
REASONING ABOUT 
RECURSIVE PROGRAMS

Note: 

This class and the next ones try to give a pragmatic introduction 
to the subject of recursive programs and Abstract Data Types.  
These are subjects on which whole courses are taught. The treat-
ment here is quick and informal, having the purpose of providing 
a general idea of some important concepts for the user. 

Many slides are not here and will be distributed in class.



Natural Numbers (Recursive Definition)

(i) 0 is a number
(ii) if n is a number, n’ is a number

e.g. 
0, 0’’’, 0’’’’’  ...’’ are numbers

By convention,
0 = 0
0’’’ = 3

etc.



Functions on Numbers

Define function

plus:   (* signature of type Nat *)

1) 

2)

This is not only a definition, but also a program capable of being 
evaluated for given values of m,n

plus ( 0’’, 0’’’’ ) = (2)
plus ( 0’, 0’’’’ )’ = (2)
plus ( 0, 0’’’’ )’’ = (1)

0’’’’’’
(assuming an obvious ‘bracket elimination’ rule)

We say that plus ( 0’’, 0’’’’ )  has been reduced to its normal form 
0’’’’’’ 

check that  plus (0’’’,0’’’)
plus (0’’’’’, 0’)

all reduce to the same normal form

Nat,Nat Nat→

plus 0 n,( ) n⇐

plus m′ n,( ) plus m n,( )′⇐



A normal form involves only constructors, i.e. a set of con-
stants and functions symbols 

• in terms of which all data of the given type can be expressed,
 
and

• for which there are no equations.

In this example, note that all data of type number can be repre-
sented in terms of  0 or ’, also there are no equations for these 
(there are only equations for plus).

In general, constructors and normal forms are not guaranteed to 
exist, but it is recommended that equations be written so that they 
exist (see later).



When recursive definitions are seen as programs or expressions 
to be evaluated, order of evaluation of subexpressions becomes 
important.

e.g.

Where do we start? 
Does it matter?

From a mathematical point of view, we think of each subexpres-
sion as having a value independent of the order of evaluation.

However in computing a specific order of evaluation must be fol-
lowed. 

Some orders of computation may lead to the solution, others may 
run forever 

(result by Cadiou, 1972)

We may decide to accept only orders leading to a 
result compatible with mathematical interpretation.

(full substitution)

Leftmost innermost is a candidate (call by value)

plus(plus(0′ ,0′ ),plus(0′′ ,0))



[Figure from book by Z. Manna, Mathematical Theory of Com-
putation, p. 376]

Or see J. van Leeuwen, Handbook of Theoretical Computer Sci-
ence, Vol B, p. 469.



Unfortunately, this rule will loop forever 
in cases where parallel won’t

However, we adopt it for convenience

Try function (for naturals)

                f(0, y)  ⇐  0
                f(x’,y)  ⇐  f(x, f(x’,y))
 

with x=0,  y=0
and with parallel

leftmost innermost
(note: leftmost innermost won’t give a result until all 
parameters are completely evaluated)

Note also that leftmost (call by name) will terminate in this case.

 

Leftmost plus( plus(0’,0’), plus(0’’,0) ) =

Innermost plus( 0’’, plus(0’’,0) ) =

plus(0’’, 0’’) =

0’’’’

(byvalue)



The following is known:

The parallel-outermost, the free argument, and the full-substitu-
tion rules are safe

However to explain this result would take a while... (what does it 
mean exactly to be safe?)  

See Z. Manna, Mathematical Theory of Computation, Wiley, 
1974, page 384 ff.

In what follows, we shall assume that the functions are computed 
in such a way that the computation completes, if it can at all.



Some further examples:

                                       times(Nat, Nat) → Nat

        times (n,0)  ⇐   0
        times(m’,n) ⇐   plus(times(m,n), n)

___________________________________________________

                                        equal(Nat, Nat)  → Truthval

       equal(0,0)     ⇐ TRUE
       equal(0, n’)   ⇐  FALSE
       equal(m’, 0)  ⇐  FALSE
       equal(m’,n’)  ⇐  equal(m,n)

___________________________________________________

                                        fact(Nat) →  Nat
       fact(0)  ⇐  0’
       fact(n’)  ⇐  times(n’, fact(n))

___________________________________________________

                                        ack(Nat, Nat)  → Nat
       ack(0,n)     ⇐ n’
       ack(m’,0)   ⇐ ack(m,0’)
       ack(m’,n’)  ⇐  ack(m, ack(m’,n))

                                             try ack(4,4) !
       



Lists of Naturals 

: : : 
(1) Nil is a list (constructor)
(2) if n is a Nat and l is a list, then n : : l is a list
      ( : :  is also a constructor)

post: 

(append n at end of l)
e.g.

double: 

rev:

Nat List, List→

Nat List, List→

post n Nil,( ) n::Nil⇐
post n m::l,( ) m::post n l,( )⇐

post 4 1::2::3::Nil,( ) 1::2::3::4::Nil=

List List→

double Nil( ) Nil⇐
double n::l( ) times 2 n,( )::double l( )⇐

List List→

rev Nil( ) Nil⇐
rev n::l( ) post n rev l( ),( )⇐



insert: 

if m>n
if not m>n

looks for an element greater than
or equal to element to be inserted

sort: 

for example:

Nat List, List→
insert m Nil,( ) m::Nil⇐
insert m n::l,( ) n::insert(m,l)⇐
insert m n::l,( ) m::n::l⇐

List List→
sort Nil( ) Nil⇐
sort m::l( ) insert m sort l( ),( )⇐

sort 2::3::1::Nil( )=
insert 2 sort 3::1::Nil( ),( )=

…
insert 2 insert 3 insert 1 sort Nil( ),( ),( ),( )=

insert 2 insert 3 insert 1 Nil,( ),( ),( )=
insert 2 insert 3 1::Nil,( ),( )=
insert 2 1::insert 3 Nil,( ),( )=

insert 2 1::3::Nil,( )=
…

1::2::3::Nil



Axioms for Natural Numbers

Cases
if n is a natural number then

either n = 0
or 

n = m’ for some natural number m

Uniqueness
if n and m are natural numbers 

then n’ = m’ implies n = m

Induction
if P(0)

and 
∀  m, P(m) implies P(m’)

then ∀  n, P(n)

 is the constructor of the natural numbers

induction
hypothesis

base

step

conclusion

′



Proof methods for recursive programs

The formal semantics of recursive programs, and related proof 
methods, are a very developed subject in theoretical and applied 
computer science. 

In this course, you are only exposed to some very basic ideas.

Two well-known proof methods for recursive programs, which 
have been automated in tools, are:

• computational induction, i.e. induction on the level of recursion

• structural induction, i.e. induction on the depth of the data 
structure.

We concentrate on the second method.



Structural induction

Partially ordered set

A non-empty set on which a relation < is defined:

1) if a < b and b < c then a < c (transitivity)
2) if a < b then  (asymmetry)
3) (irreflexivity)

Well-founded set: 
a partially ordered set which contains 
no infinite decreasing sequence
 

Structural induction on well founded sets:

Let S be a WFS, and let P be a property

If for all a in S we can prove that
P(a) must be true if it P(b) is true forall b < a in S

then we must conclude P(c) for all c in S

(Note: if there are no b < a , P(a) must be 
proved unconditionally (induction base))

b < a/
a < a/

a0 a1 a2< < …

...

...
...

...
...

...



Structural Induction Theorem (Burstall)

Let S be a well-founded set, and P be a total predicate over S:

if for all a in S we can prove that
            P(a) is implied by P(b) for all b < a         (*)
then P(c) for all c in S

Proof.

By contradiction. We show that if the assumption (*) is satisfied, 
then there can be no element of S for which P is false.

Consider the set A

A = {a | a in S and  not P(a)}

Assume that A is nonempty.  Then there must be a least element 
a0 in A such that a /< a0 for any a in A, otherwise there would be 
an infinite descending sequence in S. Then, for any element b in 
S such that b<a0, P(b) is true. But by (*) then P(a0) must also be 
true, contradicting the fact that a0  is in A. Therefore A must be 
empty, that is, P(c) is true for all elements of S.



The well-founded ordering to be used can be different from proof 
to proof.  

There are well-founded sets for naturals, the most obvious being:

and for lists

in many cases, the following simpler ordering for lists will suf-
fice (induction on the number of elements in the list):

0’’

0

0’

etc.

nil

0::nil 0’::nil 0’’::nil

0::0::nil 0’::0::nil 0’’::0::nil   etc.

etc.

nil

m::nil

m::n::nil

etc.



Structural induction proofs will then go as fol-
lows:

Find a suitable well-founded set.

Induction base:  Prove the property for the bot-
tom element(s) of the ordering.

Induction hypothesis: Assume that the property 
holds for an arbitrary element X of the ordering.

Induction step: Under this hypothesis, prove 
that the property holds for all successors of X in 
the ordering.

We can then conclude that the property holds for 
all elements in the ordering (all naturals, all lists 
of naturals...).



[ Here prof shows a number of proofs on the board]



Simple proofs we have seen so far proceeded by 
symbolically evaluating formulas until both sides of 
an equation were completely reduced.

At that point, hopefully they 
also had the same form.

Does this always work?

(If it did, everything would 
be very simple!)



1

2

join Nil l,( ) l⇐

join s::k l,( ) s::⇐ join k· l,( )

3

4

post n Nil,( ) n::Nil⇐

post n m::l,( ) m::post⇐ n l,( )

5

6

rev Nil( ) Nil⇐

rev n::l( ) post⇐ n rev l( ),( )



[More proofs on the board]



Method used:

1) Choose a variable to induct on

2) Set up base and step subproblems

3) Prove base and step:
Rewrite LHS and RHS as far as possible, using

- function definitions
- induction hypothesis

(pattern matching/unification)

4) If stuck, formulate lemma

Note:

Just as the program, this process is not guaranteed to
terminate.  For example, it won’t if rules contain ‘loops’
(e.g. ) 
But if it terminates, we end up in a ‘normal form’ where no  

further reduction is possible.

plus a b,( ) plus b a,( )⇐



To choose the variable to induct on:

i) Select positions in LHS of definitions which 
contain terms (rather than simple variables)

e.g.

position 2 is induction position for post

position 1 is induction position for + 

ii) Choose as variables to induct on the variables that 
appear in these positions in theorem, 
possibly on both sides.

e.g.

position 1 is induction position for join

To prove:

∀  s,k,l 
LHS RHS

k is in induction position for join on both sides
on k

post n m::Nil,( ) m::post n Nil,( )⇐

m′ n+ m n′+( )⇐

join s::k l,( ) s::join k l,( )⇐

join k post s l,( ),( ) post s join k l,( ),( )=

induct∴



e.g.

join(Nil,l) ⇐ l
join(s::k,l) ⇐  s :: join(k,l)

rev(Nil) ⇐  Nil
rev(n::l) ⇐  post(n, rev(l))

1 is induction position for rev
1 is induction position for join

To prove:

∀  lists l,k
 

l is in induction position for join in LHS
l is in induction position for rev in RHS

 l

rev join l k,( )( ) join rev k( ) rev l( ),( )=

choose∴



Using Lemmas

When we are unable to prove a property, 
we try to prove a more general one, 
by replacing some subexpressions with variables.

Where is the new variable introduced?

Answer:

Best in induction position in the definition
(so we can induct on it)

Induction position:

rev 1
join 1
post 2



How to Formulate Helpful Lemmas

Lemmas enable us to do some replacements that 
we could not do directly by function definition.

To show
 

use lemma
= l

To show

use lemma
=

To show

use lemma

                                                                 
                                                ( k ⇒  rev(k),        l ⇒  rev(l)  )

join rev k( ) Nil,( ) rev k( )=

join l Nil,( ) l rev k( )⇒( )

rev post s rev l( ),( )( ) s::rev rev l)( )( )=

rev post s l,( )( ) s::rev l( ) l rev l( )⇒( )

post s join rev k( ) rev l( ),( ),( )

=
join rev k( ) post s rev l( ),( ),( )

post s join k l,( ),( ) join k post s l,( ),( )=



ALGEBRAIC ABSTRACT 
DATA TYPES:

A SPECIFICATION 
TECHNIQUE FOR DATA



Recursive programs such as the ones we have 
seen so far are in the category of rewriting sys-
tems:

rules express that LHS can be rewritten as RHS.

One can also think of equational systems, where 
rules express equality of terms (rewriting can be 
done in both directions).

We are then in the area of algebraic data types 
and algebraic specification techniques.



Algebraic specification techniques have their 
origin in abstract algebra, i.e.

0 + x  =  x
x + 0  =  x
x + x  =  0
x + (y + z)  = (x + y) + z

this is the well-known set of axioms for groups.

A set of axioms defines an equivalence relation 
over the (normally infinite) set of group terms

(x + x) + x
= x + (x + x)
= x + 0
= x



Many-Sorted Algebras

Are a useful model for expressing data abstractions (data types)

Such algebras involve variables and operators of different sorts

E.g. specifying a type stack: there are perhaps three sorts 
involved:

• the sort stack
• the sort of the elements that can be put in stack (e.g. integer)
• perhaps the boolean sort, necessary to test conditions on stacks, 

such as: is empty, etc. 

The definition of a data abstraction (called data type) will consist 
of two parts:

• a signature or syntax part, listing the sorts, the operators, and 
their functionalities

• and an equational part, listing the equations that describe the 
properties of the elements of the type

Expressions involving operators of the sort and variables are 
called terms [note: constants are 0-adic operators]



Example: specifying the type stack of integers:

Signature part: listing the sorts, the operators, and their function-
alities

NEWSTACK → Stack
PUSH (Stack, Integer) → Stack
TOP (Stack) → Integer ∪  {INTEGERERROR}
POP (Stack) → Stack  ∪   {STACKERROR}

Where Stack and Integer are sorts, NEWSTACK, PUSH, TOP, 
POP are operators, INTEGERERROR and STACKERROR are 
constants of special sorts used to define error conditions.

Equation part: lists the equations that describe the properties of 
the elements of sort Stack:

for all S: Stack, I: Integer

equations of sort Integer:
TOP(PUSH(S,I)) = I
TOP(NEWSTACK) = INTEGERERROR

equations of sort Stack:
POP(PUSH(S,I)) = S
POP(NEWSTACK) = STACKERROR

Stacks are now algebraic objects, on which algebraic reasoning is 
possible.



GUIDELINES FOR DESIGNING 
DATA TYPE SPECIFICATIONS

• Determine the sorts
• Determine the operators [incl. constants]
• Determine the functionality of each operator: sorts of args and 

results (signature)
• In general, each type defines only one sort, but uses operations 

of other sorts.
• Some of the operators will have functionality out of the type, 

others in the type.
• A subclass of the ops having functionality in the type are the 

constructors: all the elements of the sort  can be represented 
by using only constructor set operators 

e.g. for stacks, the constructors are: NEWSTACK, PUSH  and 
not POP, TOP,

Any element of type stack can be represented by these two, 
e.g. PUSH(PUSH(PUSH(NEWSTACK, 3), 2), 1) represents a 
stack containing 1 at the top and 3 at the bottom. This is equiv-
alent to many other possibilities, e.g.
PUSH(PUSH(POP(PUSH(PUSH(NEWSTACK, 3),4)),2),1) 
representing a stack which has the same contents as the previ-
ous one, but where a 4 was added and then removed.
It is also equivalent to:
PUSH(POP(PUSH

(PUSH(POP(PUSH(PUSH(NEWSTACK, 3),9)),2),1)),1) 

Usually, constructor operators can be recognized by the fact that 
they do not have explicit equations. They are defined implicitly 
by their effects on other operators (see stack example).

The normal form of a term of a sort includes only constructors.



TREATMENT OF ERROR CASES

There are three main ways of specifying error cases:

• to have an error element in each sort. Unfortunately, this 
requires ‘propagating’ error cases from sort to sort.  E.g. if we 
have integererror of sort integer resulting from division by 0, 
then we may have to consider what happens when integererror is 
put in a stack, resulting possibly in stackerror of sort stack, etc. 
This is the way it’s done in the ADT part of LOTOS, but it may 
be cumbersome.

• To have a special ‘error’ sort.  This creates complications in the 
signature of operators, because each operator will have to apply 
to its specific sort union the error sort.

• to equate error with ‘undefined’.  Then our functions are par-
tially defined. Division by zero is undefined, putting an undefined 
value in a stack results in an undefined stack, etc.  In this tech-
nique, one may still use a the word error, but it does not denote a 
value in a sort: it denotes an undefined result (see the papers 
handed out).



DIRECT IMPLEMENTATION OF ABSTRACT TYPES

Because of the fact that abstract data type equations can be exe-
cuted as programs (if  they are written in such a way as to be exe-
cutable...), they can be seen as a direct implementation of the 
data type itself.

Execution is done by using the axioms to reduce terms to normal 
form: this is an evaluation process.

e.g.
TOP(PUSH(POP(PUSH(NEWSTACK, 1), 2)))

= TOP(PUSH(NEWSTACK,2))
=  2

TOP(POP(PUSH
            (PUSH(POP(PUSH(PUSH(NEWSTACK,5),6)),2),3))

= 2

Recall: normal form is a term which can’t be reduced further. 
It is the simplest representation for its equivalence class of 
expressions. 

Normal forms contain only constructors.

It is possible that normal forms don’t exist, or that several exist 
for a given expression, but this should be avoided [unless one 
wants to describe nondeterminism in data types].



IMPLEMENTING ABSTRACT TYPES 
BY OTHER TYPES

Abstract data types can be implemented in terms of other data 
types that are capable of expressing all the operators by respect-
ing all the axioms. 

For example, a stack data type can be implemented by an array 
data type (it could not be implemented by a set data type).

An implementation can be seen as a functional program that 
defines all the operations of the implemented data type in terms 
of the implementing type.

The correctness of the implementation can be checked by show-
ing that all the equations of the implemented type still hold in the 
implementation.



[Extensive discussion of two papers by Guttag, Horowitz, and 
Musser]


