E-Commerce Demo
Part I

Original Document by Istvan T. Hernadvolgyi

Updated by Saeid Nourian

Contents
1. Introduction

2. Creating a Database Schema

3. Hosting Files on Tomcat

4. A Simple Servlet

5. XML/XSLT Test

6. XML/XSLT Server-Side Conversion

7. Session Tracking

8. XML Schema Validation

9. Implementing a Servlet Front-end

1 Introduction

There are a number of demo programs included in samples.zip file. The sole purpose of a demo is to demonstrate that your account is properly configured. Namely

· You can access your portion of the database

· You can compile and execute Java programs

· The server can execute your Java servlets

· Third-party packages and tools are properly installed

· You can access the database remotely

By no means are they meant to be templates which you can readily edit in order to receive credit for your term assignments. You may not write JSPs (Java Server Pages) for your assignments. First, JSPs are compiled into servlets and contrary to the popular belief, they offer no functionality over servlets. Second, each JSP is compiled each time it is modified. It seems that this causes very significant run-time overhead for the server. In previous versions of Tomcat it also resulted in memory leaks and it also makes the server much less stable. You should do these tutorials as soon as you can and by yourself.
2 Creating a Database Schema
It is assumed that you know what a database schema is and you are familiar with SQL. If it is not the case, consider studying the documentations available from the course web page. Here, we are concerned with showing you how you can create schemas in our environment.

The demo schema creates a single table and populates it with values.

First extract the sample.zip to C:\ (or anywhere else), then follow these commands in command prompt:

1. cd c:\samples\work\sql

2. type demo_schema.sql

This file contains the SQL schema definition and populates the table with values.

3. mysql > demo_schema.sql

Now the database is created and populated.

4. mysql

Welcome to the MySQL monitor ...

Your MySQL connection id is 6...

Type ‘help;’ or ‘\h’ for help...
mysql>show tables;
+---------------+

| Tables_in_... |

+---------------+

| simpsons |

+---------------+
1 row in set (0.00 sec)

mysql>select * from simpsons;
+---------------+

| name | age |

+---------------+

| BART | 8 |

| HOMER | 38 |

| LISA | 7 |

| MARGE | 33 |

| MAGGIE | 1 |

+---------------+
5 rows in set (0.00 sec)

mysql>exit;
3 Hosting Files on Tomcat
All files to be hosted on Tomcat must be placed in a sub-directory in webapp folder:
C:\jakarta-tomcat-5\dist\webapps\

However the directories created in webapps by default are not accessible unless there exists a sub-directory named WEB-INF which contains an xml file named web.xml. Web-INF directory is the place to store sub-directories that contain java source files, compiled files and library files:
Webapps
 |

 +-(My directory)

 |

 +-WEB-INF

 |

 +-src

 |

 +-classes

 |

 +-lib
To prepare the above directory structure for demo samples run the following commands in the command prompt:
1. cd C:\jakarta-tomcat-5\dist\webapps\
2. md samples
3. cd samples
4. md WEB-INF
5. cd WEB-INF
6. copy con web.xml

<?xml version="1.0"
encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems,
 Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-
app_2_3.dtd">

<web-app>

</web-app>

^Z

Where ^Z means press ctrl+Z. After this, command prompt should respond by:

1 file(s) copied.
7. md src

8. md classes

9. md lib

4 A Simple Servlet
The server that says hello is a good start.

1. cd C:\jakarta-tomcat-5\dist\webapps\
2. cd samples\WEB-INF\src
3. xcopy /s c:\samples\work\java*.*
4. cd demos
5. type Demo1.java
This is the source code of the servlet. First, observe that it is in the package demos. It is because the web-server knows /WEB-INF/classes is a directory root under which your servlets are visible. Servlets cannot be executed from any other locations.

6. cd..

cd..

At this point current directory must be WEB-INF
7. javac -d classes src\demos\Demo1.java
This command compiles the java file and puts the compiled file in classes directory.

8. cd..

At this point current directory must be samples
9. xcopy /s c:\samples\public_html*.*
This command copies all the html files to the root directory of our project (samples).

See the content of demo1.html:

type demo1.html

This is the front end to the servlet you just compiled.

At this point all the necessary files are copied to their proper directories in Tomcat. The files in WEB-INF sub-directories cannot be accessed directory. In order to access our Demo1 servlets we must map it to url that is accessible to internet clients. The mapping information must be placed in web.xml file located in WEB-INF directory. Modify web.xml to correspond to followings:

<?xml version="1.0"
encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems,
Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-
app_2_3.dtd">

<web-app>

<!-- Define servlets that are included in the example application -->

<servlet>

<servlet-name>HelloDemo</servlet-name>

<servlet-class>demos.Demo1</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloDemo</servlet-name>

<url-pattern>/servlet/demos.Demo1</url-pattern>

</servlet-mapping>
</web-app>

After saving the above file start Tomcat and try accessing the demo1 html file with:
http://localhost:8080/samples/demo1.html
5 XML/XSLT Test

One of the things you will have to do is to write XML from the servlet to a remote browser and have it converted by the browser into HTML using an XSLT style sheet you provide. Unfortunately, client-side XML/XSLT is not supported by most browsers, and the ones that do support it, do so only partially. There is a thorough test included in samples.zip which you can use to test your browser. Do not worry if your browser fails! The next section will describe server-side (as opposed to client-side) XML/XSLT conversion.
Simply startup Tomcat and point your browser to the URL:

http://localhost:8080/samples/test.xml
If it worked, than the output should look like:

http://localhost:8080/samples/test.html
If it does not work, then your browser is not capable to convert XML into HTML using an XSLT style-sheet.

6 XML/XSLT Server-Side Conversion

The sure thing is to convert the XML document on the server-side into HTML. HTML is supported by all browsers. I wrote a front-end to the Xalan processor which can be used as a command line utility and also from Java programs to perform server side XML/XSL conversion. This front-end is documented (see the documentation link from the course web page) and you may use it in your assignments.

1. cd c:\jakarta-tomcat-5\dist\webapps\ samples\WEB-INF
2. javac -d classes src\istvan\xml\XTransformer.java
3. cd..

4. set classpath=%classpath%;
WEB-INF/classes;
5. java istvan.xml.XTransformer test.xml test.xsl
This converts the tiny XML file test.xml into the huge HTML code dumped on the terminal – according to the XSLT instructions in test.xsl. If your browser could really do client-side conversion it would produce the same output!
6. cd WEB-INF\src\demos
7. type XMLDemo.java

This is a servlet which uses the Simpsons database (which you already have created if you followed this tutorial). It demonstrates several things:

· How you can connect to your database

· How you can retrieve the result of an SQL command

· How you can write XML and convert it on the server side using the Xalan front-end XTransformer.

8. cd..

cd..

9. javac –d classes src\demos\XMLDemo.java
As usual, the above servlet needs to be mapped to a url in Tomcat. Add the following mapping to web.xml:

<servlet>

<servlet-name>XMLDemo</servlet-name>

<servlet-class>demos.XMLDemo</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>XMLDemo</servlet-name>

<url-pattern>/servlet/demos.XMLDemo</url-pattern>

</servlet-mapping>

Save web.xml and start the Tomcat server. Then point your browser to:

http://localhost:8080/samples/servlet/demos.XMLDemo?sheet=1
http://localhost:8080/samples/servlet/demos.XMLDemo?sheet=2
7 Session Tracking
To implement secure transaction, you must understand session tracking. This demo only shows how sessions are implemented in Java. This is much higher level and more powerful than similar mechanisms in PHP and ASP. Your assignments will require you to maintain secure sessions:

· Protecting the session id

· Protecting the user identity

· Disabling the session

· Verifying passwords before committing a transaction

· Performing encrypted transactions

· And many more you will learn in this course

However, you can always fall back to this servlet to verify that your account is well configured and to better understand how session work. There is an excellent, down to earth introduction you should read at:

http://java.sun.com/webservices/docs/1.0/tutorial/doc/Servlets.html
1. cd c:\jakarta-tomcat-5\dist\webapps\ samples
2. cd WEB-INF\src\demos
3. type SessionDemo.java

This is a servlet which maintains sessions and reports a bunch of useful information. It shows what values are stored where and how to obtain them.

4. cd..

cd..

5. javac –d classes src\demos\SessionDemo.java

6. Update web.xml with the following mapping:

<servlet>

<servlet-name>SessionDemo</servlet-name>

<servlet-class>demos.SessionDemo</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>SessionDemo</servlet-name>

<url-pattern>/servlet/demos.SessionDemo
</url-pattern>

</servlet-mapping>

7. Point your browser to:

http://localhost:8080/samples/session.html

8. Observe the difference between POST and GET
Observe how the URL is different
9. Disable cookies in your browser

Where is the session id? (Hint: watch the URL and look at the source!)
10. Understand where the information is stored and how you ca retrieve it

(a) Is it stored in the browser?
(b) Is it stored on the client-side?

(c) Is it stored on the server-side?

(d) Can I be stored at more than one place and even have different values?

8 XML Schema Validation

If you prefer XML schemas over DTDs, then it is an option. The Xalan processor which comes with Java 1.4 is capable of validating against an XML schema. Therefore, my front-end, XTransformer can beused at the command line (or as in XMLDemo.java in Java code).
1. cd c:\jakarta-tomcat-5\dist\webapps\ samples\
2. cd WEB-INF\classes\
3. java istvan.xml.XTransformer c:\samples\work\xml\po.xml c:\samples\work\xml\po.xsl

-validate

9 Implementing a Servlet Front-end
The emphasis should be on “front-end”, because that is what the servlet should be. It is an interface between a web-browser and an application. It is not the application. When implementing your mini projects, forget about servlets until you are actually ready to implement the front-end. First decide where the code should go, then implement the application which constitutes the functionality of the project and then design the servlet front-end. Remember that you should test the functionality of your application before implement a servlet. For example,

· The application goes to package project1.app, and the front-end goes to package project1.web
1. md work\java\project1

2. md work\java\project1\app

3. md work\java\project1\web

· Implement the application

package project1.app

//imports

public class Application {

 public void doSomething(

 // parameters

) throws Exception {

 ...

 // access\update database

 }

 public static void main(
 String[] argv)
 throws Exception {
 // get simulated parameters

 // from the command line,

 // from the console

 // or from a properties file

 Application test =

 new Application();

 test.set...

 test.doSomething(...);

 }

}

· After you have tested your application, implement the servlet front-end

package project1.web

//imports

...

import project1.app.Application;

public class Web extends HttpServlet {

 ...

 private Application app;

 public doPost(

 HttpServletRequest request,

 HttpServletResponse response)

 throws ServleetException,

 IOException {

 // obtain parameters from

 // fields, cookies and

 // session objects

 app.doSomething(...);

 // create HTML or XML output

 }

}

