Distributed Resolution of Feature Interactions
for Internet Applications

Rui Gustavo Crespo ?, Miguel Carvalho”, Luigi Logrippo ®

a&INESC-ID / Technical University of Lisbon, DEEC
Awv. Rovisco Pais, 1049-001 Lisboa, Portugal
Email: R.G.Crespo@comp.ist.utl.pt, Phone: +351-21 8418 398

b Polytechnic Institute of Lisbon
Av. Conselheiro Emidio Navarro 1, 1950-062 Lisboa, Portugal
Email: mearvalho@cc.isel.ipl.pt, Phone: +351-21 8317 067

¢ Université du Québec en Outaouais, Département d’Informatique et Ingénierie
Case Postale 1250, Succ. B, Gatineau QC J8X 3X7, Canada
Email: luigiQugo.ca, Phone: +1-819 595-3900, ext 1885

Abstract

Internet applications, such as Email, VoIP and WWW, have been enhanced with
many features. However, the introduction and modification of features may result
in undesired behaviors, and this effect is known as feature interaction-FI.

After a brief review of FI detection principles, we propose an interaction resolution
adviser, consisting in two phases. The first phase implements an initial selection, by
filtering the features that satisfy a set of formulas. We describe several strategies
according to the nodes that participate in the FI resolution. The second phase selects
the feature for execution, and adapts parameters, according to user policies.

The interaction resolution adviser is distributed, scalable and independent of the
applications and their features.

Key words: Feature interaction; Interaction detection; Interaction resolution;
Interdictions; Obligations.

I This research has been partially funded by the Fundacdo Ciéncia e Tecnologia of
Portugal, and the Natural Sciences and Engineering Research Council of Canada.

Preprint submitted to Elsevier Science 8 July 2006

1 Introduction

Internet applications are being enhanced with many features. A feature is
defined as a unit of functionality existing in a system and is usually perceived
as having a self-contained functional role [1]. The combination of features may
result in undesired behaviors and this problem is known as feature interaction,
or FI for short [2]. The FI problem, first identified in circuit-switched networks,
has been studied in many Internet applications, such as Email [3,4], VoIP [5]
and WWW [6].

Example 1 Suppose that Bob instructs the Email server to execute the For-
wardMessage feature, forwarding all messages to Carl. Suppose also, that Carl
subscribes to the AutoResponder, by activating the Unix vacation program.

A message that Alice sends to Bob is forwarded to Carl. Thereafter, the Email
server of Carl accepts Alice’s message and sends a notification message to
Bob, not to the message initiator (Alice). This result goes against the initial
goal of AutoResponder feature, to notify the initiator that Carl is on vacation.
The Email server of Bob, when it receives the notification message, forwards
it back to Carl. The Email server of Carl detects a loop, another undesired
behavior, and discards the notification message.

The increasing number of FIs, and the inconvenience they are causing, has
led industry and researchers to meet regularly at the Feature Interactions
in Telecommunications and Software Systems workshops, eight of which have
been held from 1992 to 2005. Three basic problems have been studied, avoid-
ance, detection and resolution. Avoidance means to intervene at the protocol
or design stages to prevent Fls, before features are executed. Detection aims
at the identification of FIs, with suitable methods. In the resolution, actions
are exercised over already detected FlIs.

The distributed nature of Internet, with multi-vendor and multi-provider en-
vironments, and the end user capability to program and tailor features, makes
it impossible to rely on avoidance.

In this paper, we focus on detection and resolution, and propose an Interac-
tion Resolver Adviser, IRAdv, which is scalable, independent of the feature
implementation, and unique for all Internet applications.

Briefly, when an application identifies several features that may process a mes-
sage (for example, an incoming or outgoing SIP INVITE [7]), the list of these
features is sent to the IRAdv.

Then, the adviser selects the feature to be executed on the basis of policies
expressed by two sets of logical formulas. The first set guides the IRAdv in
the removal of FIs. We adopt the interdiction operator to express the first
set of policies, due to the localized action of such operator. The second set
guides the selection of the feature to be executed, among those selected in the

filtering phase. We adopt the obligation operator to express the second set
of policies, to ensure that only one candidate is selected. Finally, the adviser
communicates its decision to the application.

The outline of the paper corresponds to the outline of our method. First, one
needs to know, by static analysis, which pairs of features are likely to interact.
Section 2 deals with this problem, with a brief review of known methods for
static feature interaction detection. The information gathered at this step will
be useful to program the policies of the IRAdv, as discussed below.

The rest of the paper deals with execution time FI resolution on the basis
of this information. After a brief review of the problem of FI resolution, in
Section 3, Section 4.1 introduces the IRAdv. A number of basic actions will
have to be identified in the system (Section 4.2). When the application requests
one or more features, it sends to the IRAdv a message, requesting for advice
on the execution of a list of basic actions related to the features (Section 4.3).
On the basis of the information gathered in the step illustrated in Section 2,
we assume that the adviser has been previously programmed with policies
that set priorities among basic actions, in consideration of various elements
such as the other actions being requested, the status of the systems, etc. These
policies cause the filtering phase (Sections 4.4 and 4.5) to “interdict” certain
actions from being executed under certain conditions. All interdicted actions
will be removed from the list. Then, the adviser proceeds to the final selection
phase (Section 4.6), using another set of policies that identify certain features
as compulsory, in view of the final contents of the list.

Finally, we discuss some implementation issues of IRAdv for an Email server
(Section 5).

2 Interaction Identification

Several taxonomies have been produced to classify different types of FI [8-10].
The most used benchmark of [8] identifies three dimensions, the number of
parties involved in the interaction (single or multiple), the number of network
components involved in the interaction (single or multiple), and the kind of
features involved in the interaction (custom or system). In this paper, we
concentrate on custom features, because system feature interactions are more
easily preventable at design phase.

In order to set up mechanisms for execution-time FI resolution, it is useful
to know in advance which features are likely to conflict. This can be done by
using one of the many static FI detection algorithms known in the literature.
Formal methods, such as extended finite state automata [11], Petri-nets [12],
process algebra [13], temporal logics [14] and theorem proving [15], have been
used to represent features. As well, FIs can be detected with standard tools

of model checking or simulation [16]. A review of several existing methods is
given in [17].

According to the analysis presented in [18-20], many feature interactions are
characterized by inconsistencies that arise by the responses of two or more
features.

2.1 Shared Trigger Interactions

STT [18-20] occur in cases where two features can be triggered by the same
message and their action responses are inconsistent.

Example 2 Consider the CFA-Call Forward Always and CW-Call Waiting
pair of features, in the VoIP, triggered when a SIP call invitation arrives.
CFA response calls the new destination (different from the features’ subscriber)
and CW response puts the initiator on waiting status to connect the features’
subscriber. The responses are mutually inconsistent, because a call cannot be
forwarded and put on hold simultaneously.

2.2 Sequential Action Interactions

SAI [18-20] occur in the case where there is a chain of different features that
trigger each other, and the actions of two of them are inconsistent.

Example 3 The pair of ForwardMessage and FilterMessage Email features are
an example of SAL

Suppose that Carl subscribes to FilterMessage feature, to deny messages from
Alice. If Alice sends an Email to Carl, FilterMessage rejects the message. How-
ever, if Bob subscribes to ForwardMessage feature, forwarding all messages to
Carl and if Alice executes the WriteMail basic service to Bob, then the mes-
sage is forwarded to Carl. This action is inconsistent with the FilterMessage
intended behaviour.

2.8 Missed trigger interactions

MSI [19] occur when the actions of one feature prevents a second feature from
being executed.

Example 4 Suppose that Alice subscribes to CFA to Charles in the VolP,
and Bob subscribes to AR-Automatic Recall. If Alice calls Bob with success,

and thereafter Bob instructs SIP client to execute AR, CFA prevents Bob from
talking to Alice.

2.4 Looping interactions

In the previous three cases, inconsistency exists between action responses of
two features. However, inconsistency can also exist between the results of the
combination of features and basic system requirements. One such requirement
is that there should not be infinite loops, and this the the case for LI [18-20].

Example 5 Two different users, subscribing to the ForwardMessage to each
other, form a loop.

Although these methods detect candidates for FI, users must decide if they
represent undesirable interactions that must be resolved. For example, the web
Refresh feature forms a loop to itself. However, if the web page depicts a clock,
Refresh becomes an acceptable interaction.

The FI methods based on these definitions have been shown to detect many
practically occurring interactions.

3 Feature Resolution

When several potentially conflicting features are up for execution, the conflict
must be resolved by deciding which feature can go ahead. The resolution of
FIs requires two elements, a model of the relationships between features and
an algorithm.

Many models of relationships between features have been proposed, from fa-
miliar data structures (such as tables [21]) to logic formulas [22]). The relation-
ships may not express directly the possible interactions between features. It is
the algorithm that knows what are the FIs and, by looking at the relationships
between the features, selects the feature for execution.

The current methods of FI resolution are divided into two large classes, design
and runtime resolution.

Design resolution removes interactions at the development phase of the fea-
tures, but this approach requires previous knowledge of all existing features. A
good overview of design-time techniques is given in [17]. However as desirable
as design time techniques may be, the always evolving Internet makes runtime
resolution mandatory.

Three approaches have been explored for FI runtime resolution: one phase,
two phase and negotiation [17].

The one phase approach uses feature managers to decide which feature is exe-
cuted, according to tables. The table may be used for a list of priorities [21,23],
or the feature manager decides the activation of a second feature on the ba-
sis of the resulting status of the first feature and the relation displayed in
the table [24]. Because [23] uses a stack to express priority relationships be-
tween features, relationships between interactions may be modified as result
of feature execution. Tables can be replaced by state trees, where the features
suggest possible responses and the feature manager “rolls back” in case of
rejection [25].

Although simple, the one phase approach requires knowledge about low-level
details, suffers from the scalability problem, and reveals problems in the res-
olution of multiple user FIs.

In the two phase approach, the feature is executed in an isolated environment
and actions are taken in case of FI [26]. The isolated environment is impractical
in Internet.

Three negotiation approaches have been proposed, direct (agents negotiate
directly without a negotiator), indirect (dedicated negotiator controls the ne-
gotiation and proposes solutions based on experience), and arbitrated (the
negotiator has the sole responsibility to find a solution).

Direct negotiation, based on distributed artificial intelligence techniques [27],
consumes too much processing power and communication bandwidth.
Indirect negotiation [28] uses a centralized inference machine to select the fea-
ture from the constraints expressed by agents.

In the arbitrated approach, the features are described as agents and inter-
act with each other, by posting their intentions to a common tuple space. The
replies, from other features, can be other intentions or permission/interdiction
directives. Negotiation policies explored include deontic-based ones with obli-
gations and goals [22], fuzzy policies [29] and relational assertions [30]. The
resolution of new interactions require the introduction of new policies to cover
the offending cases, making the approach unscalable.

The distributed character of the Internet makes the direct negotiation the
most suitable approach.

In [19] a “prune and extract” approach is proposed, where a solution space is
computed and undesired traces are removed. We propose to avoid the com-
putation of a solution space, by modeling relationships between features with
constraint formulas. Our constraint formulas are created by the user or ad-
ministrator according to experience (see Section 4.4).

4 Interaction Resolver Adviser

Applications, such as Email servers, resolve some FIs such as looping. In our
view, an independent FI resolver is still necessary because it makes possible
to solve other types of Fls, enables users to understand and adapt the FI
resolution methods to their specific needs, and for developers of new Internet
applications reduces the need to duplicate code.

4.1 IRAdv architecture

The Internet architecture is based on a stack-protocol architecture [31]. The
top-level applications interface with an Application Programming Interface-
API, which is an endpoint for communication. The most widely used APIs
are sockets, and the commands include establishing connections, sending and
accepting messages. Features are triggered by message arrivals, such as Email
delivery or SIP INVITE, or by party commands, such as web page view re-
quests. When such an event occurs, the IRAdv is invoked.

The architecture of the Interaction Resolver Adviser-IRAdv follows the client-
server model [31] and is depicted in figure 1.

Candidates

Advice
Feat. A |...| Feat. N Request IRAdy

Application

Reply
Commands Commands

API API

Fig. 1. The Architecture of Interaction Resolver Adviser

The interaction between the application, the client, and the IRAdv, the server,
is resolved in two steps. First, the application sends to the IRAdv a list of
feature candidates for execution. In return, IRAdv advises the application
about which feature should be executed.

For single user Fls, it is sufficient that the local node implements the IRAdv.
For multiple user FlIs, we require that all involved nodes have an IRAdv, and
that these can communicate.

The communication capability between IRAdvs is used to grant permission
for message processing (see section 4.4.3). In this case, IRAdv sends to the ap-
plication a request for more information and waits for the application’s reply.
This communication capability assumption is not unreasonable, since other
QoS considerations will require the implementation of uniform architectural
enhancements on all nodes. The nodes that do not implement communication

capabilities between IRAdvs will still be able to process messages, but without
QoS guarantees.

We believe that the FI resolver should be unique in the node, to avoid incon-
sistencies in the FI resolution of different applications. Also, FI resolver must
be unaware of the message contents.

4.2 Feature representation

The number of features can be large. For example, short lists of 17 telecom-
munication features, easily adapted to VoIP [8], and 10 Email features [3], are
available in the literature. Real systems can have hundreds of features. Hence,
there is a need to identify a compact representation of the feature space, to
avoid a large matrix of relationships in the FI resolver.

Work about the compact representation of feature space has been made avail-
able recently, but is restricted to telephony [32]. We propose to compact the
representation through a set of basic and abstract actions that each feature
executes. Information inside the message remains hidden to the IRAdv and
system actions, such as billing, are excluded from our model.

Actions, depicted in table 1, may have one, or more, parameters. For our ex-
ample in table 1, all actions have one parameter that can be _init, the node
that started the message, or _dest, the node to whom the message should be
delivered (that may be changed later, for example as result of a forward), or
_self, the node currently processing the message. Our set of basic actions is
not, by no means, unique or exclusive. We have selected this set for the sake
of illustration and other sets, probably larger, can be selected, depending on
the feature set in consideration.

Table 1

Feature basic actions

Name Purpose
Accept(_init) The node accepts the message
Deny(-init) The node rejects the message
Display(_init) The node displays initiator and waits for terminator to

confirm the message acceptance

Emergency(-init) The node must accept the message, with highest priority

Forward(_dest) The node redirects the message to another node
Send(_dest) The node initiates a message to another node
Wait(—init) The node puts the message on hold, for later processing

Two different features may be represented by the same basic actions. For
example, the VoIP CFA and CFB-Call Forward if Busy features are both rep-

resented by the Forward action.

One feature may be represented by more than one action. For example, the
Email AutoResponder feature is represented by Accept and Send join of actions.
The feature representation may also change according to local status. For ex-
ample, the application represents the FilterMessage feature by Deny (Accept)
when the initiator does (does not) belong to a “black list” of nodes.

The mapping of features to actions should be defined by the entity responsible
for the feature installation. The system administrator is a good candidate,
because features may be hard to separate in some applications and domains.

4.8 Application requests

When the application has a request for a service, incoming or outgoing, more
than one feature may be selected as candidate for service execution. Then,
the application sends to the IRAdv a message with structure divided into two
parts, the header and the information elements (one element for each feature
candidate).

Candidates ::= Header Information (1)
Header ::= ApplicationPort Initial Addr Chainl P*

ApplicationStatus Con firmDirective
Information ::= (FeatureCode(Action (NodeI P)*))"

The header part contains information common to all selected features.

e The ApplicationPort element indicates which application requires advice. Its
code is the port number attached to the associated application protocol, as
registered by the Internet Assigned Number Authority. For example, Email
applications follow the SMTP protocol [33] and communicate through port
25.

e The InitialAddr element contains the address of the party that initiates the
message. Actions with _init parameter bind the value of InitialAddr to _init.

e The ChainIP element provides the IP addresses of all nodes that have pro-
cessed the message, including the initiator. The purpose of this element is
made clear in section 4.4.2.

e The ApplicationStatus element provides information about the application
status. The structure and the meaning of the information depend on the
application, and we use identifiers with lowercase letters. The status condi-
tions represent sequences of triggered features and provide extra support in
the resolution of FIs.

e The ConfirmDirective element indicates the kind of confirmation to be asked
of the initiator node, and is described in section 4.4.3.

In our proposal, InitialAddr, ChainlP and ConfirmDirective values must be
transmitted together with the messages sent from one node to another.
The information attachment to messages has been used by applications to
resolve some FlIs. For example, Email attaches the InitialAddr and ChainlP
addresses to messages, respectively, in From and Received header fields, to
detect looping. In section 4.4.2 we will use these values to resolve loops.

The information part contains information specific to the selected features.
There can be several features, each represented by one or more actions.

e The FeatureCode is a unique identifier for the feature. Its purpose is to link
features to the actions that represent them, and it does not participate in
the FI resolution in the filtering phase.

e The Action element lists the actions representing the feature with NodelP
list containing the involved IP addresses.

Actions with _dest parameter bind the value of Forward to _dest.

The IRAdv returns the feature code to be executed, or nothing (in case of
failure in FI resolution).

Advice ::=¢ | FeatureCode (2)

4.4 Constraint relationships

To express relationships between features, we propose constraint formulas.
Reasons for our choice includes the similarity of the representation to human
knowledge, the easier implementation of the FI resolver, and the successful
application of drop actions in the iptables IP packet filter [34].

The user, or the administrator, is responsible for the identification of the
constraint relationships, and this work is done after the identification of the
candidates for FI, as described in section 2.

The constraint formulas are expressed in the form depicted in (3). Section 4.5
further explains the semantics of formula (3). Examples are depicted in sec-
tions 4.4.1 to 4.4.4.

Requests \ Conditions — Restrictions (3)

The Requests part is a conjunction of actions, representing features selected
by the application as candidates for execution.

The Conditions part identifies the values that the application status satisfy,
or IRAdv identify (to be seen in sections 4.4.2 and 4.4.3). By default, this part
equals to true. Examples of application status are the permission to accept a
message, permission(-init), the application status (e.g. one_hold(-init), that

10

states that a VoIP call is on hold), and the identification of a loop occurrence,
loop(_init, _dest).

The Restrictions part identifies the single action, or the join of actions, whose
execution is forbidden.

Formula (3) is expressed in the first-order predicate language [35], with the
Interdiction unary connective I (I.A subformula means that action A can-
not be executed). In this paper, we assume that I holds the highest operator
precedence, — the second highest, and — the lowest precedence.

We adopted the interdiction operator for (3) following our approach to FI
resolution through feature elimination. Also, the interdiction operator only
affects actions participating in the formula. Other actions, representing differ-
ent features, may be proposed or not, but our attention is focused only on the
pairs of features that interact.

There are three different types of constraint formulas which apply to different
layouts of the nodes that participate in the resolution. We call these local,
chain and point-to-point constraints. Local constraints are directed to the
resolution of single user FIs, while chain and point-to-point constraints are
directed to the resolution of multiple user FIs.

Constraint relationships may be different for different applications, even if
features are represented by the same set of actions. For example, Email forward
and WWW redirect features are represented by the same action (Forward).
The FI between Forward and Accept may be resolved by Forward interdiction
for the Email server and Accept interdiction for the WWW server.

4.4.1 Local Constraints

Formula (3) is a local constraint when it only involves the node of the fea-
ture subscriber. Interdiction and priority are two examples of local constraint
formulas.

With interdiction, we simply forbid one of the actions (and hence, the feature
that executes such action).

Example 6 To resolve the FI in example 2, the first call is put on hold and
all the other calls are forwarded.

When there are no calls on hold, the first formula below only forbids the ex-
ecution of the Forward action. In this case, nothing is said about the Wait
action, which may be decided by another formula (for example, Wait may not
be executed in presence of an Emergency action), or by the final selection
mechanism.

Forward(_dest) A Wait(_init) A —one_hold(-init) — I Forward(_dest)

11

Forward(_dest) N Wait(_init) A one_hold(-init) — I Wait(_init)

The ApplicationStatus is also used to resolve the multiple-user multiple com-
ponent interaction [8] of CW and ACB-Automatic CallBack features.

Suppose that Alice subscribes to ACB feature that is triggered when the des-
tination is busy, to redial the destination when it becomes idle. Suppose also
that Bob subscribes to CW feature.

If Alice calls Bob and if Bob is busy, Alice’s call is put on hold and Alice re-
cetves a notification that she is on a wait condition. When Bob closes the call,
CW will establish a connection from Bob to Alice. After closing the second
connection, ACB establishes a connection from Alice to Bob.

To resolve this FI, ACB cannot be executed when a call to the destination is on
a waiting condition. We represent the ACB feature by the sending of a mes-
sage, to ask the destination to notify the subscriber when he returns to the idle
condition.

Send(_dest) N waiting(_dest) — I Send(_dest)

Action priorities are easily specified in local constraint formulas. We define
AHigh as the set of actions with priority above ALow set of actions, with the
formula AHigh N ALow — I ALow.

Example 7 The Email FilterMessage feature and ReadMail basic service are
represented, respectively, by Deny and Accept actions. The Deny action has
higher priority, and this requirement is expressed by the formula

Accept(_init) A Deny(-init) — I Accept(-init)

To make Emergency take precedence over all other actions, the formula is

Emergency(_init) — I(all \ { Emergency(_init)})

where \ is the set difference. The interdicted actions are not directly listed,
because other basic actions may be inserted later in table 1.

4.4.2 Chain Constraints

As seen in section 2.4, looping is a possible FI. There are two possible so-
lutions for this problem. The first, which is actually used in IP, is to place
a Time-to-live field in packets [36]. We choose to describe another solution
where every mode appends its IP address to forwarded messages. The first
solution is simpler and does not require variable packet sizes, but imposes an

12

upper limit for the nodes in a loop.

In our case, the IP addresses are added to the ChainIP element. The initia-
tor node starts an empty ChainIP element and all successive nodes, includ-
ing the initiator, extend the Local AddressI P element with their IP address.
The TRAdv checks if the IP address of the current node appears twice in the
ChainlP list: if this is the case, the predicate value of loop(_init, dest) is set
to true, otherwise is set to false.

The formula that forbids a forward to enter a loop is

Forward(_dest) A loop(_self) — 1 Forward(_dest)

Note 1 Because the installation of FI resolver cannot be done simultaneously
in all nodes, in some cases the ChainlP wvalue may be lost. In this case, ad-
ministrators may take a conservative approach and set loop(_self) to true, or
a liberal approach and set loop(_self) to false. In the conservative approach,
only messages in the links where all nodes have IRdv can be forwarded.

4.4.8 Point-to-Point Constraints

In point-to-point constraint formulas, the execution of a feature in one node
requires extra information from another node, usually the one that initiates
the communication.

For example, suppose that Alice subscribes to FilterDestination feature, to
avoid the WWW browser to access Bob’s page. Suppose also, that Carl sub-
scribes to Refresh(Bob) feature. If Alice opens Carl’s page, it is Bob’s page
that appear in her browser. To resolve this FI, the initiator WWW server
must confirm the WWW read from the destination computer page.

More in general, in case of forwarding, the original sender should be given
the possibility of keeping control of where the message is going. Authorization
may be required at each forward or for final delivery only.

The initiator application must identify the sort of confirmation it requires for
the message. The possible values, shown in (4), are None-no confirmation is
required, AllNodes-confirmation is required for every node where the message
is forwarded or delivered, and Destination-confirmation is required only for
the final delivery. The confirmation is verified by the IRAdvs. The IRAdv of
the initiator node requests of the initiator application permission for the other
node to process information (forward or deliver the message).

ConfirmDirective := None | AllNodes | Destination (4)

The overhead of the confirmation may be acceptable in some cases, such as

13

Email or SIP, and too heavy in other cases, such as video on demand or voice
transmission. Therefore, performance issues may have to be considered in the
selection of the ConfirmDirective value.

The frame messages exchanged between the two IRAdvs comply with the
syntax of (5).

Frame ::= FrameCode FeatureCode ApplicationPort (5)
Initial Addr Destination Addr

The FeatureCode, InitialAddr and DestinationAddr elements are the same
of (1). Table 2 lists possible values of the FrameCode element and their mean-
ing.

Table 2

Frame codes

Name Meaning

Delivery_request Proposes to accept the message

Delivery_acceptable Message may be delivered

Delivery_denied Message must not be delivered

When the terminator IRAdv receives a Delivery_acceptable, or Delivery_denied
frame, it defines the predicate value of permission(_init) according to the
Code element in the frame reply: true if it is Delivery_acceptable and false
otherwise.

Example 8 Figure 2 depicts the message sequence chart for the WWW re-
quest, depicted in the second paragraph in this section, with ConfirmDirective
equals to Destination. The initiator application is Alices’s browser and the
terminator application is Bob’s WWW server.

Alice Initiator Terminator Bob
browser IRAdv IRAdv WWW server
Proposal(Send)
Advice(Send)
Frame(Delivery_request, ™ Proposal(Read)

InitialAddr,Destination Addr)

Request(_dest)

Frame(Delivery_acceptable
Reply(Accept) ImtlaIder De}étlnatlonAdczlr)

Advice(Read)

Fig. 2. WWW request with permission grant from WWW browser

14

Alice’s WWW browser sends to the initiator IRAdv a message proposing a
Send action, which returns an advise to send the WWW read request.

Carl’s server, not depicted in the figure 2, proposes to its IRAdv to forward to
Bob’s node the read request, as result of Refresh feature.

Bob’s node IRAdv sends a frame to Alice’s IRAdv to ask permission to conclude
the WWW request. Being irrelevant to the example, FeatureCode and Applica-
tionPort parameters are represented in the figure by a star. The dashed vector
represents the time dependency between Alice’s browser and Bob’s server.
Alice’s IRAdv, in turn, requests Alice’s browser permission to conclude the read
request, and informs Bob’s IRAdv of the result. The permission is granted and
Bob’s server is advised to conclude the read request. If the permission had been
denied by Alice’s browser, Bob’s server would receive a null advice.

Note 2 Because the installation of FI resolver cannot be done simultaneously
in all nodes, in some cases the ConfirmDirective value may be lost. In this case,
the default approach may depend on the terminator application. For example,
the content of some WWW pages may require an explicit confirmation from
the initiator and the default value for permission(-init) would be false.

Example 9 The formula that resolves the multiple-user single-component in-
teractions [8] of ReadMail and FilterDestination, and of Call Forward and Orig-
inating Call Screening is

Accept(-init) A —permission(_init) — I Accept(_init)

4.4.4 Features represented by multiple actions

Actions of different features are connected by the A operator, and actions
representing the same feature are joined together by the join predicate. The
join predicate is a result of the possible representation of features by more
than one action, and we don’t want actions to be transferred from one feature
representation to another. If A B and C are actions, join(A, B)AC is equivalent
to C A join(A,B) or to C A join(B,.A), but not to A A join(B,C). Because
we use a first-order predicate language, parameters of the join predicate are
constants that mirror table 1 actions.

Example 10 To interdict AutoResponder feature to send a reply to the post-
master, the formula is

join(Delivery(_dest), Send(_self)) A _dest=post Master — I Send(_self)

15

4.5 Resolution Algorithm

The semantics of the I operator is very simple: I A is satisfied if, and only if,
action A is not executed.

The satisfaction of a restriction part must be verified when the request and
the condition are evaluated to true. The interdiction effect is, simply, to mark
the removal of the feature associated to the basic actions from the list of
candidates. After the evaluation of all existing formulas, the marked features
are removed from the list and the remaining features are presented to the final
selection phase.

The order in which the constraint formulas are evaluated is irrelevant. The
evaluation only marks features for removal, and the removal of feature candi-
dates for execution is implemented after the evaluation of all formulas. Also,
the evaluation of the formulas does not change the application status.

The number of constraint formulas is limited, and each formula is verified only
once. Hence, resolution is completed in linear time.

The identification of a new action only implies the insertion of new formulas
concerning the interaction between the new action and the others. Constraint
formulas, which exist before the introduction of the new action, do not involve
features represented by the new action. The inclusion of a new feature implies,
at most, the introduction of new constraint formulas that resolve the new FIs
that now may occur. Therefore, new actions and new features do not require
the modification of existing constraint formulas, and our approach is scalable.

The fact that several actions can be joined in a feature raises the question of
what will happen if only some actions in a feature are interdicted.

e The interdiction maximization approach interdicts a feature if, at least, one
of the actions that represents it in the join is interdicted.

e The conditional interdiction approach interdicts an action join if, at least,
one of the actions that is joined is interdicted, but not all, and there are
actions outside the join that are not interdicted.

e The survival maximization approach interdicts an action join only when all
of the actions that are joined are interdicted.

Example 11 Suppose that an user subscribes to Email AutoResponder and
FilterMessage features. Suppose also, that a member of his “black list” sends
a message to the user. In this case, the ReadMail basic service and the Au-
toResponder, FilterMessage features are represented, respectively, by Accept,
join(Accept,Send) and Deny actions.

By the constraint formula of example 7, the Accept action is interdicted. The
interdiction mazimization and conditional interdiction approaches result in in-
terdiction of the join(Accept,Send) action. In this case, IRAdv would advise

16

the Email server to execute the FilterMessage feature.

Because the node administrator may select different approaches for the join
interdiction, the decision on removing a join is taken after the single basic
actions are marked for removal.

The resolution phase removes interactions by interdicting features. There is
no guarantee, however, that the set of surviving features is single. Therefore,
there is a need for a second phase only if the cardinality of the surviving
feature set is non-singular.

4.6 Selection Algorithm

The execution of the filtering phase results in a (possibly empty) set of “sur-
vivor” actions. Actions are linked to features, as defined by (1), hence the
selection algorithm chooses the feature to be executed.

When the number of surviving features is greater than one, each feature may
be executed without FI occurrence. If there are no surviving features, the fil-
tering mechanism of the resolution phase cannot satisfy the goal of selecting
one feature. This potential problem is debated in section 7.

It is useful to think that these features are organized in an arbitrarily ordered
list, to facilitate the choice. The system administrator may identify some fea-
tures that have higher priority. In this case, these features may have to be
reordered in the list, but again, if there are several, only the first is chosen.

The selection algorithm follows a similar approach to the initial selection,
with two major differences. The entities under scrutiny are features, not basic
actions, because the goal of the selection algorithm is the identification of one
single feature that the application should execute. The deontic operator of
interdiction is replaced by obligation, because it enables the selection of one
feature independent of the number of surviving features.

The selection formulas are expressed in the form shown in (6).

Conditions — Obligations (6)

The formula is expressed in the usual first-order predicate language [35], with
the addition of the Obligation unary connective O.

The IP addresses _init and _dest, as defined in section 2, are obligation formula
variables. In the final selection phase, we add two variables _self and _carrier
which bind, respectively, to the IP addresses of the subscriber’s node and of
the last node that sent the message.

The size of the filtered sequence is stored in the variable size, and its values

17

can be null, one or many. The selection algorithm has access to the results
of the initial selection algorithm, through a pair of variables: the head of the
filtered sequence, head, and the tail, which is the list of the remaining features
(this can be empty).

The predicates include the advice for feature execution-advise(feature), a mes-
sage display to the administrator-display(message), and the existence of a spe-
cific feature in the tail list-F in tail. nullis used in case the filtering algorithm
removes all features.

The Conditions part is a classical first-order predicate formula. To make the
final selection algorithm decidable, the conditions must be complete (i.e., their
disjunction must be a tautology) and mutually exclusive (i.e., the conjunction
of any pair of predicates must be a falsity) [35]. It is responsibility of the
administrator to assure that this is the case.

The Obligations part is an advise feature action. The administrator may also
introduce a conjunction with another action, the display of a message. Both
actions must contain the O operator.

OA is satisfied if and only if action A is executed. We may take a conservative
approach that, if the Conditions part is not satisfied, the relative actions
are not executed. In this case, for each C — OWA, the selection algorithm
automatically generates a =C — I.A formula.

Example 12 Consider a simple selection algorithm that selects AutoRespon-
der with a notification message sent to the initiator, if present in the list sent
by the filtering phase. If not present, the selection algorithm selects the head
feature. If the list is empty, a warning statement is sent to the administrator.
The AutoResponder feature is represented with one parameter, the node address
to where the notification message is sent.

size # null A (head = AutoResponder(_carrier) V
AutoResponder(_carrier) in tail) — O advise(AutoResponder(_init))

size # null A\ (head # AutoResponder(_carrier) A
—AutoResponder(_carrier) in tail) — O advise(head)

size = null — O display(cat(” Empty resolution in terminal ", _sel f)) N
O advise(null)

where cat is a function that catenates two strings.

In example 1, Alice may ask herself why she receives the notification from Carl
when she only knows Bob. Clearly, this problem results from the distributed
nature of the Internet and users may adopt other selection algorithms.

18

5 Implementation Issues

We tested our FI adviser approach with the open source James-Apache Java
Enterprise Mail Server. James has been used for many Email applications,
such as spam detection and SMS notification. The prototype is available from
http://comp.ist.utl.pt /Fl-resolver.htm.

Section 5.1 provides a brief presentation of the James architecture. The im-
plementation of our proposal required the James adaptation for feature per-
sonalization (section 5.2), and the postpone of feature execution (section 5.3).
Section 5.4 indicates how the confirmation directives are fixed and section 5.5
describes some experimental results of our implementation.

5.1 James architecture

James is made of two agents, message transfer and mail processing.

The message transfer agent moves Email messages between nodes and follows
Internet protocols such as SMTP [33], mail message formats [37] and message
retrieve (POP3 [38] and IMAP [39]).

The mail processing agent, named SpoolManager, is an implementation of
the Mailet Java API [40]. The Mailet API defines interfaces for matchers,
which determine whether a message should be processed, and mailets, which
implement features. Email messages are processed by a chain of processors,
the first and the last ones named root and transport. Processors are defined in
the config.xml file, with processor tag and name attributes.

Each processor has zero or more mailet child elements. Mailet attributes match
and class define, respectively, conditions for selecting an Email message, and
the object class that processes the Email message. If at least a match occurs,
the message is processed by the mailet. If not, the message is passed to the
following mailet in the chain.

Example 13 The transport processor checks if the Email recipient is for a
local account. Condition RecipientIsLocal is checked for every recipient in the
RCPT TO command, and one instance of LocalDelivery class processes the
Email message.

<process name="transport”>
<mailet match="RecipientlsLocal” class="LocalDelivery” />
< /process>

19

5.2 Feature personalization

Because James does not support feature customization, we extended the mailet
container with three new mailets, that provide functionalities for feature sub-
scription, feature removal, and feature match/execution.

We store feature parameters in a tree hierarchy form. Each feature is linked
to a directory, which contains subdirectories for every user that subscribes to
the feature. The addresses necessary for the service execution are filenames,
stored in the user subdirectory. For example, if Alice requires FilterMessage
to block messages from Bob@demo, an empty file names Bob@demo is stored
in the Features\FilterMessage\ Alice directory.

User subscription, modification and unsubscription of features is similar to
the mailing lists manager Majordomo [41]. Messages are sent to the localhost,
with username equals to the name of the feature subscribed (if unsubscribed,
the feature name is prefixed with Un) and address in the subject line. In the
example of the previous paragraph, Alice forbids the Email server to accept
messages from Bob, by sending an Email message to FilterMessage@localhost
with subject equals to Bob’s address.

Example 14 The configuration of the FilterMessage feature is depicted next

<mailet match="MatchSingleRecipient=FilterMessage@localhost”
class="AddAddressTo UserFeature”>
<folder>../apps/james/var/features/FilterMessage < /folder>
<subject>New address added to the FilterMessage list: < /subject>
<content>Send a message to UnfilterMessage@localhost with this address
on subject, to reset.</content>
</mailet>

Folder element contains the directory where feature data is stored. Subject
and content elements contain, respectively, the header and the acknowledge
message sent to the FilterMessage subscriber.

We also developed a new kind of matcher, MatchUser WithFeature, to check if
an Email recipient matches users listed in the feature data repository.

Example 15 The following extract of config.xml depicts FilterMessage match
and the comment is sent to a log file, in case of execution.

20

<mailet match="MatchUser WithFeature=
../apps/james/var/features/FilterMessage”
class="FilterMessage”>
<folder>../apps/james/var/features/FilterMessage < /folder>
< subject>Message Filtered: < /subject>
< content> Your message was filtered by destination user. </content>
</mailet>

The object, that actually checks if a recipient is a member of the blocked users,
1s designated in the attribute class.

5.8 IRAdv integration

As explained in section 5.1, James executes the feature as soon as there is a
match. However, IRAdv architecture (section 4.1) requires all feature candi-
dates for execution to be presented to him all at once. To solve this inconsis-
tency, James was modified to the architecture depicted in figure 3.

L root / transport Candidates | [Rady

Advice

A

FeatureManager

Fig. 3. Extended James architecture

In case of a match, mailets do not execute the feature, but invoke a method at
FeatureManager object, which stores the feature as a candidate for execution.
At the end of the mailet chain, a special mailet asks advice to IRAdv and
executes the selected feature.

5.4 Confirmation directives

Confirmation directives, issued by the Email sender (see section 4.4.3), are
inserted in the subject header with <directive> tag, directive class and type.
Confirmation types may be ALL_NODES-sender must confirm message pro-
cessing in all nodes, and DESTINATION-sender must confirm only message
delivery at the final destination.

21

5.5 Performance

The IRAdv implementation was tested in Windows 2000 and XP in 1.6 GHz
PCs, connected by a 100 Mbps LAN.

We tested three different FI resolution cases and compared delivery time
with, and without, IRAdv resolver. Email deliveries suffered varying degrees
of degradation, according to the processing cases exercised by IRAdv. In some
particular cases, the Email delivery was faster with IRAdv. In the worst case,
with automatic delivery confirmation from the sender, delivery time increased
twofold.

5.5.1 Simple resolution

Simple resolution formulas are special cases of (3), with no conditions and no
action joins.

We experimented four different cases with IRAdv holding the Accept/Deny
formula, listed in the example 7. The cases add a feature to the previous
cases and are: (SR1) no services subscribed, (SR2) ForwardMessage subscribed,
(SR3) SR2 features plus FilterMessage subscribed, and (SR4) SR3 features plus
AutoResponder subscribed.

Data is depicted on the left of figure 4. White and black columns represent,
respectively, the Email delivery time without and with IRADv.

ms ms
200+ . 198 2001
150+ 127 128 1907 147 133
105 119 125 117
50+ 48 50
SR1 SR2 SR3 SR4 CR1 CR2 CR3 CR4

Fig. 4. Simple and Conditional resolution experiments

In cases (SR1) and (SR2), we verified that the communication between the
James server and IRAdv takes between 40 and 60 ms. Cases (SR3) and (SR4)
reveal a decrease in the total processing time, because the communication
between the James server and TRAdv takes less time than the analysis of
conditions for the three unnecessary features.

5.5.2 Conditional resolution

For this set of experiments we added, to the Simple resolution formulas, formu-
las with conditions. The formulas are: (CR1) AutoResponder reply interdicted

22

to the Postmaster sender, as depicted in example 10 (CR2) AutoResponder
reply interdicted, if sender belongs to an Email distribution list, (CR3) Fil-
terMessage interdicted, if sender is the president, and (CR4) FilterMessage
interdicted, if sender belongs to an Email distribution list.

Data depicted on the right of figure 4 shows that IRAdv increases the Email
delivery time between 43% (case CR4) and 52% (case CR1).

5.5.8 Chain resolution
This experiment checks the chain constraints, described in section 4.4.2.

We used the loop detection formula between two parties, and results are sim-
ilar to the (SR2) experiment.

For the experiment described in example 9, the Email delivery time increased
by 113%, from 48 to 102 ms, due to the need to obtain permission for pro-
cessing the Email in every node.

6 Related Work

Distributed FI resolution has been centered on traditional telecommunication
systems, where the system architecture is rather uniform.

The Agent Architecture of [42] restricts itself to conventional telephony over a
fixed network.

The DFC- Distributed Feature Composition virtual architecture [43] represents
features as boxes that may be composed in a pipe-and-filter network. DFC
requires detailed description of features and call processing. Moreover, pipe-
and-filter architectures tend to serialize features’ reactions to each message,
which causes features to miss key message parts, that they would otherwise
react to.

A method for the integration of FI detection has already been published [19],
where features candidate for execution are forked and wait from the Feature
Manager for a decision to continue or to die. Rules direct the Feature Manager
to prune trace subtrees, in order to curb state explosion and remove interac-
tions. However, the approach does not allow permission grants from parties.

The adaptation of features to the distributed Internet system, with different
applications, multi-vendor and multi-provider environments raises new chal-
lenging problems for FI resolution.

Recent work on FI resolution in distributed platforms adopts a two-level ap-
proach to describe features, functional (“hard-logic”) and resolution (“soft-
logic”) [4]. Both levels require programming skills, which we feel should be

23

avoided at the resolution level.

The idea of cooperating FI resolvers has been proposed recently, with central
FIMA- Feature Interaction Management Agents to coordinate the resolution
operations [44]. In case of failure of one or more FIMAs, the resolution is
compromised.

7 Perspectives

Internet is nowadays essential to a wide range of activities. Moreover, the Inter-
net is continuously expanding, with new services enhancing the most popular
applications. However, problems also limit the expansion of the Internet and
its usefulness. Among others, we focus on the undesired modification of fea-
ture behavior after the incorporation of new features.

In this paper, we list simple methods to identify FIs, and describe our proposal
for a FI resolution adviser, scalable and independent of the applications and
their features.

The set of features and application statuses may be large. In our prototype,
the canceling features are reported to a log file. There is a need to check if, for
a given set of constraint formulas ®, there is a subset of features and a sub-
set of status values that make ® completely eliminate all feature candidates
for execution. In cases like the one of section 4.4.3, the complete elimina-
tion causes no problems. However, there is a need to check if the complete
elimination is due to the wrong choice of constraint formulas. For example, if
b ={ANB—-IABAC — IB,CNA — IC} and if the features represented
by actions A B and C are candidates for execution, then no feature would be
selected for selection.

The decision problem is known as a SAT-Boolean satisfiability problem. Clearly,
a greedy algorithm would have an exponential complexity. Research is needed
to check if more efficient algorithms may be used. Such algorithms would make
it possible to notify node administrators about problems that may occur in
FT resolution prior to adviser use.

Acknowledgements

This work was completed at the School of Information Technology and Engi-
neering University of Ottawa/Canada, whom the authors thank for the sup-
port. We express our gratitude for the remarks and ideas of Prof. Daniel Amyot
and Jacques Sincennes of University of Ottawa, and Tom Gray of Pinetel.

24

References

1]

L. Blair, T. Jones, S. Reiff-Marganiec, A Feature Manager Approach to the
Analysis of Component-Interactions, in: 5th Intl Conference on Formal Methods
for Open Object-based Distributed Systems, 2002, pp. 233-248.

T. Bowen, F. Dworak, C. Chow, N. Griffeth, G. Herman, Y.-J. Lin, The feature
interaction problem in telecommunication systems, in: 7th Intl Conference on
Software Engineering for Telecommunication Systems, 1989, pp. 59-62.

R. Hall, Feature Interactions in Electronic Mail, in: M. Calder, E. Magill (Eds.),
6th Intl Workshop on Feature Interations in Telecommunication and Software
Systems, I0S Press, 2000, pp. 67-82.

J. Pang, L. Blair, Separating Interaction Concerns from Distributed Feature
Components, in: U. Assmann, E. Pulvermueller, I. Borne, N. Bouragadi (Eds.),
Electronic Notes in Theoretical Computer Science, Vol. 82, Elsevier, 2003.

J. Lennox, H. Schulzrinne, Feature Interaction in Internet Telephony, in:
M. Calder, E. Magill (Eds.), 6th Intl Workshop on Feature Interactions in
Telecommunication and Software Systems, IOS Press, 2000, pp. 38-50.

M. Weiss, Feature Interactions in Web Services, in: D. Amyot, L. Logrippo
(Eds.), 7th Intl Workshop on Feature Interations in Telecommunication and
Software Systems, IOS Press, 2003, pp. 149-156.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
H. Handley, E. Schooler, SIP:Session Initiation Protocol, rfc 3261, Internet
Engineering Task Force, 2002.

E. Cameron, N. Griffeth, Y.-J. Lin, M. Nilson, W. Schnure, A feature interaction
benchmark for IN and beyond, in: L. Bouma, H. Velthuijsen (Eds.), Intl
Workshop on Feature Interations in Telecommunications Systems, IOS Press,
1994, pp. 1-23.

J. Blom, Formalisation of Requirements with Emphasis on Feature Interaction
Detection, in: P. Dini, R. Boutaba, L. Logrippo (Eds.), 4th Intl Workshop on
Feature Interations in Telecommunication Systems, IOS Press, 1997, pp. 44-50.

[10] R. Hall, Feature Combination and Interaction Detection via Foreground/

Background Models, in: K. Kimbler, L. Bouma (Eds.), 5th Intl Workshop on
Feature Interations in Telecommunication and Software Systems, IOS Press,
1998, pp. 232-246.

[11] D. Méry, J. Gibson, Telephone feature verification: Translating SDL to TLA+,

in: A. Cavalli, A. Sarma (Eds.), 8th SDL Forum, 1997, pp. 103-118.

[12] M. Nakamura, Y. Kakuda, T. Kikuno, Petri-net based detection method

for non-deterministic feature interactions and its experimental evaluation,
in: K. Cheng, T. Otha (Eds.), 3th Intl Workshop on Feature Interations in
Telecommunication Systems, 10S Press, 1995, pp. 138-152.

25

[13] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien,
T. Ware, Feature description and feature interaction analysis with Use Case
Maps and LOTOS, in: M. Calder, E. Magill (Eds.), 6th Feature Interactions in
Telecommunications and Software Systems, IOS Press, 2000, pp. 274-289.

[14] J. Blom, R. Bol, L. Kempe, Automatic Detection of Feature Interactions in
Temporal Logics, in: K. Cheng, T. Otha (Eds.), 3th Intl Workshop on Feature
Interations in Telecommunication Systems, IOS Press, 1995, pp. 1-19.

[15] A. Gammelgard, J. Kristensen, Interaction Detection, a Logical Approach, in:
L. Bouma, H. Velthuijsen (Eds.), Intl Workshop on Feature Interations in
Telecommunications Systems, IOS Press, 1994, pp. 178-196.

[16] M. Calder, A. Miller, Using SPIN for feature interaction analysis-a case study,
in: 8th Intl SPIN workshop on model checking of software, Springer-Verlag,
2001, pp. 143-162.

[17] M. Calder, M. Kolberg, E. Magill, S. Reiff-Marganiec, Feature interaction: a
critical review and considered forecast, Computer Networks 41 (1) (2003) 115-
141.

[18] R. G. Crespo, L. Logrippo, T. Gray, Feature Execution Trees and Interactions,
in: The 2002 Intl Conference on Parallel and Distributed Processing Techniques
and Applications, 2002, pp. 1230-1236.

[19] M. Calder, M. Kolberg, E. Magill, D. Marples, S. Reiff-Marganiec, Hybrid
Solutions to the Feature Interaction Problem, in: D. Amyot, L. Logrippo (Eds.),
7th Intl Workshop on Feature Interations in Telecommunication and Software
Systems, I0S Press, 2003, pp. 295-312.

[20] N. Gorse, L. Logrippo, J. Sincennes, Formal Detection of Feature Interactions
with Logic Programming and LOTOS, Software and System Modeling 5 (2)
(2006) 121-134.

[21] N. Fritsche, Runtime resolution of feature interactions in architectures with
sperated call and feature control, in: K. Cheng, T. Otha (Eds.), 3th Intl
Workshop on Feature Interations in Telecommunication Systems, IOS Press,
1995, pp. 43-63.

[22] R. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, S. Mankovski,
Feature-Interaction Visualization and Resolution in a Agent Environment, in:
K. Kimbler, L. Bouma (Eds.), 5th Intl Workshop on Feature Interations in
Telecommunication and Software Systems, IOS Press, 1998, pp. 135-149.

[23] S. Homayoon, H. Singh, Methods of Addressing the Interactions of Intelligent
Network Services with Embedded Switch Services, IEEE Communications
26 (12) (1998) 42-70.

[24] M. Cain, Managing Run-Time Interactions Between Call-Processing Features,
IEEE Communications 30 (2) (1992) 44-50.

26

[25] D. Marples, E. Magill, The Use of Rollback to Prevent Incorrect Operation
of Features in Intelligent Network based Systems, in: K. Kimbler, L. Bouma

(Eds.), 5th Intl Workshop on Feature Interations in Telecommunication and
Software Systems, IOS Press, 1998, pp. 115-134.

[26] S. Tsang, E. Magill, Behaviour Based Run-Time Feature Interaction
Detection and Resolution Approaches for Intellinge Networks, in: P. Dini,
R. Boutaba, L. Logrippo (Eds.), 4th Intl Workshop on Feature Interations in
Telecommunication Systems, IOS Press, 1997, pp. 254-270.

[27) H. Velthuijsen, Distributed Artificial Intelligence for Runtime Feature-
Interaction Resolution, IEEE Computer 26 (8) (1993) 48-55.

[28] N. Griffeth, H. Velthuijsen, The Negotiating Agents Approach to Runtime
Feature Resolution, in: L. Bouma, H. Velthuijsen (Eds.), Intl Workshop on

Feature Interations in Telecommunications Systems, IOS Press, 1994, pp. 217—
235.

[29] M. Amer, T. Karmouch, S. Gray, T. Mankovski, Feature interaction resolution
using fuzzy policies, in: M. Calder, E. Magill (Eds.), 6th Feature Interactions
in Telecommunications and Software Systems, IOS Press, 2000, pp. 45—63.

[30] J. Hay, J. Atlee, Composing Features and Resolving Interactions, in: ACM Intl
Symposium on Foundation of Software Engineering, 2003, pp. 110-119.

[31] D. E. Comer, Computer Networks and Internets, 4th Edition, Prentice-Hall,
2004.

[32] D. Pinard, Reduce the Feature Interaction Problem in Communication Systems
Using an Agent-Based Architecture, in: D. Amyot, L. Logrippo (Eds.), 7th Intl
Workshop on Feature Interations in Telecommunication and Software Systems,
10S Press, 2003, pp. 13-22.

[33] J. B. Postel, Simple mail transfer protocol, RFC 821, IETF (Aug. 1982).
[34] B. MacCarty, RedHat Linux Firewalls, Addison-Wesley, 2003.
[35] A. G. Hamilton, Logic for Mathematicians, Cambridge University Press, 1988.

[36] A. B. Johnston, SIP: Understanding the Session Initiation Protocol, Artech
House, 2003.

[37] D. H. Crocker, Standard for the format of arpa internet text messages, RFC
822, IETF (Aug. 1982).

[38] J. Myers, M. Rose, Post office protocol - version 3, RFC 1939, IETF (May
1996).

[39] M. Crispin, Internet message access protocol - version 4revl, RFC 2060, IETF
(Dec. 1996).

[40] K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 3rd
Edition, Addison-Wesley, 2000.

27

[41] A. Schwartz, Managing Mailing Lists, O'Reilly, 1998.

[42] 1. Zibman, C. Woolf, P. O'Reilly, L. Strickland, D. Willis, J. Visser, Minimizing
Feature Interactions: An architecture and processing model approach, in:
K. Cheng, T. Otha (Eds.), 3th Intl Workshop on Feature Interations in
Telecommunication Systems, IOS Press, 1995, pp. 65-83.

[43] M. Jackson, P. Zave, Distributed Feature Composition: A Virtual Architecture
for Telecommunications Services, IEEE Trans. on Software Engineering 24 (10)
(1998) 831-847.

[44] A. Chentouf, S. Cherkaoui, A. Khoumsi, Experimenting with Feature

Interaction Management in SIP Environment, Telecommunication Systems
24 (2) (2003) 251-274.

28

