is called by another user who could possibly be Bob: a
forwarding loop is generated. On the basis of BR2, we know that these two intentions
cannot be satisfied at the same time, because they contradict system constraints. Therefore,
feature interaction occurs.

Some telecom systems deal with forwarding loops by limiting the lifetime of a message,
or they check whether a message passes twice through the same node. However, time and
system resources are consumed before the system notices the loop and ends it. Our method
provides a way to check for such conditions before this happens.

5.3. Call forking interactions

We should mention a different type of contradiction, which is not related to the Basic
Rules given in Section 5.1. It addresses the case of interaction between Call Forward (CF)
and Call Forking Outgoing (CFO). CFO generates several simultaneous calls looking for a
subscriber, and will abort all other calls as soon as one succeeds. We can assume that it is
used when a subscriber wants to find another subscriber as quickly as possible. However,
this purpose can be frustrated if one of the phones to which the call is forked answers
immediately and forwards the call, possibly to an answering machine. The precise
formulation of this rule is left to the reader.

5.4. Proofs of feature interaction detection rules

As mentioned, detection rules D1, D2, D3 and F1 are logically related to basic rules
BR1 and BR2, in the sense that for each detection rule it is possible to show that the
conjunction of the detection rule and one of the basic rules is not logically satisfiable.
Thus the presence of the condition described by one of the detection rules implies violation
of at least one basic rule. This is shown below for one rule. Other proofs are found in Xu
(2003).

18 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

For Rule DI:

(1) outgoing(A, C) A conditions1 — reject(A, C)
(2) incoming(x, B) A conditions2 — proxy(x, C)

As discussed in 5.3.1, conditions] and conditions2 may be empty. In order to simplify
the proof, we assume that they are absent; and the unbound variable x in formula
(2) represents one arbitrary user, so that Rule D1 can be specified in predicate logic
as follows:

(1) outgoing(A, C) — reject(A, C)
(2) Vx(incoming(x, B) — proxy(x, C))

Since we are assuming that the two features above (formula (1) and formula (2)) are
enabled simultaneously, the conjunction of their enabling conditions (outgoing(4, C) A
incoming(A4, B)) is added to the set of assumptions. We combine this with the system
constraint —(proxy(4, C) A reject(4, C)) (from BR1). According to Calder et al. (2003a)
and Felty (2001), our task is to prove that there is no model where the conjunction of these
five formulas is satisfiable, i.e. that L (false) is generated. This is shown using the deduction
system described in Huth and Ryan (2000):

Implication to prove:

outgoing(A, C) — reject(A, C)

N\ ¥x(incoming(x, B) — proxy(x, C))
/\ outgoing(A, C) A incoming(A, B)
N\ —(proxy(A, C) A reject(A, C))

=1

Proof:

1 outgoing(A, C) — reject(A, C) premise
2 Vx(incoming(x, B) — proxy(x, C)) premise
3 incoming(A, B) — proxy(A, C) Vxe 2

4 —(proxy(A, C) A reject(A, C)) premise
5 outgoing(A, C) premise
6 incoming(A, B) premise
7 reject(A, C) -e1,5b
8 proxy(A, C) —e 3,6
9 proxy(A, C) A reject(A, C) Ni7,8
10 € -e4,9

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 19
6. Implementation and applicability
6.1. Implementation

On the basis of the rules presented so far, we have developed a tool for automatic feature
interaction detection using SWI-Prolog. Given CPL scripts of different users, the tool
translates CPL scripts into SFSL specifications first, and then applies the detection rules
presented above to these SFSL specifications. At the end, corresponding reports are
generated.

Each report is composed of two parts: detailed explanation of the feature interaction
and the two inconsistent features. The detailed explanation contains the name of the rules
that were applied, and a brief description of the feature interaction type. Here is an
example:

% ****%% Interaction detected by Rule D3 -> % The first user rejects calls from the
second user

% while the second user will forward outgoing calls to the first user

% + The first user’s policy

implies(conj(incoming(_G248, sip:bob@uottawa.ca), [address(is(sip:alice@uottawa.ca))]),
[reject(status(reject)), reject(reason(l do not accept Alice’s call.))])

% + The second user’s policy

implies(conj(outgoing(sip:alice@uottawa.ca, _(G248), [address(subdomain-of(1700))]),
[proxy([location(sip:bob@uottawa.ca)], ordering(parallel))])

Yo *¥H**%* Interaction detected by Rule D1 ->

% The first user is forbidden to call somebody

% while the second user will forward calls to the forbidden user

% =+ The first user’s policy

implies(conj(outgoing(sip:bob@uottawa.ca, _(G249), [address(is(sip:carl@pager.
ottawahospital.com))]), [reject(status(reject)), reject(reason(I am not allowed to call Carl))])
% + The second user’s policy

implies(conj(incoming(_G249, sip:alice@uottawa.ca), []), [proxy([location(sip:carl@
pager.ottawahospital.com)], ordering(parallel))])

6.2. Applicability

Unlike PSTN, Internet telephony is not based on hierarchical network architecture, and
thus it has no centralized services centre. As discussed in Xu (2003), users’ CPL scripts may
be located in signalling servers. On the one hand, from the point view of network
components, a signalling server acts like a PBX in PSTN (there is no public
switch in Internet telephony). On the other hand, from the point view of feature
management, signalling servers are ‘““‘most similar in functionality to service control or
switching points in the circuit-switched network” (SCP and SSP) (Lennox and
Schulzrinne, 2000). Either way, CPL scripts residing in different signalling servers have
no knowledge of each other.

20 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

Hence, feature interaction detection could be performed in two stages: offline and online
(Reiff-Marganiec and Turner, 2004). Offline detection means performing feature
interaction detection at the time when features are uploaded to the signalling server but
not activated yet. It can be implemented to detect conflicts between features located in the
same signalling server, typically a PBX (these features could belong to the same user or to
different ones). In practice, our detection rules could be run after a new feature is uploaded
but before it is activated. This makes it possible to recognize both local feature interactions
in one user’s CPL scripts and pair-wise ones inside one domain.

For potential interactions between two features that are located in different signalling
servers, it is neither possible nor necessary to scan every pair of CPL scripts beforehand, in
consideration of the very large number of domains and URL on Internet. We propose
online detection, at the time of call setup. However, since this requires accessing
CPL scripts in different servers, a new concern arises: who should perform this detection,
the caller or the callee? Few users will want their calling policies open to the public.
Thus, in order to perform a “‘safe” detection, a trusted third party is needed. One can think
that when a call is initiated, the pre-authorized third party will access the CPL
scripts of the caller and callee, and then apply FI detection rules to check potential
feature interactions. In the case where a call is forwarded from the original destination to a
second one, the detection process will be executed twice, first considering the two scripts of
the caller and original callee, then considering those of the caller and the second callee.
This complex procedure could be justified in cases where the greatest dependability is
required.

A more complete view of this problematic, not limited to CPL, but essentially in
agreement with our view, has been presented in Blair and Turner (2005).

7. Related work

This research topic has been addressed by other work that was carried out independently
and with different methods, roughly in the same timeframe as our own research.

7.1. Detecting script-to-script interactions in CPL

The motivation of M. Nakamura, P. Leelaprute, K. Matsumoto and T. Kikuno’s work
is very much the same as ours. Their approach addresses possible semantic warnings in
individual CPL scripts, and then extends the analysis method to pairs of scripts based on
“defining feature interactions as the semantic warnings over multiple CPL scripts”
(Nakamura et al., 2003; Nakamura et al., 2004).

In general, Nakamura’s research concentrates on semantic ambiguities while ours centre
on logical inconsistencies. Nakamura lists eight types of semantic warnings that are
possible in individual CPL scripts. We analyze these semantic warnings and compare them
with the interactions detected by our rules as follows:

® Multiple Forwarding Addresses (MFAD): More than one <location> tag is set before
an action <proxy> or <redirect>. We did not take this case into consideration since it
is more a compilation-time warning than a logical inconsistency.

® Unused SUBactions (USUB): A subaction is defined but not used. Again, this is more a
compilation-time warning than a logical inconsistency.

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 21

® Call Rejection in All Paths (CRAP): All execution paths terminate at <reject>. This is
not necessarily a semantic error since a user may want to block all calls in some cases, in
addition, it is not a logical inconsistency.

® Address Set after Address Switch (ASAS): As mentioned above, this scenario describes a
conflict between two local intentions: the first intention blocks calls to a particular
destination but the second one forwards a call to the same destination. If both intentions
are located in the same incoming policy, it cannot be said that there is a conflict: we
could block all incoming calls from user 4 while forwarding other calls to A4. In fact, this
conflict only occurs in a very special case where outgoing calls to A are blocked while
other outgoing calls are forwarded to 4. Our current local inconsistency detection rules
do not cover this special case; however, it will be well handled if our BR1 is extended to
the case of single scripts.

® Qverlapped Conditions in Single Switch (OCSS): This describes the scenario which is
detected by our rule L1 (see Section 4.1).

® Identical Actions in Single Switch (IASS): it describes the situation of feature
redundancy which can be detected by our rule L3 (see Section 4.2).

® Querlapped Conditions in Nested Switches (OCNS): This describes the situation of
redundant conditions that is discussed in Section 4.2; however, as our example shows,
indirect condition redundancy also can occur between two different switches, which does
not fall under the definition of OCNS.

® [Incompatible Conditions in Nested Switches (ICNS): it describes the same situation of
unexecutable actions that is discussed in Section 4.3.1.

The above comparison shows the overlap of the two approaches in the area of single
CPL scripts. Pair-wise feature interactions detected by our rules D1, D2, D3 and F1 are
also covered by ASAS and MFAD after the combination of two scripts. However, the
interaction between Outgoing Call Forking and Call Forwarding which is detected by our
rule D4 is not covered in their work.

A more detailed comparison will be found in Xu (2003).

7.2. The work of Amyot et al.

Amyot et al. (to appear) propose an approach to solve interactive conflicts for
personalized services in Internet telephony, which is part of personalized services
management architecture. This architecture includes creation of policies for personalized
communication services, validation of services, and conflict handling. CPL was chosen as
the possible service creation tool, and a translator from CPL to the input language of the
tool FIAT (Gorse, 2000; Gorse et al., to appear) was developed so that potential conflicts
can be detected by applying FIAT. However, this work concentrates on inconsistencies
local to a single CPL script, while our work concentrates on inconsistencies between
scripts.

7.3. The work of Calder et al.

Calder et al. (2003b) propose two hybrid approaches that combine off-line and on-line
techniques to detect and resolve feature interactions. One of these two hybrid approaches,
the user-centric hybrid approach, is related to our work. It presents six rules for feature

22 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

interaction detection. Some of these rules are similar to ours; however, they do not attempt
to justify these rules on the basis of basic principles as we do.

Also, Calder et al.’s work is to combine off-line and on-line approaches to detect and
resolve Feature Interactions, which is not a main concern of our paper.

7.4. The work of Blair et al.

Blair and Turner (2005) present insightful research on handling policy conflicts in call
control. This approach relates to our work mainly in two aspects: it models policies in a
very similar way as ours, for instance, policies are specified by means of triggers, conditions
and actions. Secondly, it discusses conflicts handling on a single policy server and in
distributed setting, which corresponds to feature interactions in single and pair-wise CPL
scripts in our work. However, they are concerned with the language APPEL, rather than
CPL, and their main emphasis is on conflict resolution, rather than detection.

8. Future work

Many improvements on this process are still possible. Some were discussed in Section
4.3. This section discusses a few others.

8.1. Domain intersection and inclusion

The problem of domain intersection and inclusion is illustrated by the following
example. Suppose that Alice (Alice@uottawa.ca) does not want to take any calls from
people whose name contains “Carl” and she gives this feature the highest priority; also
suppose that calls from “ibm.com’ are so important to Alice that she wants all these calls
handled by Bob in case she is absent, as shown below:

incoming(x, “sip:Alice@site.uottawa.ca)
/\ address-switch(x.origin.user = “Carl”)

—

reject(x, “'sip:Alice@uottawa.ca:);

incoming(x, “sip:Alice@site.uottawa.ca’’)
/\ address-switch(x.original.host = “ibm.com”)
/\ outcome(proxy(x, “sip:Alice@site.uottawa.ca’’), ‘noanswer’’)

—

proxy(x, ‘‘sip:Bob@uottawa.ca”)

If somebody named ““Carl” in ibm.com (say “Carl@ibm.com’) calls Alice@site.uotta-
wa.ca when Alice is absent, then this call will be rejected rather than taken by Bob. There is
no logical error but it would be helpful to remind Alice of this potential problem. Dealing
with this kind of interaction would require providing the analyzer with information
concerning domain intersection and inclusion, or simply asking the user questions. We
leave this for further study.

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 23
8.2. Multi-way interactions detection

Our detection rules only handle pair-wise feature interactions. However, some types of
feature interactions only occur when three or more features are combined together
although no feature interaction exists between any pair of them. A well known example is a
forwarding loop among three users: user A forwards a call to user B, user B forwards it to
user C and C forwards it back to A. Obviously, identifying three-way or even n-way
interactions is a necessary requirement in practical systems.

We believe that multi-way interactions could be detected by generalizing the method
proposed in this paper; however, a more complicated notation would be required.

8.3. New types of features and policies

We have mentioned that CPL is a limited language. Extensions of CPL and more
advanced policy languages will create new possibilities for feature creation, with their own
possibilities for feature interaction (Dini et al., 2004; Reiff-Marganiec and Turner, 2004;
Wu and Schulzrinne, 2005).

8.4. Feature interaction resolution

Feature interactions should be resolved after they are detected. As we mentioned earlier,
when feature interactions are local logical inconsistencies within a CPL script, we need to
offer choices to users to “correct” them. In this case, we refer readers to Amyot et al.
(2005) although further work is necessary to adapt their method to ours. For pair-wise
interactions detected at run time, negotiation may be necessary. The negotiation between
two users could be done automatically by user agents with pre-set preferences and
priorities. If negotiation cannot be done because of priority conflicts, we need to find a
compromise between the two possibilities of inviting users to make decisions or simply
terminating the call. Either way, a global services management model with a trusted third
party requires further research. This topic is explored in Blair and Turner (2005) and Dini
et al. (2004).

9. Conclusions

We have studied the problem of feature interaction in CPL from a logical point of view,
on the basis of the concepts of policy, intention and logical contradiction. In some cases,
basic contradiction rules identifying generally recognized conflicts of intentions were given,
and then more specific detection rules were derived. We have also implemented a tool to
translate CPL scripts into a logic-based language and to check conflicts on the basis of the
rules. The tool provides clear diagnostics on the conflicts identified. The derived rules are
simpler to check than the basic rules, thus detection is quick, although we have identified
situations where detection would be more accurate by using additional information, such
as domain structures, which would of course affect efficiency.

It is important to note that our detection rules are only proposals, which can be replaced
by others. Our purpose is to demonstrate a logical process, and present the results obtained
according to our assumptions. Accordingly, the set of feature interactions that we find can
be expected to be complete only with respect to our rules. A comparison with the results

24 Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111

obtained by using a completely different method is given in Section 7. Feature interaction
is a complex problem and different methods will find different types of interactions.

Acknowledgements

This project was supported by the Communications and Information Technology
Ontario (CITO) and the Natural Sciences and Engineering Research Council of Canada
(NSERC). Discussions with Tom Gray and Ramiro Liscano greatly enhanced our
understanding of the feature interaction problem in Internet telephony. Furthermore, we
would like to thank our colleagues at SITE, in particular Amy Felty and Daniel Amyot.
The referees provided many useful comments that led to improvements in the paper.

References

Amyot D, Logrippo L. Feature interactions in telecommuications and software systems VII. In: Proceedings of
the seventh international feature interaction workshop, Ottawa, 2003. Amsterdam: 10S Press; 2003.

Amyot D, Gray T, Liscano R, Logrippo L, Sincennes J. Interactive conflict detection and resolution for
personalized services. J Commun Networks 2005;7:353-66.

Blair L, Turner KJ. Handling policy conflicts in call control. In: Reiff-Marganiec S, Ryan MD, editors.
Proceedings of the eighth international conference on feature interaction VIII. Amsterdam: IOS Press; 2005.
p. 39-57.

Calder M, Magill E, Kolberg M, Reiff-Marganiec S. Feature interaction: a critical review and considered forecast.
Comput Networks 2003a;41(1):115-41.

Calder M, Kolberg M, Magill E, Marples D, Reiff-Marganiec S. Hybrid solutions to the feature interaction
problem. In: Amyot D, Logrippo L, editors. Feature interactions in telecommunications and software systems
VII. Amsterdam: IOS Press; 2003b. p. 295-312.

Cameron EJ, Griffeth ND, Lin YJ, Nilson ME, Schnure WK, Velthuijsen H. A feature interaction benchmark for
IN and beyond. IEEE Commun Mag 1993;31:64-9.

Dini P, Clemm A, Gray T, Lin FJ, Logrippo L, Reiff-Marganiec S. Policy-enabled mechanisms for feature
interactions: reality, expectations, challenges. Comput Networks 2004;45(5):585-603.

Felty A. Temporal logic theorem proving and its application to the feature interaction problem. In: Giunchiglia E,
Massacci F, editors. Issues in the design and experimental evaluation of systems for modal and temporal
logics, Technical report DII 14/01, University of Siena, June 2001.

Gorse N. The feature interaction problem: automatic filtering of incoherences and generation of validation test
suites at the design stage. Master thesis in Computer Science, University of Ottawa, 2000.

Gorse N, Logrippo L, Sincennes J. Formal detection of feature interactions with logic programming and LOTOS.
Software Syst Model, to appear.

Huth M, Ryan M. Logic in computer science: modelling and reasoning about systems. Cambridge: Cambridge
University Press; 2000.

International engineering consortium. Voice over Internet protocol: definition and overview; 2005. http://
www.iec.org/online/tutorials/int_tele.

Lennox J, Schulzrinne H. Feature interaction in Internet telephony. In: Calder M, Magill E, editors. Feature
interactions in telecommunications and software systems VI. Amsterdam: 10S Press; 2000. p. 38-50.

Lennox J, Schulzrinne H. CPL: a language for user control of internet telephony services. Draft-ietf-iptel-cpl-06,
Internet draft, Internet Engineering Task Force, January 2002.

Nakamura M, Leelaprute P, Matsumoto K, Kikuno T. Detecting script-to script interactions in call processing
language. In: Amyot D, Logrippo L, editors. Feature interactions in telecommunications and software systems
VII. Amsterdam: 10S Press; 2003. p. 215-30.

Nakamura M, Leelaprute P, Matsumoto K, Kikuno T. On detecting feature interactions in programmable service
environment of Internet telephony. Comput Networks 2004;45(5):605-24.

Reiff-Marganiec S, Ryan MD. Feature interactions in telecommunications and software systems VIII.
Amsterdam: IOS Press; 2005.

Reiff-Marganiec S, Turner K. Feature interactions in policies. Comput Networks 2004;45(5):569-84.

http://www.iec.org/online/tutorials/int_tele
http://www.iec.org/online/tutorials/int_tele

Y. Xu et al. | Journal of Network and Computer Applications 1 (11ll) 111111 25

Stepien B, Logrippo L. Representing and verifying intentions in telephony features using abstract data types. In:
Cheng KE, Ohta T, editors. Feature interactions in telecommunications, III. Amsterdam: IOS Press; 1995.
p. 141-55.

Turner KJ, Magill EH, Marples DJ. Service provision. New York: Wiley; 2004.

Wu X, Schulzrinne H. Handling feature interactions in the language for end system services. In: Reiff-Marganiec
S, Ryan M, editors. Feature interactions in telecommunications and software systems VIII. Amsterdam: I0S
Press; 2005. p. 270-87.

Xu Y. Detecting feature interactions and feature inconsistency in CPL, Master thesis in Computer Science.
University of Ottawa; 2003.

Zave P. FAQ sheet on feature interaction; 2004. http://www.research.att.com/~pamela/faq.html.

Zisman A. An overview of XML. Comput Control Eng J 2000;11(4):165-7.

http://www.research.att.com/~pamela/faq.html
http://www.research.att.com/~pamela/faq.html

	Detecting feature interactions in CPL
	Introduction
	Overview of CPL and features in Internet telephony
	The Call Processing Language
	Policy, intention, features and feature interactions in CPL

	Simple Formal Specification Language (SFSL): a logic-based language for abstracting CPL scripts
	The syntax of SFSL
	Translating CPL scripts into SFSL
	Identifying and translating actions
	Translating associated conditions

	Examples of CPL scripts and their translation to SFSL
	Outgoing call screening in CPL and its translation to SFSL
	Call forward always in CPL and its translation to SFSL

	Identification of interactions and inconsistencies in single CPL scripts
	Interactions in single CPL scripts
	Redundancy
	Inconsistency in CPL
	Unexecutable actions and corresponding solutions
	Redundant conditions and corresponding solutions

	Identification of feature interactions in pairs of CPL scripts
	General characteristics of feature interactions in pairs of CPL scripts
	General rules of feature interaction and contradiction, and their consequences
	Rules of incompatibility of reject and proxy
	Rule D1
	Rule D2
	Rule D3

	Forwarding loops
	Rule F1

	Call forking interactions
	Proofs of feature interaction detection rules

	Implementation and applicability
	Implementation
	Applicability

	Related work
	Detecting script-to-script interactions in CPL
	The work of Amyot et al.
	The work of Calder et al.
	The work of Blair et al.

	Future work
	Domain intersection and inclusion
	Multi-way interactions detection
	New types of features and policies
	Feature interaction resolution

	Conclusions
	Acknowledgements
	References

