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Chapter 1

Introduction

A possible illustration of a machine vision application is the camera pose recovery

problem. It consists essentially in using visual information extracted from a sequence of

images to estimate the motion parameters of each of the cameras involved in the capture

process. As such, it fits in a the concept where visual information is used to solve a

particular problem, concept that defines machine vision. The reason why this particular

example was cited is the interest it represents for this thesis as it will be seen later. For

the time being, it is just one of the many applications of machine vision. For that reason,

it can be defined or described by one (or more) of the activities involved in a common

vision problem and briefly described next.

The capture process is related among other things to the development of sensors and

other devices that allow the user or the machine to capture the environment that will

be studied by a subsequent process. The industry of cameras and other sensors has

gained quite some popularity with the introduction of digital cameras, camera phones,

for common use and panoramic and other complex shaped sensors for specialized markets.

The processing step is the most important one. It also where most of the research

is done and where the variety in algorithms in quite noticeable. Processes vary with

the problems they deal with and as a consequence are as diverse as the needs of the

industry. They include applications such as visual processing with for example image

enhancement and color correction or content-based analysis with feature extraction and

pattern recognition. The main goal here is usually to design an algorithm as elegant,

efficient, simple and portable as possible.

The output or display module is the most exposed and interactive aspect of a vision

system since the encountered devices are used either to display results or are themselves

1



Introduction 2

a result of the previous steps. This aspect is linked to all types of displays, screens,

devices - microscopes, X-ray, LCD, projectors - etc.

Last but not least, the transmission aspect is as important as any of the previous

activities. Less noticeable, it is a very specialized field that has had some popularity lately

due to the high demand in multimedia data traffic on wireless networks. The industry

in that domain mainly has to insure the safe transport and the fidelity in delivering the

information of interest. This transported information is often coded and/or compressed

after the capture step or before visualization.

All the previous activities are not usually considered independently, instead, they are

quite often incorporated as parts of a solution, the ultimate goal being to give a machine

or device the ability to deal with a problem autonomously literally using its vision of it.

The work presented here is part of the NAVIRE project1 developed at the University of

Ottawa. This project aims at achieving a virtual navigation in remote real environments

that are rendered from captured panoramas. As such, this project fits all the aspects

mentioned above concerning a machine vision problem : from the capture process all

the way to the output that in this case is used for navigation purposes. As part of

such a project, we are to investigate properties related to the type of images used for

rendering and possibly develop efficient algorithms. We therefore focus essentially on

the processing aspect despite a few notions about the capture process and abundant

outputs. More specifically, we aim at establishing a formal study of spherical or 360o

panoramas through their geometry. This of course, makes great use of well established

properties and methods especially as far as epipolar geometry is concerned. The validity

of the theory that is developed throughout the chapters is tested by confronting it to

problems of increasing size starting from plain images with the notion of rectification and

ending up in the context of the pose recovery problem in the case of cubic panoramas.

Ultimately, one could state that the presented study uses known and efficient tools to

develop new tools which is, in our opinion, a very suitable definition of engineering.

1.1 Thesis Objective

This thesis addresses the problem of camera pose estimation in the context of image-

based virtual navigation in remote environment. The ultimate goal is to recover the 3D

1Visit the website http://www.site.uottawa.ca/research/viva/projects/ibr/ for more information
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motion and structure from spherical images sparsely distributed over the scene of interest

considering that no assumption on the camera locations and on the scene structure are

taken into account. A progression is made from the classical epipolar geometry of planar

images to pose recovery from spherical images.

1.2 Thesis Outline

In the first chapter, we will present a short introduction to epipolar geometry since

the subject has been extensively described and heavily documents in a recent past. This

will be done by giving the reader an explanation of the geometry of two images. We will

mention the epipolar constraint and the epipolar entities that we judged pertinent for

our study. Finally a section will be dedicated to a popular application of the epipolar

geometry which is image rectification. The concept has been once more well documented

through the years especially in the case of stereo images, but here we will add a contri-

bution with our adapted algorithm to three views in horizontal and “L” configuration

based on homography transfer. As it will be the case for all upcoming chapters, this

introductory part is ended by some results to demonstrate the explained procedures.

In the second chapter, we will introduce the concept of cubic panoramas and their

geometry. The work here is largely based on the preliminary study of epipolar geometry

of the first chapter. The novel aspect is the type of images used for they are spherical

panoramas thus essentially implying an implicit multi-camera system. The first section

will present the capture process through a description of the sensor used in our experi-

ments, the PointGrey Ladybug camera. Then will follows a brief explanation of the cube

generation. The most important part of this chapter will be dedicated to a formal pre-

sentation of the geometry of cubic panoramas that can somewhat be seen as an extension

of the classic epipolar geometry to some extent as mentioned above. An application of

this will be the description of the concepts of the fundamental matrix and the essential

matrix in the case of cubic panoramas as well as related epipolar entities : lines and

planes.The final section of the chapter will discuss mainly the rectification process in the

case of cubes as it is inspired from the epipolar image rectification. We will introduce

our motivation for such an application and the methods that were developed to solve

such a problem. A section on some pertinent results obtained during our study will end

this chapter.
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The next chapter - fourth - of our study will take us through the steps of a two-

stage algorithm designed to solve the pose recovery problem in the case of spherical

panoramas. This situation is the natural progression of the rectification process since it

depicts a more general configuration with a random number of cubic panoramas instead

of just two. The first stage is what will be designated as cube alignment. The alignment

will consist of finding the optimal configuration of all cubes such that the only unknowns

of the pose estimation problem are the inter-panorama translations. This is done in

a bundle adjustment type of approach that finds the optimal aligning rotations for all

cubes. The resulting configuration, with only translations as unknowns, is then used

in the second stage that is naturally the translation estimation. This completes the

pose recovery problem and ends the fourth chapter accompanied by results obtained on

different sets of panoramas.

Our study ends with a general conclusion of our research especially as far as the cubic

panoramas are concerned, as well as the possible ramification of the presented algorithms

and our suggestions for future studies that align on this one.

1.3 Thesis Contributions

In the process of achieving the objective stated earlier, this thesis offers three original

contributions :

- An epipolar rectification method for triplets of planar images based on a method

presented in [21] and on the use of homography composition.

- A cubic panorama rectification procedure as an extension of the concept of recti-

fication as presented in [13] as well as in [21]. This method has the advantage of

being easily adaptable to any kind of spherical panorama.

- A pose recovery algorithm from spherical images. Using features tracked across

all panoramas, one can extract the camera positions and elements of the scene

structure in 3D. It is partly based on the bundle adjustment approach described

in [5].
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1.4 Application to Virtual Navigation

It was mentioned earlier that this thesis was part of a much larger virtual navigation

project. Thus, it is only suitable that it contributes to the latter project in some way.

As a matter of fact, cubic panorama rectification and pose recovery applied to spherical

images are both essential tools for some modules of the project. On one hand, cube

rectification eases greatly the process of panorama interpolation necessary for smooth

user navigation by providing rectified panoramas in a more favorable configuration. On

the other hand, pose recovery allows one to locate, up to a scale, the panoramas with

respect to one another if the capture process is not assisted by any positioning system

such as GPS. Pose recovery from spherical images can also improve user navigation by

maintaining a consistent viewing direction when switching from one panorama to another,

given that all relative orientations can be estimated before hand. Overall, our work can

improve the navigation of a user in spherical image-based environment.



Chapter 2

Epipolar Geometry and Projective

Image Rectification

2.1 Introduction

The term epipolar geometry is generally associated to a configuration where a scene is

being observed, captured, analyzed from 2 viewpoints (or more). The intricate relation-

ships that exist between the corresponding points through the images - usually two in

what is called stereo vision - and the scene structure is what really defines the latter term.

In [14] resp. [8], it is defined as “the intrinsic projective geometry between two views”

resp. “the basic constraint which arises from the existence of two viewpoints”. One then

uses these different constraints or relationships to compute or refine correspondences,

disparity or to a further extent solve pose estimation problems for example. Ultimately,

one can observe that the more views one has of a scene the better the knowledge of

the “real” scene geometry is since the potential of information source is larger. This

accordingly trades off with the number of existing constraints, the complexity and the

efficiency of the methods to process the views.

The objective of this chapter is to present some of the basics of the epipolar geometry

to establish a proper starting point for the study presented in this text. To achieve this,

we will limit ourselves to the entities and properties that are of interest for our study.

For a more complete insight in epipolar geometry, the reader is referred to [7, 14] that

pursue the development far beyond the scope of what is needed here.

This chapter thus starts with a presentation of important algorithms and definitions

as an introductory part of the study. State of the art algorithms such as the singular

6
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value decomposition and the normalized direct linear transform are the main subjects

of this section that is completed by definitions of terms such as projective geometry,

homography, and camera model. These elements are the tools that, from that point on,

will appear to be quasi omnipresent in the study presented here.

Next, follows a section that presents the concepts of epipolar constraint and funda-

mental matrix. Properties arising from the particular relationship between two views of

a scene are summarized here and some entities such as the epipoles, the epipolar lines

and the essential matrix are introduced.

Finally, rectification is cited as an illustration of the concepts presented in preceding

sections. The idea is based mainly on a procedure described in [21, 13]. Extension of the

concept to trinocular vision is also explored for some particular configurations and this

will be the first example of multi-image algorithms throughout all the chapters.

2.2 Introductory notes and useful algorithms

2.2.1 Definitions

Projective geometry is the type of geometry that is often associated to the process of

image formation. Naturally, it is the kind that is referred to in machine vision. Unlike

the euclidian kind, distances are not necessarily conserved by a transformation under

projective considerations. In an euclidian context, one could take the example of a

square in a 2D plane. If a rotation or a translation is applied to the latter square, the

result will be a square of same dimensions only in a different position. This is not the case

in projective geometry. [8] gives the curious reader a more complete insight in projective

geometry. We will limit ourselves to the latter concept in the case of image formation

for a camera.

As far as the camera model is concerned, the one that is used in our study is the well

known and very popular pinhole model. The camera is basically “reduced” to its trivial

form : its optical center through which pass all captured light rays. For such a model

displayed in Fig.2.1, the important entities are the distance to the image plane, the focal

length noted f and the position O of the center of the camera frame in the image plane,

with respect to the upper left corner of the image.

Under such these considerations, we can also use the example of the square mentioned

earlier. Depending on the camera’s location, the projection of the square on the image

plane could be a square, an irregular quadrilateral or even a line as it seen on Fig.2.2.
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Figure 2.1: The pinhole model of a camera.

Thus intervenes the concept of projective transformation that actually defines quite well

the idea of projective geometry. The process of image formation that was just described

in Fig.2.1 and Fig.2.2 is an example of projective transformation where all points in the

scene are projected onto a plane with respect to one unique point.

As it is given in [8], good illustrations of projective transformations are the planar

homography and the calibration matrix. A planar homography H is a plane-to-plane

transformation that could be anything from a simple rotation to a combination of skew,

scale and rotation. It is often used to describe the relationship between two different

projections of the same object onto two different destination planes as shown in Fig.2.3.

Points p2 in image plane 2 are related to the points p1 in image plane 1 particularly

for the shaded planar section by a homography H such that:

(p2x , p2y , 1)T = H(p1x , p1y , 1)T (2.1)

The equality in equation (2.1) is up to a scale due to the use of homogenous coordi-

nates. 2D Homogenous coordinates are obtained as planar euclidian coordinates with a

third added coordinate equal to 1 to take into the “scale” factor : (px, py, 1)T is essentially

the same point as (spx, spy, s)
T with s a non zero real number.
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Figure 2.2: A square in different image planes.

Figure 2.3: Illustration of the concept of homography.
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Finally let us note that, the process of image formation described by Fig.2.1 is summed

up by the calibration matrix K, also a projective transformation such that, for a point

P = (Px, Py, Pz, 1)T of the scene expressed with respect to the camera frame coordinate -

these coordinates are called normalized camera coordinates - its projection p = (px, py, 1)T

onto the image plane is given by:

p = [K 0]P (2.2)

The latter equality is up to a scale of course and K is explicitly given by:

K =



−f 0 Ox

0 f Oy

0 0 1


 (2.3)

Given that f is a positive entity and PZ is always negative since the subject captured

is always in front of the camera.

2.2.2 Algorithms

Singular Value Decomposition and Linear Systems

This section is essentially a summary of [1]. The singular value decomposition is also

mentioned in [14, 8, 7, 27] where it is described as a simple and powerful tool for solving

least squares problems. Let us first take a look at the algebra associated with this process.

For a given real m by n matrix A, there exists a decomposition in matrices U , S and

V such that:

A = USV T (2.4)

Each of the decomposing matrices has particular properties. U and V are both

orthogonal matrices meaning UT U = Im and V T V = In. Moreover, they are respectively

constructed from the eigenvectors of AAT and AT A and as such are respectively squares

m by m and n by n matrices. The matrix S is a m by n matrix with the only eventual

non null elements on its diagonal; these are the square roots of the eigenvalues of AAT

or AT A arranged in decreasing order. The elements of the diagonal in S are called

the singular values and the column vectors associated to these values in U an V are

consequently called left and right singular vectors. Singular vectors associated with null
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or the smallest singular value are usually the main point of interest when solving a linear

system of equations in a least square sense.

This decomposition is very often used in computer vision where linear system of

equations are regularly encountered for example in epipolar geometry to compute the

fundamental and essential matrices. The situation that requires the use of the SVD

can be presented as a problem of the form (see estimation of the fundamental matrix,

homography, essential matrix in [7, 8, 31]):

vT
i Hui = 0 (2.5)

Where ui and vi are known vectors and the elements of H are sought after. Equation

(2.5) expresses the fact that the problem defining constraint is verified by the known

ith pair of vectors. Usually many pairs (ui, vi) are given producing as many equations

as there are pairs frequently resulting in over-determined systems. These systems are

re-written as :

Ah = 0 (2.6)

Where h are the elements of H represented in a single column vector. [1] mentions

that optimal solution of (2.6), in a least square sense, with the constraint |h| = 1 is simply

the right singular vector of A associated to the smallest singular value. The vector h

that is found minimizes the norm of Ah and as such is the solution sought after. This

very useful will appear frequently throughout this text and will be often referred to as

the SVD solution.

The Normalized Direct Linear Transform algorithm

Equation (2.5) was said to represent a frequent problem in computer vision. As a matter

of fact, from correspondences in two images or two frames or two spaces, an entity (for

example a homography, a fundamental matrix, an essential matrix)is sought after that

verifies a well known constraint. The explanation given by Hartley and Zisserman in [14]

is summarized here.

The sets of points ui and vi involved in (2.5) must first be normalized. The normal-

ization as indicated by [14] aims at transforming each set in a scatter of points with its

centroid at position 0 of the space of interest. Moreover the average euclidian distance

from a point to the centroid is to be set to
√

2. The reason behind this is the uniformiza-
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tion of the weight of each point in the computation of the fore-mentioned entity and

strongly recommended - with proof - in [14].

Let us take the example of points on two images planes expressed in projective coor-

dinates ui = (uix , uiy , 1)T and vi = (vix , viy , 1)T . If ū and v̄ are the average points, [14]

gives us the normalization transformations :

Tu =




1 0 −ūx

0 1 −ūy

0 0
√

2


 ; Tv =




1 0 −v̄x

0 1 −v̄y

0 0
√

2


 (2.7)

Tu and Tv are applied to each point of the sets ui and vi resulting in new sets ũi

and ṽi. The associated sought after entity is noted H̃ is computed using the SVD

solution mentioned in the previous section. The final step of the normalized direct linear

algorithm, that we will refer to as normalized DLT or simply DLT in the future, is the

de-normalization of H̃ by applying the following formula :

H = T−T
v H̃T−1

u (2.8)

H thus obtained is the entity that links the original sets of points ui and vi.

2.3 Epipolar Constraint and Fundamental Matrix

2.3.1 Fundamental matrix

Fig.2.4 summarizes the epipolar constraint. For two cameras, of respective centers C and

C ′, observing the same point P of a scene (expressed with respect the camera frame in

C), the respective images of the latter point are p and p′. In [8], the epipolar constraint

states that the point p′ has to lie on the projection of the ray sustained by the line

through C and P in the camera of center C ′. This is equivalent to the fact that, in [14],

the same constraint is given as the fact that the rays CP , CP ′ and the line CC ′ are

coplanar. This constraint is expressed by the fundamental matrix that links the points

p and p′ as follows :

p′T Fp = 0 (2.9)

Moreover, if, as seen in Fig.2.4, the camera frames involved are separated by a trans-

lation t and a rotation R, and each of the cameras has a calibration matrix K and K ′ and
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Figure 2.4: Epipolar constraint.

finally, the world coordinate frame coincides with the camera coordinate system centered

in C, [8] and [14] establish an explicit expression of F:

F = K ′−T [t]×RK−T (2.10)

With [t]x defined as the antisymmetric associated to t:

[t]× =




0 −tz ty

tz 0− tx

−ty tx 0


 (2.11)

F therefore allows us to characterize the relationship between two cameras using

images points. If instead, normalized coordinate points P and P ′ defined in (2.3) were

used, combining (2.3) ,(2.9) and (2.10) results in:

P ′T EP = 0 (2.12)

With E the essential matrix, concept fathered by Longuet-Higgins cited in [8, 14],

and defined by:

E = [t]×R (2.13)
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E thus establishes the relationship between two cameras using normalized coordinate

points. More details on the essential matrix will be presented in Chapter 3.

2.3.2 Properties

Earlier we mentioned that for the image point p and p′, p′ had to lie on the projection

of the ray CP in the camera of center C ′. The latter projection is the epipolar line l

associated to p and computed as:

l = Fp (2.14)

Another important entity associated to the fundamental matrix F is the epipole.

Each of the camera possesses one epipole which is none other that the image point of the

center of the opposite camera in the current camera. Noted respectively e and e′, they

are related to F in the sense they can be extracted as the right and left singular vectors

of F of null singular value and as such:

Fe = 0 and F T e′ = 0 (2.15)

The epipoles, as we will see in later sections and chapters, are important entities

involved in the process of rectification. Moreover let us note that, both epipolar lines

and epipoles points are identical concepts for the essential matrix except that they are

represented in higher dimension. Thus the epipolar lines become epipolar planes and the

epipoles points become epipoles direction vectors.

Finally, F and E are computed following the same model i.e from matches auto-

matically or hand-selected by the user and fed to the previously discussed normalized

DLT algorithm. Note the similarity of (2.5) discussed in sections 2.2.2 and 2.2.2 with

equations (2.9) and (2.12).

2.4 Epipolar rectification

The need for epipolar rectification is justified by the improvements it provides to classi-

cal machine vision application such as feature matching and disparity estimation. The

objective of epipolar rectification is to create a configuration where the set of epipolar

lines corresponding to a set of matches of a stereo pair is transformed into a set of lines

that are either vertical or horizontal. Identifying corresponding points in both involved
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images thus becomes a scanning and matching problem along the x or y direction which

rather simplifies the feature matching process for example.

Many methods exist and have been implemented to solve the rectification problem

for stereo and trinocular vision. Hartley worked on finding the rectifying transformation

from the fundamental matrix with a strong mathematical justification [13]. Loop et al.

developed a method to find the rectifying homographies and added some constraints to

reduce the distortion introduced by rectification [18]. These methods are applicable to

un-calibrated cameras and, in the case of two views, are close in theory to an algorithm

presented by Mallon and Whelan [21]. The method they proposed follows Hartley’s in

principle but has its own original distortion reduction procedure. This approach is the

one that is used in this section. One might then wonder how the problem of rectification

extends to more than two views. We will limit our study to the case of 3 views mainly

by interest for trinocular systems.

In the case of three views, Luping et al. presented a technique to rectify a triangular

triplet of images using the perspective projection matrices (PPM) [2]. This technique uses

camera calibration and is therefore not suitable for un-calibrated environments. Zhang

et al. proposed a method to obtain the rectification homographies using the fundamental

matrices, minimizing the distortion by adjusting 6 free parameters [30]. This method

uses a set of three constraints on the triplet of images which allow the recovery of the

three rectifying homographies in a closed form. Sun presents three methods that compute

the projection matrices for the three images also using pair wise fundamental matrices

[25]. The projection matrix of the reference image is a composition of 4 transformations;

the other two are derived from the latter. In all these cases, the algorithm is designed

for three views and uses three views constraints to achieve its goals.

The method presented here to solve the three view case is close to the one used

in [30, 25] but is based on the method presented in [21]. This latter method uses the

fundamental matrix in a similar way as in [13] but the novel aspect is the distortion

reduction. It is a method developed for stereo. We therefore mainly describe how this 2-

view algorithm can be adapted to the three view case in conjunction with an intermediate

plane transfer by homography.
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2.5 Projective rectification from the fundamental ma-

trix

The algorithm presented in this chapter to solve the trinocular case is an extension of the

method defined by Mallon and Whelan [21]. It is only suitable that the latter method

is first described to the user. The objective of the authors was to obtain homographies

that will simply be applied to each image to obtain its rectified counterpart, thus solving

the stereo case. The rectification process, which somewhat follows Hartley’s blueprint in

[13], can be summarized as follows:

Fundamental matrix

First, one has to recover the fundamental matrix F using the 8 point algorithm mentioned

in [31]. Eight or more matches are enough to compute the fundamental matrix. The

Projective Vision Toolkit (PVT [29]) developed by Whitehead and Roth could be used

to automatically find matches for a pair of images. In it latest version, it uses the Lowe’s

SIFT feature detector which provides large numbers of points [19].

These matches verify (2.9) and the normalized DLT algorithm mentioned earlier

is used the estimate F . Note however that one additional step occurs before the de-

normalization : for the estimated normalized matrix F̃ , its least singular value is forced

to 0 to respect the rank 2 constraint.

Epipoles

At this stage, the epipoles e12 (in left image or image 1) and e21 (in right image or image

2) are extracted from an SVD decomposition of F . They are respectively given as right

and left singular vectors of F associated with the null or least singular value as given

previously in the introductory definitions section.

“Left” Homography H1

From the epipoles, on can compute the rectifying homography H1 to be applied on the

left image by forcing the corresponding epipole to infinity in the horizontal direction i.e

from e12 = (e12x , e12y , 1)T to (e12x , 0, 0)T in projective coordinates. H1 is given as:
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H1 =




1 0 0

−e12y/e12x 1 0

−1/e12x 0 1


 (2.16)

So that :

H1e12 = (e12x , 0, 0)T (2.17)

This is the first condition to obtain a rectified pair of images. As a matter of fact,

this homography implies that all the epipolar lines corresponding to matches in the right

image will all be horizontal and this is partially what is needed.

“Right” Homography H2

Once H1 is found, an additional constraint on the problem mentioned in [21] is used to

solve for H2. As a matter of fact, the fundamental matrix of the original setup being

F , the resulting rectified fundamental matrix should equal to the trivial matrix Fh. [14]

mentions this property when introducing the trivial stereo configurations particularly

the one where both cameras differ only by a translation along the x axis. In such

a configuration, both epipoles are projected at infinity in the x direction forcing the

epipolar lines to be horizontal ultimately resulting in the fact a point in one image

has its correspondent on the horizontal line of same y coordinate in the other image.

Applying the suitable rotation and translation parameters t and R in (2.10) leads us to

the following expression of Fh for such a trivial configuration:

Fh =




0 0 0

0 0 −1

0 1 0


 (2.18)

Expressing the rectification in terms of the homographies H1 and H2 leads to the

mathematical constraint by combining (2.1) and (2.9):

HT
2 FhH1 = αF (2.19)

With α a scale factor. We know Fh and have computed F and H1. We want to solve

for H2 and α with :
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H2 =




1 0 0

h1 h2 h3

h4 h5 h6


 (2.20)

Equation (2.19) is transformed to a system of the type AX = 0 where X stands for

elements hi of the homography H2 in a column with α as its last element . The system

is then solve by using the SVD solution given in section 2.2.2. Steps 2.5 to 2.5 produce

satisfying rectifying homographies with the restricting condition that original epipoles e12

and e21 do not appear within the left and right images respectively as noted by [21]. The

last step of the method summarized in the present section is the distortion reduction

introduced by [21]. It is an additional stage that improves the visual appearance of

rectified images often severely distorted by the fore-mentioned process.

Distortion reduction

The distortion mentioned here is not related to lens distortion. It is “inserted” in the

homographies after rectification. The reduction step is not mandatory but it makes the

images look more natural as noted above. Essentially, the final transformations to be

applied to each image of the pair are noted Ki = AiHi with i = 1,2. The additional

improving transformations Ai are of the form :

Ai =




ai
1 ai

2 ai
3

0 1 0

0 0 1


 (2.21)

The values of a1 and a2 are found by simplex minimization (C + + implementation

Nelder-Mead or amoeba algorithm given in [22]) of the function:

f(a1, a2) =
n∑

i=1

[(σ1(J(Ki,pi))− 1)2 + (σ2(J(K,pi))− 1)2] (2.22)

Where J is the jacobian of the transformation Ki = AiHi at a point pi contained

in a grid over the image plane and σi are its singular values. Interestingly enough the

jacobian J describes “the creation and loss of pixels as a result of the application of K”

[21]. Note that the value of a3 is left to the user for flexibility in centering the final image

along the x axis since it only implies an horizontal offset.



Epipolar Geometry and Projective Image Rectification 19

This ends a summary of the method presented in [21] that allows the computation

of rectifying homographies from the fundamental matrix of a stereo pair of images. This

method was chosen for its simplicity and the distortion reduction stage that radically

improves the visual aspect of resulting images. In the following sections, we present

extensions of this latter method that ultimately lead us to the proposed solution to the

trinocular case.

2.5.1 Extension to a “vertical” pair

As announced previously , this section describes one of the extensions added to the

method presented in [21]. For a “vertical” pair of images, the process of rectification is

very similar. By vertical we mean that the cameras of the stereo system have their centers

located one above the other. In the classical case, the cameras are assumed to almost

lie on the same horizontal plane. The differences in each step of the rectification are

only due to the difference of configuration. For the vertical case, the ideal fundamental

matrix Fv -and homolog of the previously introduced Fh in (2.18)- is given by [14]:

Fv =




0 0 1

0 0 0

−1 0 0


 (2.23)

The modified rectification algorithm follows:

a. Recover the fundamental matrix F

b. Recover the epipoles e12 and e21 of the top and bottom images.

c. Recover the homography H1 corresponding to the top image. Applying this trans-

formation to the image sends the epipole e12 to infinity in the vertical direction :

from e12 = (e12x , e12y , 1)T to e12 = (0, e12y , 0)T in projective space). Thus :

H1 =




1 −e12x/e12y 0

0 1 0

0 −1/e12y 1


 (2.24)
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d. Using the same type of constraint as in the horizontal case (2.5), we obtain a linear

system that is solved the same way using the same formulas but with H1 and Fh

replaced respectively by H1 of equation (2.24) and Fv. This allows us to recover

H2 which in this case is of the form :

H2 =




h1 h2 h3

0 1 0

h4 h5 h6


 (2.25)

e. The distortion reduction step is exactly the same except the transformations are

of the type Ai:

Ai =




1 0 0

ai
1 ai

2 ai
3

0 0 1


 (2.26)

This reflects the fact that the distortion and centering steps will affect the vertical

coordinate and the user-defined value of a3 corresponds to a translation along the

vertical axis of the rectified image.

This modified version of the rectification procedure insures that, provided epipoles

not within in each image, a point in one image will have its correspondent lying on the

vertical line - its associated epipolar line - of same x coordinate in the other image. Both

presented stereo rectification algorithms solve the trivial horizontal and vertical case for

two images; they also help to solve some trivial trinocular cases when used suitably as

shown in the next sections.

2.5.2 Preliminary Results

An example of image rectification for a horizontal stereo pair is displayed in Fig.2.5(c).

The original images are shown in Fig.2.5(a) and the rectified versions with no distortion

reduction in Fig.2.5(b). The visual improvement as well as the horizontal epipolar lines

are easily observable.

The same is done for a vertical pair and some results are observable in Fig.2.6.
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(a) Original horizontal pair

(b) Rectified pair with no distortion reduction

(c) Rectified pair after distortion reduction

Figure 2.5: Rectification for a “horizontal” stereo pair
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(a) Original vertical pair (b) Rectified vertical pair

Figure 2.6: Rectification for a “vertical” stereo pair

2.6 Rectification of 3 views

The extension to triplets of images is different conceptually but uses the horizontal

and vertical rectification at different stages. The algorithm presented in this section

constitutes a first original contribution of this thesis. It has been presented at ICASSP

2006 [16]. The method has been developed as an introductory study to the problem of

cubic panorama rectification presented in the next chapter. The concept is illustrated

in Figure 2.7. The triplet is processed pair by pair therefore producing 4 homographies.

The images are denoted 1,2 and 3. For 1 and 2, the rectification without the distortion

reduction step gives us H1 and H2. Similarly, for images 2 and 3 the rectification without

distortion reduction gives us H ′
2 and H3. The rectification does not include the distortion

since we want to stay consistent on the type of images we are working on : they are all

affected by the same type of effects. The distortion reduction will therefore be the last

phase of this process.

In both cases, unifying the results is the main objective. The solution is based on an

attempt to find a common plane on which lie all rectified images affected by the proper

type of rectification. For that, we explored an homography based solution that relies on

composing the proper plane transformations on the suitable images to achieve our goal
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Figure 2.7: Rectification principle for a triplet of images.
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as shown in Fig.2.7.

2.6.1 Horizontal triplets

The middle image 2 is common to the two pairs so we have H2 and H ′
2. Each of the

computed homographies ’sends’ the image plane 2 on two different planes containing

respectively the rectified image 1 i.e P12 and the rectified image 3 i.e P23 (see Figure

2.7).

Our goal here is to find a way to transfer the plane P23 to P12; as a matter of fact we

want to find the homography h between these two planes. This is done as follows:

• Image 2 is transferred to plane P12 with H2

• Image 2 is transferred to plane P23 with H ′
2

• Image 3 is transferred to plane P23 with H3

• h between P12 and P23 is therefore given by h = H2H
′−1
2 : this is the “unification”

mentioned earlier. Using the projection of the middle image in two different planes

to deduct the relationship between both involved planes.

• Image 3 can therefore transferred to plane P12 by transiting through P23 using H ′
3

given by :

H ′
3 = hH3 = H2H

′
2
−1H3 (2.27)

These steps essentially evaluate the homography H ′
3 that sends the rectified version

of image 3 to the plane containing the already rectified versions on image 1 and 2 by

using the redundant data provided by the middle image. Finally, distortion reduction

for the horizontal configuration is applied to each homography H1, H2 and H ′
3 to insure

that the y coordinates are left untouched.

2.6.2 “L-triplets”

The case of ’L’-shaped triplets is a combination of a vertical pair and a horizontal pair.

All steps in the horizontal triplet procedure are repeated except for what follows:

• The pair 1, 2 is rectified using the vertical pair approach without the distortion

reduction procedure (Section 2.5 to 2.5).
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Figure 2.8: Original triplet of images : horizontal configuration

Figure 2.9: Rectified triplet of images : horizontal configuration

• The distortion rectification step uses the vertical distortion reduction approach for

the rectified images 1 and 2. For image 3, the distortion reduction is also applied

with the vertical approach described in section 2.5 to level the images 2 and 3 along

the vertical axis.

2.7 Results and Observations for image triplets

For triplets of images, we have an example of a horizontal rectified triplet in Fig.2.8 with

the original images in Fig.2.9. A few epipolar lines are drawn across the 3 images to

show the consistency in the rectification process.

For comparison sake, the first example of “L”-shaped triplet is the same the one

processed in [25]. The original triplet is shown in Fig.2.10. The result obtained in

[25] are given in Fig.2.11. The result obtained using the homography-based approach

presented in this chapter is given Fig.2.12. The desired epipolar lines are obtained in both

cases. The effect of the distortion reduction is however well noticeable when comparing
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Figure 2.10: Original “L”-triplet (courtesy of C. Sun [25])

both results the set in Fig.2.12 looking less distorted and closer to the original images

than the set in Fig.2.11.

Fig.2.13 and Fig.2.14 show another example of rectified “L”-shaped triplet of images.

2.7.1 Observations

An important observation mentioned earlier and in [21] is the fact that the rectification

is ineffective for images where the epipoles appear in the image plane; suitable images

are therefore to be used. This limitation concerning the capture process is not however

detrimental to stereo system that usually use a quasi parallel setup for the image planes.

Another observation, that is rather obvious, is that a pair or triplet of images has to

be taken close to the ideal configuration before using the corresponding rectification al-

gorithm: i.e. it is impossible to rectify a vertical stereo pair of images with the horizontal

stereo rectification approach.

Finally an important source of error is clearly the fundamental matrix approximation.

For example note that well spread matches over the images help improve radically the

fundamental matrix which otherwise ends up being very localized and valid only for a

few points. It is therefore a very important step that should be handled with care and
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Figure 2.11: Results obtained by C. Sun (courtesy of C. Sun [25])

Figure 2.12: Results obtained by homography-based approach
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Figure 2.13: Original triplet of images of the second example : L configuration
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Figure 2.14: Rectified triplet of images of the second example : L configuration
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carried out following one of the many existing techniques. For a set of algorithms, we

suggest the reader to refer to [31].

2.8 Conclusion

This chapter presented an extension to an image pair rectification method based on fun-

damental matrix. Some notions related to the fundamental matrix and to algorithm

used in the diverse computations were given to establish the basis of our work. Thus,

definitions of epipolar entities were given. Moreover, important state-of-the-art algo-

rithms were also summarized (SVD and normalized DLT ). All this led us to the problem

of stereo image rectification. For the classical horizontal pair configuration, an method

developed in [21] was used.

The latter method was summarized and proved to have the advantage of being suitable

for uncalibrated environments as well as producing a pair of rectifying homographies

with a low distortion effect using solely the fundamental matrix. The abundance in the

documentation concerning the computation of the fundamental matrix and the additional

step of distortion reduction both proved to be the deciding factors in our choice of this

rectification method as the basis of our algorithm. An extension to vertical image pair

was also presented to set up the solution in the case of triplet of images.

Extensions to different three-view configurations were thus introduced in section 2.6.

The approach presented , in the case of triplet of images, used a homography composition

in order to rectify all images by projecting them on a common plane with the constraint of

epipoles to infinity in the destination image plane. This proved to be a simple operation

to carry out once the pair-wise rectifications were completed. The cases of horizontal

triplets and “L”-shaped triplets were both treated.

Results were obtained on different sets of images and these were further visually

improved when the proper distortion reduction was applied as the final step. A few ob-

servations were made as far as the performance of the basic stereo algorithm is concerned

and the influence of matches and the fundamental matrix on the overall process.



Chapter 3

Cubic Panorama Rectification

3.1 Introduction

This chapter consists essentially in presenting the concept of epipolar geometry applied

to cubic panoramas. Up to now, the reader has been introduced to different concepts

and entities that help describe the geometry of a scene viewed under multiple angles

particularly two and three. Cubic panoramas as their name indicate it are panoramic

representations of a scene and as such, cover a 360 degrees viewing angle of that scene.

This can be seen as a multiple camera configuration as well. In addition, panoramas

intrinsically represent and carry more information than simpler images and are intuitively

more meaningful to us when displayed in the right format since our vision system is

“quasi” panoramic. Thus, in this chapter, we exploit the common traits between cubes

and images and formally adapt and extend the idea of epipolar geometry, fundamental

matrix and essential matrix.

Cubic panoramas or cubes have some embedded characteristics that make them quite

attractive as a format. As a matter of fact, cubes can be seen as sets of images generated

by 6 cameras in a particular configuration. This allows the stereo algorithms to carry

over in quite a straightforward way to cubes. Moreover, their structure implies a simple

calibration that does depends only on one variable. Finally, [9, 10] shortly mentioned

the hardware advantages of the cubes with a graphic processor : a panoramic image

with a work-around with 6 simple images is quite an efficient representation for further

processing.

The first section of this chapter will introduce the cube capture and generation pro-

cesses. This short paragraph is meant to address the curiosity of the reader on the kind

31
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of sensor used in our experiment : the PointGrey Ladybug. We also discuss very briefly

the cube generation procedure designed by M. Fiala of the National Research Council

Canada (NRC).

Next, some interesting properties of the cube are explained as an introduction to

the subsequent sections. The concepts of general 3D coordinates conversion to cube

coordinates, face homography and cube calibration are the subjects of this preparatory

section to cube geometry.

The following section describes the adaptation of the fundamental matrix to the

cubic panoramas. Faces in correspondence in a pair of cubes are treated as a stereo

system. Extensively discussed and well known algorithms are then applied to the cubes

to demonstrate the epipolar constraint applied to the latter through the observation of

epipolar lines.

In a natural succession, we present the essential matrix in the case of cubes. The

epipolar constraint and trivial calibration of the panoramas lead to the establishment of

the essential matrix for a given pair. Some results are also shown through the observation

of the epipolar plane and lines.

Finally, an application illustrating the concept of essential matrix and more generally

the epipolar geometry of cubic panoramas is discussed in the last section. Cube recti-

fication extends the concepts of image rectification to the 3D space by using a similar

approach with some interesting differences and results. The goal here is mainly to prove

the validity and reliability of the previously established cube epipolar geometry.

3.2 Cubic panoramas : capture and generation

Cubic panoramas being the subject of the study it is necessary to provide some elements

on the way they are obtained. The capture of the images that are composed into panora-

mas is done using the Point Grey Ladybug camera extensively presented in [24, 11] and

shown in Fig.3.2(b). It is essentially a camera composed of 6 sensors (1024× 768 pixels

each), 5 laterals and 1 pointing upwards that capture a view of the world at 360 degrees

around the azimuth completed by a top view.

Since the camera’s sensors have been accurately calibrated, it is possible to fuse the

six images to form an almost complete spherical panorama (see Fig.3.1). This panorama

can therefore be considered to have been produced by a central projection camera that

collects all light ray coming from all directions, incident on a point in space. The resulting

two-dimensional plenoptic function can then be re-projected on any type of surface :
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Figure 3.1: Fusion of the camera views to generate a cubic panorama

sphere, cylinder, cube, etc. We use here a cubic representation that have been shown to

be easily manipulable and that can be stored and rendered very efficiently on standard

graphic hardware [4]. This work on the cube generation has been done by M. Fiala from

the NRC in [11].

We extended this procedure by allowing a user to specify a rotation matrix and obtain

as an output the corresponding rotated cube. It remains simply a matter of querying for

the color with the correctly computed light ray. The correspondence between pixels on

cube faces and corresponding 3D light rays through the center of the cube is explained

further in section 3.4 and in more details in appendix A

A cube can be seen on Fig.3.3 laid out in a cross or flat pattern with the faces in

the order (from top to bottom and left to right): up, left, front, right, back, down. The

reference frame chosen in our study is the standard openGL frame that can be seen inside

a cube on figure 3.2(a) with x axis pointing toward the“right” face, the y axis toward

the “up” face and the z axis consequently pointing toward the“back” face.
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(a) Cube reference
frame.

(b) The Point-
grey Ladybug
camera.

Figure 3.2: Cube frame and camera used in cube capture.

Figure 3.3: Cube laid out in cross pattern.
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The fact that a cubic panorama is effectively made of six identical faces, each of

them acting as a standard perspective projection camera with 90o field of view, makes

the representation very convenient to handle; all standard linear projective geometry

concepts still being applicable.

3.3 Notations

We introduce some notations and conventions use throughout this chapter for clarity sake.

Let us consider two cubes (C) and (C ′). For each cube, a tag i in the set {U, L, F, R, B, D}
is given to each of the faces with U standing for the “up” face, L for the left face and so

on. For a pair of faces in correspondence, the associated fundamental matrix is noted Fi

where i is the tag of the faces. A 3D point is noted X and is equivalent to (X, Y, Z)T .

Its projection on the face i of the cube is noted x̃i = (xi, yi, 1)T . R(θ)x stands for a

rotation around the axis x of amplitude θ and t stands for a translation vector. We will

note Pi the projection matrix for a given face and K the common calibration matrix

since the 6 faces have identical characteristics. We can therefore write: Pi = K[Ri|ti]
following the model in [14]. As a reminder, the projection matrix allows us to obtain the

image coordinates of any 3D point by a simple multiplication operation, provided the

calibration and the extrinsic parameters of the camera are known, that is

xi = PiX (3.1)

3.3.1 Exponential representation of rotations

Rotations are important geometric entities referred to quite often in this study. [7, 17]

present a complete insight into what is needed to be known in machine vision about these

particular 3 by 3 matrices of the special orthogonal group also called SO(3). A plethora

of sources will confirm that there exist many representations of rotations. One of the

most popular being the usual 3 by 3 matrix M verifying : MMT = I3 and det(M) = +1

(I3 is the 3 by 3 identity matrix). In kinematics, as well as machine vision where the

problem of estimating a rotation often occurs, the exponential representation is a popular

choice. It is closely related to the concept of antisymmetric matrix and the Rodrigues

formula.

Given a 3D vector v = (v1, v2, v3), [7, 14] describe the associated antisymmetric matrix

associated as :
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[r]× =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (3.2)

For a rotation of non zero angle θ around the axis of unit vector v, the related

Rodrigues vector ω is defined in [17] by :

θ = |ω| (3.3)

v =
ω

θ
(3.4)

To end this section, a rotation R of associated Rodrigues axis ω = θv can be repre-

sented thanks to an exponential notation as follows :

R = I3 + sinθ[v]× + (1− cosθ)([v]×)2 (3.5)

Rotation estimation problems in this text - mainly Chapter 2 and 3 - will make

extensive use of this representation. One of the main advantages of such a notation

is that 4 parameters are estimated instead of 9 for the matrix representations, even

if the complexity of the problem in the case of the matrix is decreased by the special

orthogonality constraint. For more details on the SO(3) group, we suggest consulting

[3, 7, 14].

3.4 Properties

3.4.1 Calibration Matrix

Further in this study will appear the need to define the calibration matrix K associated

with each sensor for each face of the cube. One of the main advantages of the cubes, as

mentioned earlier in section (3.1), are the constraints that are linked to it. If L is the size

of a cube in pixels - L is set by the user at the generation stage - we can easily deduct the

fore mentioned calibration matrix K in the ideal case. The image plane is at a distance
L
2
, the projection of the camera center in the image plane is always at (L

2
, L

2
, 1). The

ideal focal distance of all 6 cameras (one for each face) is also L
2
. Thus we can write :

K =



−L

2
0 L

2

0 L
2

L
2

0 0 1


 (3.6)
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This notation is with respect with the classical pinhole model of a camera. The same

model is obviously used for each virtual camera associated to each face. (3.6) will prove

to be extremely useful throughout our study despite the fact that the approximation to

the ideal case was made here. The accuracy of the solutions will prove not to suffer at

all from this hypothesis.

3.4.2 Conversion Procedure

In this section we mention a simple and useful method to convert any ray to its cube

coordinates with respect to the cube frame shown previously in Fig.3.2(a). For any ray

guided by a given vector through the origin of the frame, its cube coordinates can be

found by intersecting the direction of the ray with each image plane standing for each

cube face. This will provide us with two possible intersections over the cube. A test of

direction consistency then allows us to recover the proper point on the cube and therefore

obtained the coordinates that are sought after.

How is this useful in our study ? This process is used especially when applying a

rotation on a given cube. After we apply a given rotation to a point of the cube, nothing

guarantees that the new coordinates are those of a point on the surface of the cube. It

is usually a vector placed in the proper direction but not on the cube. To obtain its

correspondent on the cube frame, we therefore have to apply the conversion procedure

mentioned here to recover the proper point and thus the new coordinates of the rotated

point or pixel. The mathematical details of such a procedure are given in appendix B.

3.4.3 Homography between two faces

It was mentioned in the previous section that a ray going through the center of the cube,

intersects exactly 2 faces within their viewing area. As a matter of fact, considering the

infinite extent of each of the images planes (for each face), such a ray actually has an

intersection with each of the latter provided we consider loosely the notion of intersection

at infinity in case of parallelism ray-plane. It is important to note that, unlike the case

of procedure mentioned in the previous section, the resulting point is not necessarily

constrained within the viewable area. Fig.3.4 displays such a situation. The 2 exact

viewable intersections are the points A and B but we can see that the ray of interest

here, through the center C also intersects the extended planes sustaining the top and

bottom faces at the points D and E respectively, points that are clearly out of the faces

themselves.
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Figure 3.4: Intersections ray-cube.

With that in mind, we are interested to know, for any point of a given face, where

its correspondent lies on the plane sustaining any other face. Faces being planes to

some extent, we are therefore simply trying to find the transformation that transfers

us from the plane of one face to the other and that provides us with a 1 to 1 point

correspondence : this is an acceptable definition of a homography that is none other

than a plane transformation. This will prove very useful in the study of fundamental

matrices over the cubes particularly when it will come to computing epipolar lines over

the cubes. This will be later discussed in the next section.

Recall the notations in section 3.3. Let us consider in this section the faces fF and

fj for any j in {U, .., B}.Without loss of generality, if we consider the world coordinate

system to be attached to the center of the cube with axis ’aligned’ with the front face

fF, the respective projection matrices for fF and fi are the following:

PF = K[I3|0] (3.7)

and

Pi = K[Ri|0] (3.8)

With I3 the identity matrix of order 3. The projection matrices Pf and Pi differ only

up to a rotation Ri since the focal center is the same for all faces. Note that for all i,

Ri = R(θ)axis with θ in the set {−π
2

, 0, π
2
, π} and axis standing for x, y, or z depending

on the face : for example Rr = Rx(
−π
2

). For the detail of the other matrices consult

appendix C. For a point X in space, its projections are xF and xi and are given by :
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x̃F = PFX (3.9)

and

x̃i = PiX (3.10)

From (3.7) and (3.9) we can extract an expression for X as done in [14]:

X =

(
ZK−1x̃F

1

)

Replacing this expression of X in (3.10) we obtain :

x̃i = ZKRiK
−1x̃F (3.11)

Let us note :

Hi = KRiK
−1 (3.12)

As a consequence, (3.11) becomes :

x̃i = ZHix̃f

which in projective space is equivalent to (notice Z is scalar) :

x̃i = Hix̃F (3.13)

In the general case, i.e between any two faces i and j, the previous equation applied

to x̃i and x̃j allows us to write :

x̃j = KRjR
−1
i K−1x̃i = Hij x̃i (3.14)

with :

Hij = KRjR
−1
i K−1 (3.15)

To conclude this section, we have established a formula (3.14) that allows us to

transfer any point of the cube to its projection through the center of the cube to the

plane sustaining any given face.



Cubic Panorama Rectification 40

3.5 Fundamental matrices and Epipolar lines

Let us start by mentioning that many elements of the first chapter related to epipolar

geometry for two images appear in this section. As a matter of fact, this section can be

seen as an extension of the concept of fundamental matrix to the case of cubic panoramas.

The formulation of the problem is somewhat different and some constraints need to be

considered to be able to transfer the methodology deriving from conventional stereo

configuration. For any point on a cube, we want to define on what hyper-plane lies its

correspondent in the other cube. The main constraint in this approach is the necessity

to view the pair of cubes as 6 stereo image pairs. This means that the portion of the

scene visible in one face is partly or ideally entirely visible in the corresponding face of

the other cube to ease matching and avoid intermediate re-projection steps as it will be

explained next. It is important to note that this part of the study gives us a starting

point for our study of cubic epipolar geometry by establishing a good theoretical and

mathematical basis illustrated by interesting preliminary results : if a pair of cubes is a

system of 6 stereo pairs therefore generating 6 fundamental matrices, is there any relation

between these matrices given the intrinsic structure of the cube ?

It is obvious that one of the fundamental matrices at least is needed to start answer-

ing this interrogation. First let us note that the standard 8 point algorithm mentioned in

[12, 13, 31] and briefly discussed in the first chapter, is used to compute the “generating”

fundamental matrix between the faces of concern. As mentioned in the preceding para-

graph, we chose to have a slight constraint on the cubes consisting in corresponding faces

displaying enough overlap for an easier matching process. In case the matches are not

all on corresponding faces, a simple and direct remedy to this situation is to apply (3.14)

to the concerned matches to re-project them on the right plane resulting in matches all

in the same face plane, and this, for both cubes.

The matches are extracted from - possibly - corresponding faces manually or using

the PVT Tool described in [29]. The rest of the procedure explained below is carried on

once one of the possible 6 fundamental matrix is computed. The previous relationship

(3.13) established between projections of a 3D point on 2 faces can be combined to the

fundamental matrix expression. For 2 faces i ∈ (U, · · · , B) in correspondence in 2 cubes,

we have the following form of the epipolar constraint :

x̃′i
T Fix̃i = 0 (3.16)

Where x̃i and x̃′i are matches on the i face of respectively C and C ′. Finally, (3.13)
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in (3.16) yields :

x̃′TF HT
i FiHix̃F = 0 (3.17)

From which we conclude :

FF = Hi
T FiHi (3.18)

or :

Fi = Hi
−T FFHi

−1 (3.19)

With Hi = KRiK
−1 as defined in (3.12). A general equation can be found as in

the case of the homography to be able to swap between any two faces i and j when

considering their fundamental matrices. We thus have what follows :

Fj = H−T
ij FiH

−1
ij (3.20)

with Hij defined in (3.14)

Thus, given that we are able to compute one of the possible 6 fundamental matrices

for a pair of cubic panoramas, we have proved that it is also possible to recover all the

other fundamental matrices. An illustration of this interesting results is the computation

of the epipolar lines over the cubes.

As a matter of fact, let us consider two cubic panoramas C and C ′. For any point x̃i

on a face i of C, it is possible to recover the corresponding epipolar line on face i of C ′ by

simply applying the basic formula : li = Fix̃i. For the other lines -exactly 3 since a plane

through the center of a cube intersects the latter in 4 lines - the point x̃i is re-projected

onto all the remaining faces of interest using 3.14 resulting in points x̃j and associated

epipolar lines given by the same formula as previously :

lj = Fj x̃j = FjHij x̃i (3.21)

This formula is actually also valid for the “generating” face i since Hii = I3. (3.21)

is therefore a general formula to obtain the epipolar lines associated with a given point

provided that one of the fundamental matrices was recovered before hand causing all

matrices to be easily computable. Some examples of lines associated to points for a pair

of cubes are displayed in Fig.3.7 as junctions of white segments. The points marked by

red squares on one panorama and the epipolar are the white lines in the other panorama.
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Note the consistency of the geometry since all lines are joined when considering adjacent

faces. This is an illustration of the epipolar plane that will be mentioned in the next

section in more details : one point is associated to a set of lines due to the fact that it

is actually associated to a plane through the center of the other cube !

3.6 Essential Matrix and Epipolar plane

In the previous sections we established the epipolar geometry based on a stereo approach

that relied on a calibration matrix considered ideal and on the restraining consideration

that we were dealing with 6 stereo pairs. The notion of essential matrix is introduced

here for many reasons and helps making the study of the geometry simpler as it is a

compact form of all relationships for all faces. It also a way to reinforce the geometry

already established with fundamental matrices as all approaches should fuse in a single,

uniform, consistent and elegant solution.

In this section we mainly try to define properly the simplest relationship in a cubic

panoramas correspondence. For two images, we were introduced to the link point-line.

For two cubes, we had in the previous section the link point-lines. Here we establish

the link point-plane and show the consistency with the previous method. Only here, the

process proves to be simpler and more efficient. It will therefore become our tool of choice

when dealing with cubic panoramas epipolar geometry. First some more justifications

on the study of the essential matrix will be given, then will follow some computation

details. This section ends with some results to illustrate the methodology adopted.

3.6.1 Essential matrix vs. Fundamental matrices

The fundamental matrix of two cameras, as we have seen in the previous chapter, is

given by solving the epipolar constraint provided some matches are known (at least 8):

x̃′T F x̃ = 0 (3.22)

If the rotation and the translation between both cameras are respectively R and t,

K being their common calibration matrix, the expression of F was given as :

F = K−T t×RK−1 (3.23)

With t× the antisymmetric matrix derived from the vector t. Recall it is given by

(3.2).



Cubic Panorama Rectification 43

By definition [14, 31], the essential matrix embeds more information than its coun-

terpart discussed in the previous section. As a matter of fact, it is an expression of the

epipolar constraint in terms of the normalized coordinates of the points of interest (i.e

their coordinates in the 3D camera frame): if an image point is noted x̃ then, given the

calibration K, the associated point p of corresponding normalized coordinates is defined

by :

x̃ = Kp or p = K−1x̃ (3.24)

As done in [14], by replacing (3.24) and (3.23) in (3.22), we obtain the following :

p′T t×Rp = 0 (3.25)

By definition the essential matrix is :

E = t×R (3.26)

Up to a scale, E characterizes completely the geometry between two cubes, just as

completely as the fundamental matrix in the case of stereo images. This will be referred

to often, in the rest of the text, as E establishing the geometry of a pair of cubes. That

being said, (3.25) becomes :

p′T Ep = 0 (3.27)

We need to know the calibration information to be able to estimate E since normalized

coordinates are to be used (Refer to equations (3.24) and (3.27)). Nonetheless, in the

case of the cubic panoramas, we have seen that the calibration matrix was as intuitive

as it is simple and intrinsically linked to the structure of a cube; previously established

equation (3.6) specifies its value.

Moreover, normalized coordinates in the case of cubes are equivalent to cube frame

coordinates. Estimating E then becomes a matter of solving the classical problem of

the epipolar constraint adapted to the case of cube frame coordinates with for example

the 8 point algorithm used previously for the fundamental matrices and discussed in

[12, 13, 31, 14, 8].

As a summary, the essential matrix presents the advantage of using cube coordinates

that coincide with normalized coordinates. What is usually a difficult entity to recover -

i.e normalized coordinates - is well known here in the case of the cube due to its structure.

As a consequence, a cube is treated as a whole and not as a multi-camera system as for
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Figure 3.5: Conversion from 2D image coordinate to 3D cube coordinates.

the case of the fundamental matrices. This mainly results in simpler algorithms and

more “global” approaches.

3.6.2 Matches : From 2D to 3D

Similarly to what is done for fundamental matrices, the support of the algorithm consists

in matches between a pair of cubes. This is needed before any computation of any kind

can take place. Thus, the matches needed for the estimation of E are selected for the

sake of simplicity on the cross pattern images of the cubes either manually or using for

example the PVT tool [29].

As noted earlier, the 2D coordinates of a point on a face of the cube allow an easy

recovery of the corresponding 3D coordinates of that point in respect to the reference

frame displayed on figure 3.2(a). This is used during the matches selection and consists

in what follows.

Applying the right offset values (coordinates of top left corner of face in the cross

pattern image) in the x and y directions converts these coordinates into their equivalent

with respect to the faces of interest. Once these “face” coordinates are known the

“conversion” to 3D coordinates in the cube frame seen in figure 3.2(a) is a matter of

applying a simple transformation noted Ti. If x is a 2D point on face i, p = Tix̃. The

expressions of the transformations Ti can be found in appendix B. The conversion process

is illustrated in Fig.3.5



Cubic Panorama Rectification 45

Figure 3.6: Epipolar plane through the camera centers and a 3D point.

3.6.3 The epipolar plane

Fig.3.6 illustrates the concept of epipolar plane. By definition, it is simply the plane

through both cubes centers and the 3D point X[14]. Approaching the problem from the

point of view of E is a switch of paradigm that proves to be quite efficient. The dimension

of our “working” space is increased by one and this has the advantage of making us work

with a plane instead of lines.

Equation (3.27) is in some way the expression of the epipolar plane. As a matter of

fact [8] gives the following geometric interpretation of the constraint. Vectors p and p′

are coplanar if they correspond to matches over two cubes : (3.27) is the dot product of

p′ (resp. p)and the normal to the plane in question given by Ep (resp. p′T E). A plane

through the origin of a coordinate frame is totally defined by its normal. This why Ep

can be referred to as the epipolar plane with respect to the reference frame of cube C ′

(resp. p′T E is the epipolar plane with respect to reference frame of cube C).

It the intersection of this plane with both cubes that provide the set of epipolar lines

that where computed individually earlier. The epipolar plane therefore gives a closed

form of the geometry associated with two cubes once it is totally defined i.e once E is

computed from pre-established matches.
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3.6.4 Estimate E

The proper form of matches being known at this point ,we apply the 8 point algorithm

discussed by [8, 14] among others to solve for E from the known pi on C and C ′ : we

solve the classical equation p′Ti Epi = 0. As a matter of fact we use a variant of the DLT

algorithm used in the first chapter (Chapter 2) to evaluate either a fundamental matrix

F or a homography H from pre-selected matches.

Scaling

The first step in the DLT algorithm is the normalization of the matches used in the

estimation. Recall that this normalization aims at transforming the set of points into a

cloud of centroid at 0 and of average distance to the centroid equal to
√

2. This procedure

is much simpler in the case of E for cubes by the fact that the points all belong to a

cube since all matches are already centered in 0. We therefore just apply a scaling of the

3 coordinates of all pi by their maximum possible absolute value which is L
2

with L the

side of the cube.

Forming a new system of equations

Next, we need to re-write (3.27) into an equation of the form :

Ah = 0 (3.28)

where h = (e0, e1, · · · , e8)
T stands for the elements of E in a single column vector.

Each pair i of matches (pi, p
′
i) produces one equation of the form :

Aih = 0 (3.29)

With :

Ai =
[

pixp
′
ix piyp

′
ix pizp

′
ix pixp

′
iy piyp

′
iy pizp

′
iy pixp

′
iz piyp

′
iz pizp

′
iz

]
(3.30)

The resulting matrix A is just a concatenation of all row matrices Ai produced by all

available pairs.
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First estimate of E

The third step of the algorithm is the resolution of the new equation (3.28). [8] states

that the solution to such a system with the right singular vector corresponding the

smallest singular value of A just as it was the case for the fundamental matrix and the

homography computation. This result in h that provides us with an estimate of E noted

Ẽ.

Singular values equalization

The the singular values of the best estimate Ẽ of E are equal and typically if a and b are

the two singular values of Ẽ, we force them to s = a+b
2

, the third singular value being

null [8]. Ẽ is then recomputed by multiplying the new diagonal matrix of singular values

(now equal) by the left and right singular decomposition matrices.

Observations

We obtained decent accuracy when using this slightly modified DLT. Let us note however

that a strong match localization affects the accuracy of E as the latter is precise for those

matches but does not respond well to extrapolated points i.e points not in the original

cloud of matches. Matches well spread over the surface of the cubes are therefore strongly

suggested.

3.6.5 Results

The pair of cubes that has been rectified is displayed in Fig.3.11. Note that they re-

spectively the same as the cubes in Fig.3.3 and Fig.3.7. All the previous tools being in

place, we should be able to estimate the essential matrix between two cubes provided a

“good” set of matches. We have seen the matches selection and the transformation to

cube coordinates. Then we presented the concept of epipolar plane that necessitated the

estimation of E. The latter was also described and obviously required the fore mentioned

matches. Once the essential matrix is known, it is possible to obtain for any point of the

surface of the cube, its associated epipolar plane i.e also the set of associated epipolar

lines.

As a matter of fact, for a point x̃ on a face of a cube C in correspondence with

another cube C ′, its cube coordinates are p = Tix̃ with the Ti given in appendix B. To

this point p in C corresponds the plane Ep in cube C ′. The intersections of Ep with C ′
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Figure 3.7: Epipolar lines over a cube from the E and the matrices F.

are provided by a set of equations in appendix B : the result is a set of 4 lines that should

be identical to the previously computed epipolar lines from fundamental matrices. To

give an example of the consistency our approaches, a sample of lines obtained with both

methods are displayed on figure 3.7 : white lines are generated using F and red lines

are generated with E. The points selected in the other cube of the pair are indicated by

small red squares on Fig. 3.3.

As predicted, both solutions fusion to equally describe the geometry between two

cubes. Only, the essential matrix is simpler and more intuitive.
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Figure 3.8: Distance point to plane for all matches

Numerical observations

This paragraph is a short numerical example of the estimation of the essential matrix for

a sample pair of cubes. The pair used here is the same one that appears in Fig.3.3 and

Fig.3.7. Its essential matrix is computed using 56 matches and has the value :



−0.0189908 −0.0853818 −0.0272546

−0.143047 −0.0851576 −0.307995

−0.0159993 0.332007 −0.0973107


 (3.31)

It is a priori difficult to evaluate the accuracy of the DLT algorithm used for the

estimation. A good measure to achieve this is the distance from a point to its associated

epipolar plane. Ideally the distance should be null since the point should lie on the

plane so the smaller the better when it comes to this entity. The way to compute it is

simple. Given a plane P through 0 of normal n = (a, b, c)T , and a point p, the distance

point-plane is given for example by [28]:

d(p,P) =
|n.p|
||n|| =

|ax + by + cz |√
a2 + b2 + c2

(3.32)

Thus we compute this distance for all matches and the resulting graph is shown in

Fig.3.8. The average error is 0.7452pixels which is a very satisfactory result despite the

fact that there is some pre-processing during the cube generation and that some ideal

assumptions were made about the calibration matrix among other things.
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3.7 Application: cube rectification

Characterizing the geometry of a pair of cubes was done previously by using an extension

to stereo images procedures through multiple fundamental matrices. Moreover, a closed

form recovery was also introduced and used the essential matrix. Up to a scale, the latter

completely characterizes the relationship between two cubes. The procedure to obtain

it consisted in getting matches over the cubes, convert them into cube coordinates, and

finally estimate the essential matrix E using a variant of the 8-point algorithm.

The present section will help cement the previously established theory with more

than the epipolar lines, the only illustration we have seen so far. As a matter of fact,

just as rectification was used in chapter one to demonstrate epipolar geometry for stereo

images, we present the equivalent in the cubic panorama case that is not surprisingly

named cube rectification.

3.7.1 Objective

Cube rectification is to cubic panoramas what epipolar rectification is to planar images.

As a matter of fact, for a pair of cubes, the associated essential matrix E carries the

information of the epipoles directions and of the rotation between the frames. Using

that information, just as it is done with the fundamental matrix in the case of planar

images, we aim at finding the rotations that - by analogy with the homographies for

images - will be applied to each of the panoramas to obtain a rectified configuration.

In such a configuration, both panoramas have all their corresponding faces parallel and

coplanar as can be seen in Fig.3.9. This extension to the equivalent planar image concept

is particularly useful as a starting point of in-between viewpoint interpolation for cubes.

3.7.2 Principle

For two images, the epipoles were literally sent to infinity in the x direction to solve the

rectification problem as it is done for example in [13, 21] : two rectifying homographies

H1 and H2 were applied to each image to achieve rectification. To be able to rectify

two cubes in any configuration, on top of computing the essential matrix E for the pair

of cubes, we follow an analog principle by finding two rotations R1 and R2 that align

the cubes in a preferred configuration. As a matter of fact, if we define pi = Rimi or

mi = R−1
i pi for i ∈ 1, 2 and the points p1 and p2 of cubes C1 and C2, we have from (3.27)

:
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Figure 3.9: (a) Cubes in general configuration (b) Rectified cubes

pT
2 Ep1 = 0 (3.33)

(R2m2)
T E(R1m1) = 0 (3.34)

mT
2 RT

2 ER1m1 = 0 (3.35)

mT
2 Erm1 = 0 (3.36)

With :

Er = RT
2 ER1 (3.37)

After applying the rotations Ri to each cube Ci, the resulting configuration can be

seen on figure 3.9. It basically shows that the rotations Ri are such that the x axis of both

cubes coordinate systems merge into a common axis between both cubes going through

both centers (baseline axis): the difference between the cubes C1 and C2 becomes only

translational along the x axis, the original rotation being reduced to the identity matrix.

In such a configuration [14, 21] shows that, using equation (3.26), the corresponding

essential matrix is :

Er = [(1, 0, 0)T
×I3 =




0 0 0

0 0 −1

0 1 0


 (3.38)
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This is a lot reminiscent of what is done for example in [13, 21] for the case of stereo

images where homographies become rotations and the fundamental matrix is replaced

by the essential matrix.

The interest of such a procedure resides in the possible use in other applications. For

example such rectification could greatly ease cubic panorama interpolation, disparity

estimation just like in the case of stereo rectification in the case of images. It could

also help stabilize an almost linear sequence of cubes aligning them one by one along a

common direction reducing navigation jitters.

Let us note that [11] also mentions a rectification process. The main difference is that

the cubic panoramas are only rectified by a rotation along their vertical axis. This implies

that the cubes must lie, in their original configuration, in the same plane. In our case, we

cast away this constraint by solving the general configuration problem. Therefore there

is no restriction on the capture process of the cubic panoramas of interest.

3.7.3 Extracting Epipoles

Needless to say, computing the essential matrix E(see previous section) is the preliminary

step of this procedure. Once E is known, we then need to recover its epipoles. Similarly

to their definition in the chapter on epipolar geometry for images, the epipoles in the

cubic panorama context are unit vectors encoded in the essential matrix and noted e1

and e2. e1 (resp. e2) is basically the direction in which C2 (resp. C1) is located with

respect to the cube C1’s (resp. C2’s) frame.[8, 7] notes as a property of the essential

matrix that :

Ee1 = 0 and eT
2 E = 0 (3.39)

Both vectors e1 and e2 are recovered from a SVD decomposition of E. They respec-

tively correspond to the right and left singular vectors of least singular value that is

ideally 0. Fig.3.9 displays the epipoles of the pair.

3.7.4 Computing rotation R1

To recover the first rotation R1, the x axis of the C1 reference frame has to be aligned

onto e1. In other terms, the rotation R1 needed here is such that :

R1(1, 0, 0)T = e1 (3.40)
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This can be done in a geometrical manner. In general, if we are looking for a rotation

R such that for two non null and non collinear vectors u and v, we have Ru = v we can

proceed as follows :

• First look for the axis of rotation w. It is given in this case by the cross product

w = u× v.

• Next, we recover the angle θ such that R = Rw(θ). This is done using the following

formulas :

u.v = ||u||||v|| cos(u, v) (3.41)

u× v = ||u||||v|| sin(u, v) (3.42)

They allow us to recover :

tan θ =
u× v

u.v
(3.43)

Once the axis w and the angle θ are recovered we use equation (3.5) to obtain R.

Special attention is needed for collinear vectors, situation in which the rotation is a trivial

one : either identity, or a reflection. For orthogonal vectors u.v = 0 and the division by

0 implies a π
2

angle. This can also be “caught” before hand. To recover R1, we thus need

to consider u = (1, 0, 0)T and v = e1 and those special cases if necessary.

3.7.5 Computation rotation R2

For R2, an identical procedure as the one used for R1 is used here. The only difference is

the fact that the x axis of the reference of C2 is aligned onto −e2 instead of e2 as it would

have been the case for R1. This insures that both resulting x axis point int the same

direction, thus insuring the ideal essential matrix Erfor the new configuration defined in

(3.38).

Both rotations R1 and R2 are now known. Applying the latter of the respective

panoramas guarantees a configuration in which both cubes x axis are aligned. However,

nothing implies that the cubes are in the proper configuration face wise : the faces of

the cubes also need to be aligned similarly as what is done with image rectification.

Therefore an additional rotation on one of the cubes, in our case C2, has to be evaluated

to compensate the rotation computed above and finalize the rectification process (see

Fig.3.10).
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Figure 3.10: Rectification process with compensating rotation
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3.7.6 Computing the tweaking rotation Radd

We chose to compensate the rotation R2 applied on cube C2 with an additional rotation

noted Radd. To achieve this goal, two methods were designed both trying to solve the

same problem of estimating Radd such that :

(RaddR2)
T ER1 = Er (3.44)

The rotation R2 in section 3.7.5 is then pre-multiplied by Radd to obtain the final

rotation on C2. To avoid any possible confusion, we will note R2 the final rotation

applied to C2, by r2 the rotation computed in section 3.7.5. We therefore have :

R2 = Raddr2 (3.45)

The first solution is a “brute force” one. The problem is solved as it is by solving (3.44)

as a minimization problem with the elements of Radd as variables. The second solution

is a direct and geometrical one in which we use our knowledge of the configuration of

both cubes to compute the unknown rotation.

Using minimization

The solution presented here follows the template laid out by [21] for its distortion reduc-

tion algorithm (see image rectification in chapter 1 for more details). As a consequence

the problem is re-written as follows :

(Raddr2)
−T EmR−1

1 − αE = 0 (3.46)

α is a new unknown on top of the elements of the rotation Radd and stands simply

for a scale factor. As a matter of fact, the equalities in (3.44) or (3.46) are up to a scale

factor.

We know that the additional rotation will be of axis x. We also know Er, R1, r2 and

E. The fact that we know the axis of rotation reduces the number of unknowns in the

equation above to 2 : the rotation angle θ around the x axis and α. The equation (3.46)

can then be considered of the form :

f(θ, α) = 0 (3.47)

It is a minimization problem that we solved in C++ using the simplex algorithm [22].

But really, any state of the art multi-variable function minimization algorithm could be
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used (for example the popular fminsearch in Matlab). Once θ is found, we use (3.5) to

obtain Radd = Rx(θ).

Direct geometric solution

The rotation that we are looking for is a rotation of angle θ around the x axis. As

a matter of fact, once the rotation R1 and r2 are applied, both cubic panoramas are

in a configuration where they differ only by a translation on the x axis and by an

unknown rotation of angle θ around the x axis (see Fig.3.10). The essential matrix E ′
r

that corresponds to such a configuration is given by :

E ′
r = t×Rx(θ) (3.48)

but also by :

E ′
r = rT

2 ER1 (3.49)

Using (3.2) and the general formula Rx(θ) =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 allows us to write

(3.48) as :

E ′
r =




0 0 0

0 − sin θ − cos θ

0 cos θ − sin θ


 (3.50)

The fact that all variables on the right hand side of (3.49) allows us to recover the

values of sin θ and cos θ by considering (3.49) equal to (3.50). Using the inverse tangent,

θ is computed and as a result, so is Radd = Rx(θ).

3.7.7 Results and Observations

Both methods were implemented on the same pair as the one studied in the previous

section. Each cube of the pair is shown respectively in Fig.3.3 and in Fig.3.7, and both

panoramas are displayed in Fig.3.11. The essential matrix is computed from 56 matches

and has the value given in (3.31). The procedure explained in 3.7.2 is followed to compute

the rotations R1 and R2.
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Minimization approach

The minimization based method produces the rotations :

R1 =



−0.9121 0.0679 −0.4042

0.0742 0.9972 0.0000

0.4031 −0.0300 −0.9147


 and R2 =



−0.9660 0.0853 0.2442

0.1517 0.9515 0.2676

−0.2095 0.2955 −0.9321




(3.51)

The product expressed in equation (3.37) should ideally give us the matrix Er. Com-

puting this product with our estimated rotations is a good measure of how close they

are to ideal solutions. For the minimization based method, we have :

RT
2 ER1 =




0.0000 0.0000 0.0000

0.0000 0.0098 0.3541

0.0000 −0.3541 0.0098


 (3.52)

The result is quite satisfying since the resulting matrix is really close to the ideal

essential matrix up to a scale factor of −0.3541.

Direct geometric solution

For the direct geometric solution, we obtain the following rotations from the same essen-

tial matrix and matches as above :

R1 =



−0.9121 −0.0742 −0.4031

0.0742 0.9373 −0.3404

0.4031 −0.3404 −0.8495


 and R2 =



−0.9660 0.1690 0.1958

0.1517 0.9833 −0.1006

−0.2095 −0.0675 −0.9755




(3.53)

The rotations obtained here are very close to the ones obtained in the previous case.

This shows the consistency in the approach. However the product that is used as a test

measure gives us, in this case :

RT
2 ER1 =




0.0000 0.0000 0.0000

0.0000 0.0000 0.3542

0.0000 −0.3542 0.0000


 (3.54)

This is what is expected in terms of ideal essential matrix up to a scale factor of

−0.3542. (3.52) and (3.54) show that both approaches a quasi identical. The almost
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imperceptible advantage goes to the direct geometric solution from a numeric point of

view. This decision is much clearer when it comes to simplicity and efficiency as selection

criteria

Finally, Fig.3.13 shows a 3D rendition of the situation that we are facing. In the

foreground are the cubes in their original configuration. This is reproduced up to a scale

as far as the distance between both panoramas. We essentially used t and R extracted

from E to be able to recreate the original situation (see method in appendix D). In the

background are the rectified cubes. The rectification is easily perceived visually. The

rotations used here are the ones obtained by the direct geometric method. Note that the

same rendition in 3D with the other solution (minimization) has visually no difference

with this one, in other words, the difference is really too small to be perceived. To end

this results section, Fig.3.12 presents the rectified pair of panoramas corresponding the

result obtained from the pair in Fig.3.11.

3.8 Conclusion

Cubic panoramas offer through their structure many advantages that were exploited in

the present chapter. Prior knowledge of epipolar geometry for non panoramic cameras

was molded to fit the particular case of cubes proving once more the engineering aspect

of this whole study : use available tools to develop and reinforce new algorithms and

possibly extend existing theory to new grounds.

It is explicitly what was done here by building a transition from a simple camera

system to a multi-camera system. The equivalent of important epipolar entities and

relationships were found for cubic panoramas. Thus we first introduced the fundamental

matrix concept in a stereo cube configuration. Not one but 6 fundamental matrix are

necessary to characterize the geometry of a pair of cubes even if we have seen that one

matrix could “generate” the others.

This first attempt to conceptualize cubic panorama epipolar geometry was reinforced

by the concept of essential matrix. Allowing the consideration of a cube a whole and not

as 6 cameras, the essential matrix is a simple and efficient mean of characterization. Both

methods produce epipolar lines over the panoramas allowing us to verify their validity

and their consistency.

Finally, as an illustration of the established entities, cubic panorama rectification was

undertaken. The concept is also based on epipolar rectification for images, although

being in 3D space implies the use of rotations instead of homographies. Essentially
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Figure 3.11: Pair of cubic panoramas before rectification.
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Figure 3.12: Pair of cubic panoramas after rectification.
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Figure 3.13: Cube Rectification : original configuration (front) , rectified pair (back)
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two methods were presented to estimate the rectifying pair of rotations each producing

consistent results. However, a direct geometric solution provided a simpler and more

elegant approach to the problem.

Adapting existing algorithms to cubes proved to be a success when certain consid-

erations were carefully followed. We surely cannot blindly apply standard stereo image

theory to cubes but we can definitely use it as a starting point. The next chapter even

goes further in the idea of illustrating the epipolar geometry for cubes with the cube

alignment concept as well as the pose recovery from cubes. Once again, it will heavily

rely on state of the art processes such as bundle adjustment.



Chapter 4

Pose Recovery Applied to Cubes

4.1 Introduction

Cube rectification was presented in the previous chapter as a possible application of the

study of cubic panoramas’ epipolar geometry. Another application, namely the camera

pose recovery problem in the case of spherical panoramas, is discussed here. It consists

essentially in using visual information extracted from a sequence of images to estimate

the motion parameters of each of the cameras involved in the capture process. A solution

to this problem can be exploited in many ways. One could for example localize objects

of the scene from given features or insert a virtual object into the environment at a given

position. One could also take advantage of the motion parameters, in a virtual navigation

application, to adequately position the images with respect to the environment, to ensure

consistent and fluid navigation and to ease the process of image interpolation.

The pose recovery problem has been quite extensively addressed in the literature

especially for the case of planar images and essential matrix based methods. For example,

Zhang provides in [32] a starting point for any structure from motion procedure based on

the essential matrix. His method identifies some constraints used during reconstruction

and puts the accent on the refinement of the essential parameters extracted from the

essential matrix.

Carceroni et al. present a method that relies on some properties of the Special Or-

thogonal Group SO(3) [6]. It is a feature-based procedure that uses a GPS to recover

camera orientation from known positions of multiple cameras. Constraints on the essen-

tial matrices between the images are established resulting in overall rotations estimation.

Their work is a special case of the problem discussed in this chapter in which only the

63
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rotation components remain to be estimated. The algorithm presented here applies to

spherical panoramas in general unknown positions.

Makadia et al. present in [20] a method to recover the rotation from two spherical

images. This method also uses properties of the Special Orthogonal Group SO(3) in

addition to “the persistence of image content”. It has the advantage of not being based

on feature points. One of the images is rotated during the search until it matches

the other in a harmonic coefficients space. The matching criterion is correlation-based.

Nonetheless, the rotation estimation being the only point of interest of this method no

translation information is extracted.

Ramalingam et al. ’s work in [23] is very similar to the subject in this chapter. The

similarities are found at many levels. Their pose recovery framework applies to spherical

images and relies on matches and the essential matrix as well as a bundle adjustment

for motion parameters estimation. The motion parameters are refined all at once in

the bundle and cross-scenarios with different types of cameras are investigated with a

necessary calibration step. The latter are the main differences with what is done here.

Finally, Fiala et al. in [11] present a method based on the essential matrix to recover

the relative orientations of panoramas belonging to a sequence. The assumption is made

that the rotations are only along the vertical axis which is valid in the case of a capture

process that maintains the camera in the same plane. Our work differs in that it does not

rely on any assumption on the rotations and that rotation and translation are treated

separately.

Thus, this chapter describes a two-stage algorithm to retrieve the camera motion

from a set of spherical panoramas represented in a cubic format. The first stage is the

estimation of the relative rotations with respect to the world frame. A bundle adjustment

approach in conjunction with pair-wise essential matrices is used to recover each rotation

in a global solution. Once each rotation is known, one can then obtain a configuration

in which all camera frames are aligned with respect to each other. This configuration

achieves what will be designated as “cube alignment”, an extension of the concept of

cube rectification - presented in presented in Chapter3 - to a given number N of cubic

panoramas.

The second stage uses the resulting configuration from the first step. Since negligible

rotation now exists between each camera frame, the problem becomes a pure translation

estimation. The final solution, up to a scale, is obtained using an error minimization

approach.

The layout of the chapter is as follows. First, some useful notations and reminders are
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presented, followed by the concept of cube alignment, the first stage of the pose recovery

algorithm. Next, is discussed the translation estimation from an aligned configuration to

complete the recovery process as the second stage. This chapter ends with some results

obtained on two sets of cubic panoramas, respectively captured indoor and outdoor.

4.2 Notations

The set of all cubes that are of interest in the bundle adjustment algorithm is noted C.

For a given cube c, the set of cubes that share some matches with the latter is noted

M(c). Moreover, F(c, c) stands for the set of common features for a pair of cubes (c, c̄).

Any entity related to a given set of cubes c1, · · · , cN and other variables a1, · · · , an will

have (c1, · · · , cN , a1, · · · , an) appended to its symbol for example a rotation R associated

to a cube c̄ will be noted R(c̄), the translation t between cubes c and c̄ is noted t(c, c̄);

all these notions stand as mentioned here unless otherwise specified.

4.2.1 Tensor notations and useful properties

We will also make use of the tensor notation to manipulate complex equations in a much

simpler way. It is important to note that for a given indexable entity such as a vector or

a 3 by 3 matrix, its tensor notation is of the type :

Ai1···iN

where N is the order of the tensor. For a more complete introduction on tensor calculus

the reader should refer to [15]. Here we are only interested in tensor notations of 3

element vectors and 3 by 3 matrices and we present a short summary of some properties

retrieved from the previously mentioned source. For example :

• pi, i = 1, 2, 3 represents the components of a 3D vector p

• Rij, i = 1, 2, 3 and j = 1, 2, 3 represents the components of a 3 by 3 matrix R

In addition we use some fundamental results of tensor calculus concerning the triple

scalar product of vectors as well as the concept of summation or Einstein’s summation

very nicely described in [15]. The latter case states that if an index, in a tensor notation

context, is repeated not more than twice on a side of an equation, this implies a summer
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on that index-called summation index -, over the range of that index. A possible example

of this is the expression of the scalar product of two vectors p and q. We know :

p.q =
N∑

i=1

piqi,

if N stands for the dimension of the vector space of interest. The summation property

stated above gives us :

p.q = piqi (4.1)

Where the sum symbol is omitted since implicitly considered. As it can be seen,

this property greatly lightens up equations involving multiple summations as long as the

indexes are used soundly.

To end this paragraph, we mention the last equation related to the tensor notation

that will appear to be quite useful in the next sections. As a matter of fact, the triple

scalar product of three vectors u, v and w classically given by :

[u, v, w] = (u× v).w =

u1 u2 u3

v1 v2 v3

w1 w2 w3

can be re-written as follows thanks to the summation property :

[u, v, w] = (u× v).w = εijkuivjwk (4.2)

Assuming i, j and k can take any value in {1, 2, 3}, the symbol εijk is known as the

permutation tensor and is defined in [15] by :

εijk =





0 , if i = j or j = k or k = i

1 , if (i, j, k) is an even permutation of (1, 2, 3)

−1 , if (i, j, k) is an odd permutation of (1, 2, 3)

(4.3)

As a reminder, σ = (i, j, k) with i, j, k ∈ {1, 2, 3} is an even (resp. odd) permutation

of (1, 2, 3) if the number of permutations applied to (i, j, k) to turn into (1, 2, 3) is even

(resp. odd).
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4.2.2 Exponential representation of rotations

In the preceding chapter, we mentioned different definitions related to rotations.This is

just a reminder of previously established and enounced properties. For a given rotation

R of non null angle θ and of axis guided by the unit vector v, its Rodrigues vector ω is

given by :

θ = |ω| (4.4)

v =
ω

θ
(4.5)

the associated matrix to R has the following exponential representation:

R = I3 + sinθ[v]x + (1− cosθ)([v]x)
2 (4.6)

Where [v]× stands from the antisymmetric matrix derived from the unit vector v :

[r] × =




0 −v3 v2

v3 0 −v1

v2 v1 0




4.3 General pose estimation algorithm

To solve the pose estimation problem applied to spherical images, we have designed an

algorithm that is divided into a preliminary stage and the previously mentioned two-stage

pose recovery itself.

• The preliminary stage consists in computing the essential matrix of all the pairs of

panoramas for which a sufficient number of matches is available.

• The first stage of the pose recovery is to find the rotation to be applied to each

cube so that, in the resulting configuration, all panoramas of the set only differ by

a translation, all corresponding faces being parallel but not necessarily coplanar

as it is the case in the rectification method. This results in what we called cube

alignment.

• The second and final stage of the pose recovery is to start from the aligned set of

panoramas to estimate their relative positions with respect to one another up to a

scale. This translation estimation step relies on results of the first stage and allow

the recovery of the camera positions.
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4.4 Cube alignment

The problem of cube alignment is quite succinctly summed up by Fig. 4.1. In comparison,

the rectification process is showed in Fig. 4.2. The difference could seem obvious visually

but requires a little more elaboration theoretically. On one hand, cube alignment consists

essentially in removing the rotational component that separates different cube frames

resulting in cubes all facing the same direction without necessarily being aligned on their

pairwise center-joining axis. On the other hand, cube rectification requires that, for a

given pair of cubes, the resulting configuration is one in which the cubes are perfectly

aligned (for each pair of corresponding faces considered) along the axis joining their

centers which is also the epipolar axis.

We observe that the rectification process is a particular case of the cube alignment.

As a matter of fact, if cube alignment is applied to a pair of cubes that differ by a

translation along one of the base axis x, y or z composed with a rotation, the result is a

rectified pair of cubes as shown in figure Fig. 4.3 : the cube in red is obtained from the

cube on the left after a random rotation and a translation along the x axis.As a matter

of fact, cube rectification is more restrictive than cube alignment. For cube alignment,

all that is needed in parallel corresponding faces, which can be achieved by an infinite

number of rotations. For cube rectification, the resulting panoramas must not only have

parallel corresponding faces but also “look” in the same direction sustained by the axis

through their centers. The latter makes it difficult to rectify more than 2 panoramas

since these N cubes would have to share a common axis.

4.4.1 Why a bundle adjustment approach ?

We have mentioned previously that the configuration of the problem studied here is one

where an arbitrary number N of cubic panoramas are considered all at once (versus cube

rectification that involves a pair of panoramas). Fig. 4.1 shows the cubes in random con-

figuration with respect to one another. As said earlier, a very common problem in vision

is often to try to extract the structure of a scene from pertinent information retrieved

from each sensor. Usually this information consists in points of the scene observable

from multiple viewpoints. Each cube frame differs from the other by a translation and a

rotation; the latter rotation is what is estimated in this section for each of the involved

viewpoints. And for this purpose, we have chosen a bundle adjustment approach.

From [26], “bundle adjustment is the problem of refining a visual reconstruction to

produce jointly optimal 3D structure and viewing parameter(camera pose and/or calibra-
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Figure 4.1: Cube alignment.
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Figure 4.2: Cube rectification.

Figure 4.3: Cube rectification as a special case of alignment.
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tion) estimates”. In our case, the results that are sought after are the camera rotation

(The calibration of the cube being implicitly known) for all cubes. The choice of such

an approach is most of all guided by the fact that it is a “global” solution where each

variable (rotation in this case) has its influence on the final result. This balanced con-

cept is quite popular and has proven its efficiency in many applications [5, 26, 23] where

camera poses were computed in order to provide a 3D representation of a scene. The

extensive documentation and variety of applications as well as the very interesting work

on rotations estimation through the optimization over the Special Orthogonal Group

SO(3) by [17] are other factors that influenced our choice. Also a naive solution would

have been to extract and cumulate the motion from the pairwise essential matrices but

the error would increase rapidly.

The core of the concept relies on the error or cost function that is to be minimized so

that the parameters are estimated properly. In the usual case of camera pose recovery for

example, the cost function is the sum of all re-projection errors for all observed points

of the scene. In the case of cubic panoramas alignment, the cost function expresses

the re-projection error by evaluating the epipolar constraint for all available pairs of

panoramas.

4.4.2 From epipolar constraint to cube constraint

Let f be a feature in a scene (i.e also a 3D point) visible in cube c and c̄ with respective

cube coordinates p(c, f) and p(c̄, f) according to the notation convention described at

the beginning of this chapter. If R(c) and R(c̄) are the respective “aligning” rotations of

each of these cubes with respect with the world coordinate frame system, and t(c, c̄) is the

direction unit vector between the panoramas (in the coordinate frame of c), then epipolar

constraint suggests that the vectors R(c)p(c, f), R(c̄)p(c̄, f) and t(c, c̄) be coplanar (see

Fig.4.4). This is expressed by the following triple scalar product and residual :

r(c, c̄, f) = (R(c)p(c, f)×R(c̄)p(c̄, f)) •R(c)t(c, c̄) (4.7)

And ideally, the coplanarity implies that :

r(c, c̄, f) = 0 (4.8)

This gives rise to quite a natural choice for the objective function that is to be

minimized to zero. Since the coplanarity constraint has to be verified for all matches

between all possible pairs of cubes, the total error is given by :
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Figure 4.4: Epipolar/Cube constraint

e(Θ) =
∑
c∈C

∑

c̄∈M(c,c̄)

∑

c∈F(c,c̄)

r(c, c̄, f)2 (4.9)

This error function is similar to the one used by [5], but is of course adapted to the

case of cubes. It is important to note that the minimization of this cost function results in

estimates of the different rotations R1, · · · , RN represented by their Rodrigues vector (see

section 4.2.2) all stated under the single parameter Θ = (ω1x , ω1y , ω1z , · · · , ωNx , ωNy , ωNz).

The solution Θmin is such that :

e(Θmin) = 0 (4.10)

4.4.3 Solving for all rotations

This section describes the core of the algorithm that is somewhat summarized by (4.9)

but explained here for effective implementation. The steps mentioned next follow the

framework described in [5] to solve the problem of bundle adjustment for N cubes. Let

us, beforehand, note B the set of cubes for which a rotation has been found or is being

optimized : this is what is called the “bundle adjuster” in [5].

For all available pairs of cubes (c, c̄) that share matches, it is necessary to first com-

pute the associated essential matrix E(c, c̄) then extract the translation unit vector t(c, c̄)
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and the rotation ρ(c, c̄) between cube c and c̄ using the method mentioned in chapter 3

and appendix D.

While B does not contain all cubes of C {

• Add a cube c in C that is not in B and that has the highest total number of matches

with the cubes in B (or C if it is the first iteration)

• Identify the cube c̄ of B that best matches c and initialize the rotation R(c) associ-

ated with the current cube as follows :

R(c) =

{
R(c̄)ρ(c, c̄) , if B contains at least a cube

I3 , otherwise

Where ρ(c, c̄) is the rotation extracted from the essential matrix linking c and c̄ and

I3 the 3 by 3 identity matrix. The initialization above can be thought of as bringing

back the cube c to the world frame configuration first then rotating it into the best

matching cube position. This causes both involved cubes to be aligned but does not

guarantee alignment with all the other cubes of B.

• Minimize the error function given in (4.9) except the fact that the first sum is over

the adjuster B instead of the whole set of cubes C :

e(Θ) =
∑
c∈B

∑

c̄∈M(c,c̄)

∑

c∈F(c,c̄)

r(c, c̄, f)2 = 0

We used non linear solution available in Matlab under lsqnonlin with zero as a

goal and the jacobian of the residual defined in the next section.

• Process the next cube

}

4.4.4 Jacobian evaluation for minimization

To be able to specify the variation of the objective function that is minimized in the

previous section, it is necessary to evaluate the variation of the residuals that are squared

and summed up in the error function. We recall that Θ stood for all possible parameters

involved in the process describing all rotations that are being optimized. Considering
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that, the goal here is to compute : ∂r
∂Θ

. Equation (4.8) gives us the residual involving 2

cubes c and c̄ and a given feature f :

r(c, c̄, f) = (R(c)p(c, f)×R(c̄)p(c̄, f)) •R(c)t(c, c̄)

We exceptionally change slightly the notation for the sake of simplicity. Thus, R(c)

will be noted R, R(c̄) will be noted R̄. Idem for p(c, f) and p( ¯c, f). Finally t(c, c̄) becomes

simply t. Therefore the residual attached to a particular feature f becomes:

r = (Rp× R̄p̄) •Rt (4.11)

Using (4.2), the triple scalar product (4.11) can be rewritten using the tensor notation

introduced in section 4.2.1. Let us first consider the vectors :

u = Rp (4.12)

v = R̄p̄ (4.13)

w = Rt (4.14)

They correspond respectively to the following tensors (as a reminder, the summation

property states that the repeating indices on a same side of an equation implicitly stand

for a sum over the range of 1 to 3) :

ui = Rimpm (4.15)

vj = R̄jnp̄n (4.16)

wk = Rkrtr (4.17)

The fore-mentioned residual or triple scalar product can be expressed in terms of

these tensors as follows :

r = (u× v) • w (4.18)

= εijkuivjwk (4.19)

= εijkRimpmR̄jnp̄nRkrtr (4.20)

= εijkRimR̄jnRkrpmp̄ntr (4.21)
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Let us consider the tensor D that depends only on the components of the vectors p,

p̄ and t :

Dmnr = pmp̄ntr (4.22)

(4.22) in (4.21) gives rise to the following tensorial expression of the residual recalling

that εijk is given by (4.3) :

r = εijkRimR̄jnRkrDmnr (4.23)

[17] gives us an expression of the derivative of a given rotation R with respect to the

associated Rodrigues vector ω:

∂Rµν

∂δωα

= −εαµρRρν (4.24)

This expression is the one used in [17] in the author’s approach of the minimization

problem over the space of rotations using a gradient method with rotations matrices

represented by their exponential form. The reader is referred to the latter article for

more mathematical details on the way to derive the expressions used here.

(4.23) and (4.24) thus allow us to write :

∂r

∂δωα

= εijkR̄jnDmnr

[
∂Rim

∂δωα

Rkr + Rim
∂Rkr

∂δωα

]
(4.25)

= −εijkR̄jnDmnr [εαiρRρmRkr + εαkβRimRβr] (4.26)

(4.26) gives us the expression of partial derivatives of r with respect to the components

of the Rodrigues vector associated with the rotation R. For the components ω̄α related

to rotation R̄, we have a similar expression :

∂r

∂δω̄α

= −εijkεαjρR̄ρnRimRkrDmnr (4.27)

At last, we need to mention an implementation detail about the minimization ap-

proach. Theoretically, residuals and jacobians are evaluated in a closed form i.e in a

“single” operation. Practically, the different sums involved are implemented as loops

meaning the latter entities are computed incrementally. This principle sort of applies to

the resulting jacobian for each step of the minimization process : it is constructed as a

concatenation of the jacobians of all involved pairs of matching cubes in the residuals of

expression (4.9). Fig. 4.5 shows the procedure adopted. It is easy to observe that the size
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Figure 4.5: Concatenation principle in the residuals and jacobians evaluation. Example

with the bundle adjustment algorithm with four cubes, the fourth cube of index i being

added to the adjuster that already contains cubes j, k and n.

of the vector of residual vector, for which all elements will be squared and summed up,

increases with the number of matches between a given pair of cubes. As a consequence,

the computation time depends on the number of matches.

This particular step of the jacobian computation is very demanding from a CPU point

of view. Our Matlab implementation proved to be a bit slow since optimized code was not

our goal. For the sake of providing an alternative for performance oriented readers, the

speed of the algorithm can be increased by using the sparse matrix approach mentioned

[8].

As a summary, a bundle adjustment approach with a criterion based on the epipolar

constraint and the use of pair-wise essential matrices theoretically ensures to find an

optimal set of rotations resulting in cube alignment. A typical resulting configuration

showed in the example in Fig.4.1 is used as input of the second step of the pose recovery

procedure : the translations estimation up to a scale.
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Figure 4.6: Configuration of the translation recovery problem

4.5 Pose estimation and structure recovery : evalu-

ating translations

In the previous section, the cube alignment created a new set of N cubes with negligible

rotations with respect to the world coordinate frame. Recall that the resulting set of

panoramas after alignment is used as input for the translations estimation step. Thus,

to complete the pose recovery, one only has to estimate the position of each of the new

camera frames with respect to the world, up to a scale, consequently building a graph

with all cameras as nodes and pair-wise translations as vertices (see Fig.4.6).

This stage relies mainly on the principle used in “classic” planar image pose recovery

[32, 23] where the 3D points corresponding to matches are recovered at the same time as

the motion parameters of the camera, both up to a scale and through a single optimization

procedure. The criterion used here however is simpler due to the assumption that all

rotations are neglected (all rotation matrices are assumed to be equal to the identity

matrix, since they have been estimated in the previous step). Thus, we propose in

the upcoming sections, an explanation of the criterion chosen and of the optimization

procedure are given followed by the initialization step necessary for the optimization

procedure. We end this section with some precision about the quantification of the

update during the optimization.
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4.5.1 Minimization criterion

In the case of images, as mentioned by [32] for example, the final solution results in

extrinsic parameters (rotation and relative translation) for all cameras that were used as

well as approximate 3D points corresponding to processed matches. The criterion that is

minimized is the re-projection error illustrating the fact that for all computed 3D points,

their projection in each camera should ideally correspond to the image points of the

original matches that were used; this meaning that in each image planes, the euclidian

distance between each pair from both fore-mentioned sets (3D points re-projections and

matches)should be null.

The situation dealt with in this section is one for which the rotations are already

found and the calibration i.e the intrinsic parameters are already known. The criterion

is therefore simplified since only translations or relative positions are involved. Fig.4.7

illustrates the choice of the minimization criterion. Very similar to what is done with

regular 2D images, this criterion should insure that the re-projection of all 3D points

corresponding to matches in all cubes should be equal to the original matches in respective

cube frames. In other terms, if we insure that, with respect to each cube reference frame,

the ray through the center of the cube of concern and the 3D point ray1, and the ray

through the corresponding match in the same cube frame ray2 are collinear and of same

direction, then we guarantee a minimal re-projection error. This can be expressed by a

simple dot product on normalized direction vectors since for two unit vectors v1 and v2,

their dot product is by definition :

v1 • v2 = cos(v1, v2) (4.28)

Moreover, if v1 and v2 are aligned and of same direction v1 •v2 = cos(v1, v2) = 1 since

the angle must be 0(2π). Therefore to verify if two unit vectors v1 and v2 are collinear

and of same direction, it is sufficient to test for :

v1 • v2 = 1 or 1− v1 • v2 = 0 (4.29)

To apply (4.29) to the studied case, let us consider Xi the ith 3D point estimated,

tj the relative position of cube Cj with respect to the world reference frame and finally

pij the original match corresponding to the projection of Xi in Cj. The residual for this

particular point is given by :

rij = 1− p̃ij • (Xi − tj)

Nij

(4.30)
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Figure 4.7: Minimization criterion illustration.

With :

p̃ij =
pij

‖pij‖ and Nij = ‖Xi − tj‖ (4.31)

Using the tensor notation introduced in section 4.2.1 to express the dot product (see

equation (4.1)), one can rewrite (4.30) as :

rij = 1− p̃α
ij

(Xα
i − tαj )

Nij

(4.32)

i and j do not imply implicit summations in (4.32) since they appear on both sides of

the equations and help specify what residual is being computing. Thus, for all panoramas

and all reconstructed points, the criterion is equivalent to null residuals for all values of

i and j. And overall, if i ∈ [1, · · · , nX ] and j ∈ [1, · · · , nC ], with nX and nC respectively

the number of 3D points reconstructed and the number of cubic panoramas involved,

the error e that is minimized is given by :

e =

nX∑
i=1

nC∑
j=1

r2
ij (4.33)

This justifies the term residual used to qualify rij previously. Minimizing this global

error results in the best approximate 3D reconstruction of the scene of interest. What

follows are the steps of such minimization solution as announced previously.

4.5.2 Initialization step : triangulation

Since a global optimization solution was chosen, a first estimate of the 3D structure

sought after is necessary and will serve as a seed or the algorithm. This means that
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one must obtain approximate positions of the cubic panoramas and of the generated 3D

points from the available data, mainly matches across all panoramas. It is important to

note, as an implementation hint, that if for example N cubes are involved, then each 3D

to-be reconstructed point is associated to at most a N − tuple of matches on all cubes

and at least a pair across two panoramas. Triangulation will be used here for computing

the first approximate of all the unknowns. It is a simple and fast way to obtain a rough

estimate of the structure.

Principle

Triangulation is described in the literature as a straightforward error prone procedure of

pose estimation [27]. However, only an approximate of the structure is needed here. The

reconstruction error, as it will be shown in the results section, is handled by the opti-

mization step. The principle of triangulation is basically the search for the intersection

of two rays in space. The two rays could be generated from matches’ back-projections

or given by some specified vectors. Both cases are displayed on Fig.4.8.

Let us consider the general setup where two vectors u and v belong respectively to

the frames Fu and Fv. These frames are such that Fu is the reference frame and Fv is

obtained by applying the rotation R and translation T to Fu. For such a configuration,

[27] mentions that the intersection is estimated by the midpoint of the segment of least

length between both rays since in general the rays directed by u and v do not intersect

exactly. [27] also notes that the segment is composed of points on each ray, pu = αu and

pv = T + βRv both expressed with respect to Fu, that verify :

αu− βRv + γ(u×Rv) = T (4.34)

Once pu and pv are recovered by solving for α and β in the square system given in

(4.34) - for example by using the Kramer method - the intersection point pm is estimated

by pu+pv

2
.

It is important however to note that all cubes have the same reference frame up to

translation since the relative rotations with respect to each other are supposed to be non

existent as a consequence of the alignment. This means that no rotation appears in the

general expression of triangulation given by (4.34) which thus suitably becomes :

αu− βv + γ(u× v) = T (4.35)
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The latter equation is the one that will be used with cubic panoramas to recover both

the type of first estimates that are mentioned above.

For cube positions

The notations on Fig.4.8 are the ones that are followed here. Cubes positions with

respect to one another are estimated from panoramas triplets and always with respect

to a particular reference cube. A reference cube Cr has to be chosen and will obviously

have a position tr equal to 0.

Next, the scale of the reconstruction needs to be fixed by setting the length between

the reference cube and a given cube Ck. This is done by computing the essential matrix

Erk from the available matches. The choice could be random if all pairs of panoramas

have the same number of matches or based on the best matching panorama. Once Erk

is found, the unit direction vector trk is extracted using the method in appendix D. The

position of cube Ck, that is not a priori known since only the direction is known, is then

fixed to be tk = trk. The length between both cubes is therefore equal to 1 and represents

the unit of measure for all subsequent estimations even for 3D points.

With the previous two initializations in place, it is then possible to recover all other

cubes positions estimates from available matches up to a scale factor fixed before hand.

The procedure involves triplets of cubes for example (Ck, Cl, Cm). As shown in Fig.4.8,

epipoles ekm and elm need to be recovered implying the computation of essential matrices

Ekm and Elm (see Chapter 2). Equation (4.35) is then applied to the given cubes resulting

in :

αekm − βelm + γ(ekm × elm) = tkl (4.36)

α and β are solved for and allow us to recover the position tkm of Cm wit respect to

Ck as follows :

tkm =
αekm + (tkl + βelm)

2
(4.37)

And overall, the position of cube Cm with respect to the reference cube Cr is given

by :

tm = tk + tkm (4.38)

Choosing the reference cube and the scale of the reconstruction allows us to recover

all estimates of cubes positions by using the suitable triplets. If many positions are found
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for one cube as a result of many triplets involving the same panorama, then the average

is used as the first estimate.

For 3D points

The notations on Fig.4.8 are also valid in the present section. The estimated position of

the 3D point Xi with respect to the frame of cube Ck will be obtained by first solving a

triangulation formula similar to (4.35):

αpik − βpil + γ(pik × pil) = tkl (4.39)

Once the values of α and β are recovered, Xi is given with respect to the frame of Ck

by :

Xik =
αpik + (tkl + βpil)

2
(4.40)

If the cube Ck is the reference then Xik is the 3D position Xi sought after. Otherwise,

it is more generally given by :

Xi = tk + Xik (4.41)

Where tk stands for the estimated cube Ck’s position as described in the previous

section. Recall that each 3D point is associated to at most a N − tuple of matches if N

is the number of cubes. Therefore, for one 3D point, there are as many estimates as the

number of pairs of matches in a N − tuple. The final estimate could be the average of

all estimates.

All the steps above are repeated for each of the 3D points. This result in a cloud of

points in space that sparsely or discreetly describe the scene of interest.

4.5.3 Jacobian estimation : residual derivation

The variables of the optimization algorithm minimizing the error given in (4.33) are the

3D points of the scene as well the positions of each one of the panoramas. The initial-

ization procedure explained above described a simple way to get a rough approximate

of all variables grouped under Θ = {X1, · · · , XnX
, t1, · · · , tnC

} - recall nX and nC are

respectively the number of reconstructed points and the number of panoramas. Each

element of Θ has 3 components, its coordinates with respect to the world reference frame



Pose Recovery Applied to Cubes 83

Figure 4.8: Triangulation for 3D points and for cubic panoramas.

which coincide with the reference cube’s coordinate system. An extended expression of

Θ is therefore :

Θ = {Xx
1 , Xy

1 , Xz
1 , · · · , Xx

nC
, Xy

nC
, Xz

nC
, tx1 , t

y
1, t

z
1, · · · , txnC

, tynC
, tznC

} (4.42)

To express the progression of the minimization through the variation of the error

function, the jacobian associated to all residuals has to be computed. As a consequence,

it is necessary to establish the derivative of any residual rij as given in 4.32 with respect

to each one of the elements of Θ, the variable vector. We have established the following

using derivation properties such as the derivative of a ratio and a square root, and the

fore-mentioned tensor notation (section 4.2.1):





If Θm ∈ {X1, · · · , XnX
}, ∂rij

∂Θβ
m

= δmi(−p̃ij
δαβ

Nij
+

1−rij

N2
ij

(Xβ
i − tβj ))

If Θm ∈ {t1, · · · , tnC
}, ∂rij

∂Θβ
m

= δmj(p̃ij
δαβ

Nij
− 1−rij

N2
ij

(Xβ
i − tβj ))

(4.43)

A total of nXnC residuals rij are computed at each iteration and as a result the jaco-

bian is a nXnC by 3(nX + nC) sparse matrix. No additional step has been implemented

here but it was mentioned earlier that a more efficient jacobian matrix form was given by

the sparse matrix solution presented in [8]. As an implementation note, the optimization

algorithm was performed in Matlab using the function lsqnonlin with activated jacobian

estimation.
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This concludes the translation estimation step and at the same time the two-stage

algorithm for pose recovery. The positions of all panoramas are recovered from the

previously computed aligned configuration up to a scale. The 3D positions of the features

used in the process are also estimated at the same scale given us a preview of the structure

of the scene. The pose recovery problem is therefore solved theoretically through these

two steps and results obtained on real panoramas sets are given in the following section

to illustrate the feasibility and validity of such a procedure.

4.6 Results

This section presents the results obtained for two different sets of panoramas. The first

set depicts an indoor laboratory scene and the second one, an outdoor scene. For each

set, each step of the two stage algorithm is presented one after the other. The indoor

example is extensively commented so that the different steps of each algorithm are easily

identifiable; the effects of the algorithms on the panoramas as far as the visual aspect is

concerned are also pointed out. The second set is mainly another illustration of the kind

of results that can be obtained especially in an outdoor less controllable setup, where

features can be difficult to track in all panoramas.

4.6.1 Indoor Scene

Rotations estimation and alignment

To present the results obtained after applying the alignment procedure, we have chosen

two different approaches. A visual one where the viewer or the reader can inspect the

effect of the algorithm on the cubes and another one a little more formal to have some

kind of numerical and theoretical backup of these results.

Our first experiment was conducted on four randomly captured cubic panoramas in

a laboratory. An approximative map of the laboratory with the panorama locations is

given in Fig.4.9. The scene is rich in features that were easily hand picked, therefore

no automated matching process was used here. The cubes that were processed can all

be seen on Fig.4.10(a), 4.11(a), 4.12(a), 4.13(a). The cross pattern observed here is

one introduced in chapter 3 and it allows us to see the cubes as a whole since it is not

possible to use a proper 3D viewer. The aligned cubes are displayed in Fig.4.10(b),

4.11(b), 4.12(b), 4.13(b). These cubes are not at their full resolution and as consequence

it is a little difficult to perceive clearly some details of the scene. But in general, we
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can observe that for example, the background of all front faces contain identical items in

similar positions. The rotations obtained from the algorithm are as follow :

R1 =




1 0 0

0 1 0

0 0 1


 (4.44)

R2 =




0.8231 −0.1518 0.5472

0.0251 0.9724 0.2319

−0.5673 −0.1771 0.8043


 (4.45)

R3 =



−0.4587 −0.1903 0.8680

0.0902 0.9618 0.2585

−0.8840 0.1968 −0.4240


 (4.46)

R4 =




0.9108 −0.3989 −0.1060

0.4027 0.8023 0.4406

−0.0907 −0.4440 0.8914


 (4.47)

It is interesting to note that the first rotation is the identity matrix (recall the ini-

tialization step in section 4.4.3) meaning that the cubes 2 to 4 are aligned with respect

to the frame of cube 1. Visually and as we said before, we can see for example that

the front face of the cubes all point to the same area of the scene particularly the two

computer monitors well visible in Fig.4.12(b). The same can be said by examining the

top face or all other faces in correspondence.

Fig4.15 and Fig.4.16 also illustrate alignment. As a matter of fact, the “truncated”

versions of the cubes that are shown in these images (top and bottom faces were removed)

are vertically concatenated to ease the observation of the effect of alignment. Once

more, the same scene elements appear in each aligned cube image for a the same viewing

direction for instance the windows in the background. With a little more observation,

the viewer can also perceive some kind of uniformity in the tilt level of the camera which

seems to be equal in all presented images of Fig.4.16.

In a more formal way there are many details that allow us to confidently state the

accuracy and the efficiency of our approach. First the value of the final residual at the

last iteration of the algorithm numerically shows the accuracy of the solution that was

found. The residuals are computed for each of the pairs of cube matches involved in the

algorithm.
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Figure 4.9: Floorplan of the laboratory with approximative cubes locations
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(a) Cube 1 before alignment.

(b) Cube 1 after alignment.

Figure 4.10: Cube 1 before and after alignment
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(a) Cube 2 before alignment.

(b) Cube 2 after alignment.

Figure 4.11: Cube 2 before and after alignment
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(a) Cube 3 before alignment.

(b) Cube 3 after alignment.

Figure 4.12: Cube 3 before and after alignment
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(a) Cube 4 before alignment.

(b) Cube 4 after alignment.

Figure 4.13: Cube 4 before and after alignment
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The graph in Fig.4.6.1 shows the residuals obtained once the cube 4 has been added

to the bundle containing already cube 1 to 3, this in with respect to each pair of cubes

matches as well as for each pair of cubes.

Summing the squared values of these residuals gives us the total error of 2.3685×10−4.

This confirms numerically that the result is close to optimum. This is one possible way to

quantify the validity of the algorithm that was applied. Another efficient way to validate

it is to use our knowledge of epipolar geometry. Thus, we know that aligned cubes

present a particular geometric configuration in which the rotation between any pair of

cubes should be non existent i.e the identity matrix. As a consequence, if we recall that

the essential matrix of a pair of cubes that differ by a rotation R and a translation unit

vector t is given by :

E = [t]× R

We have that, with R = I3, all final essential matrices linking cubes in the bundle

should have a form close to the following :

E = [t]× =




0 0 0

0 0 −1

0 1 0


 (4.48)

In other words, the essential matrices obtained with aligned cubes should be as close as

possible - ideally equal - to an antisymmetric matrix materializing the sole transformation

between both involved cubes frames i.e a translation of known estimated value. This was

verified for a few pairs of cubes used in the example. Some results are given in tables 4.1

and 4.2 where for a specific pair of cubes we give the original estimated essential matrix

(resp. rotation matrix) , the essential matrix (resp. rotation matrix) after alignment; in

both cases the essential matrix is noted e.m.

For all matrices in the aligned case in table 4.1, we observe the similarity with an

anti-symmetric matrix. The diagonal elements are all close to zero and others terms

are almost all symmetric with opposite signs. For table 4.2, all original rotations are

almost completely “removed” by the alignment, meaning that they all become almost

equal to the 3 by 3 identity matrix. These observations confirm what was established

theoretically, obviously up to some numerical errors that mainly originate from the op-

timization/minimization algorithm. Nonetheless the results are really satisfying both

visually and numerically.
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Figure 4.14: Residuals at the last iteration of the bundle adjustment for the rotations

estimation.

pair e.m before e.m after

1− 2



−0.019 −0.085 −0.027

−0.143 −0.085 −0.308

−0.016 0.332 −0.097







0.003 −0.127 0.035

0.144 0.008 0.322

−0.028 −0.330 0.008




2− 3




0.018 0.124 0.049

0.281 0.013 0.211

0.070 −0.322 −0.044






−0.004 −0.355 −0.018

0.356 −0.005 0.002

0.010 0.030 0.002




3− 4



−0.138 −0.260 0.019

−0.213 0.186 0.201

−0.152 −0.131 0.067







0.008 −0.307 −0.006

0.310 0.013 0.177

0.019 −0.183 0.005




Table 4.1: Essential matrices of cube pairs 1-2, 2-3, 3-4.
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Figure 4.15: Indoor cubic panorama set before alignment (top and bottom faces trun-

cated)
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Figure 4.16: Indoor cubic panorama set after alignment (top and bottom faces truncated)
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Figure 4.17: Residuals at the last iteration of the bundle adjustment for cubes 1 to 4.

pair rotation before rotation after

1− 2




0.790 −0.171 0.589

0.020 0.967 0.253

−0.613 −0.188 0.767







0.999 −0.011 0.052

0.010 1.000 0.020

−0.053 −0.020 0.998




2− 3




0.229 −0.248 0.941

0.333 0.929 0.164

−0.915 0.276 0.295







0.996 0.015 −0.090

−0.017 1.000 −0.023

0.090 0.024 0.996




3− 4



−0.266 0.667 −0.695

0.212 0.744 0.633

0.940 0.021 −0.339







0.999 −0.026 0.019

0.025 0.999 0.029

−0.020 −0.029 0.999




Table 4.2: Rotations matrices of cube pairs 1-2, 2-3, 3-4.
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Pose estimation

The cubic panoramas obtained after alignment are the starting point of the pose esti-

mation. New matches are found across all panoramas (60 for each of the 4 cubes in

our case). These matches are used to perform the essential matrix computation, the

initialization through multiple triangulations and finally the optimization algorithm.

Fig.4.18 displays the reconstruction error as a set of residuals (240 to be more accu-

rate). It is quite a low error - average residual error of 0.0005 - indicating that the final

solution is at least numerically very accurate. The figures 4.19(a), 4.19(b) and 4.19(c) re-

spectively depict a perspective view, side view (along the Z axis) and top view (along the

Y axis) of the reconstructed scene with some elements of the scene indicated in Fig.4.6.1

as an indication to what is pointed out in the cubes. The elements are constructed from

their corresponding features, using polygonal shapes that are easily recognizable. The

size of the cubes in the different views is irrelevant since only their positions is of interest

here.

A few comments come to mind especially when observing the perspective view and

the elements of the scene shown in Fig.4.6.1. First, on the perspective view, the elements

of the scene in gray are all initial positions of points of the scene before optimization.

The effect of the pose estimation algorithm can therefore be seen as elements move

closer or further to the center of the system coordinate as well as change shape to more

recognizable forms. The windows in the background of the scene in dark blue are a very

good example; so is the cyan square shape observable on the ceiling of the laboratory.

Next, a closer observation of figures 4.19(b) and 4.6.1 allows us to confirm that the

reconstruction is spatially consistent with the visual information : the elements of the

scene are where they are expected to be. The view along the Z axis i.e the side view

positions the user as looking towards the front face of the cubes.

Finally, Fig.4.21 illustrates the complete pose recovery in 3D since the estimated

original positions of all cubes in space are approximately reproduced.

4.6.2 Outdoor Scene

Rotations estimation and alignment

For the outdoor set, that contains 6 panoramas instead of 4 as previously, the cube

alignment results are shown as it was done earlier with modified versions of the panoramas

to ease the observation. Theoretically, we already established that corresponding faces in
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Figure 4.18: Residuals at the last iteration of the second stage for the indoor set :

residuals rij, i ∈ {1, · · · , 75} for the matches and j ∈ {1, · · · , 4} for the panoramas.

all cubes should be parallel after alignment and therefore roughly display similar scene

elements in similar positions. Fig.4.22 and Fig.4.23 show the panoramas respectively

before and after alignment. Note for example the presence of the ramp by the stairs in

the direction of the front face of all cubes.

Pose estimation

To complete the study on the outdoor set, the complete pose recovery was performed

and the results are displayed as a perspective and top view (Fig.4.25) of the scene with

mainly elements of the closest building. Figure 4.24 shows the residual errors after the last

iteration of the second stage with an average residual value of 0.001. The higher values

of residuals obtained toward the end of the graph correspond to matches that include

feature points that were inaccurately localized across the cubes. This is in part due to

the considerable change in viewpoints of the camera in terms of translation. Finally

Fig.4.26 shows the complete pose recovery from a cube point of view, with panoramas

in their estimated original configuration.

4.7 Conclusion

This chapter presented another possible application of cube epipolar geometry in addition

to cube rectification. As a matter of fact a two stage algorithm to achieve pose recovery

for a given set of panoramas was presented here.

The first step consisted in what was designated panorama “alignment” i.e rotations

recovery. Unlike the cube rectification that was presented in the previous chapter, the
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(a) Perspective view of the reconstructed scene with the aligned cubic
panoramas (Indoor Scene).

(b) Side view

+

+

X
+

Y

Z

+

(c) Top view

Figure 4.19: Views of the reconstructed scene (Indoor Scene)
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Figure 4.20: Elements of panoramas shown in the reconstructed scene (Indoor Scene)

Figure 4.21: Pose recovery for the indoor set of panoramas
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Figure 4.22: Outdoor cubic panorama set before alignment (top and bottom faces trun-

cated)
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Figure 4.23: Outdoor cubic panorama set after alignment (top and bottom faces trun-

cated)
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Figure 4.24: Residuals at the last iteration of the second stage for the outdoor set :

residuals rij , i ∈ {1, · · · , 60} for the matches and j ∈ {1, · · · 6} for the panoramas

Figure 4.25: Outdoor scene with a few objects and the 6 aligned panoramas (cubes) at

their computed locations.
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Figure 4.26: Pose recovery for the outdoor set of panoramas

alignment is a multi panorama process that resulted in cubes with corresponding faces

all, parallel therefore turned towards a common direction after their rotation with respect

to the world frame was found. This configuration was exploited in the second stage of

the algorithm.

Thus the second stage used the aligned panoramas to compute the estimated positions

of the cubes up to a scale. Basically a minimization of re-projection error criterion was

used to refine an initial structure computed through multiple triangulation. Combining

this information with the rotations recovered in the first stage allowed us to complete

the pose recovery procedure.

Results were given for an indoor and an outdoor sets for both stages of the algo-

rithm. Ultimately, the pose recovery for each one of the sets was illustrated by a 3D

approximation of the original camera configuration.

Finally, we have noted that the performance of each stage could be improved by using

a better approach in the update steps of the optimizations. Moreover, the presented two

stage algorithm could greatly benefit from a feature tracking procedure, for a set of cubic

panoramas, that would produce enough accurate matches across all of the images and

thus improve the overall accuracy of the main process.



Chapter 5

Conclusion

All throughout the study presented in this text, we have gone from implementing the

well known solution to stereo image rectification to solving the pose recovery problem in

the case of cubic panoramas. All the algorithms presented here relied heavily on state-

of-the-art notions and methods of epipolar geometry. In the end they all proved worthy

of interest for the results obtained were mostly satisfactory.

As a matter of fact, in chapter 2, a known rectification procedure was extended to

suit the trinocular case for particular configuration. A composition of homographies

proved to be a simple observation and to provide an efficient solution to the trinocular

case as it was shown for horizontal and “L”-shape triplets. We however had to note

some limitations of the algorithm for some configurations as well the need to carefully

compute the fundamental matrix by among other things selecting “good” matches.

In chapter 3, we re-modeled the already presented image rectification to suit the cubic

panorama case. However, we first had to establish the equivalent of the concepts of the

fundamental and essential matrices in the case of cubes. This was done successfully

by determining the epipolar lines across a panorama after proper computation of the

latter entities. Once this step was completed, the final objective was to obtain a rectified

pair of cubes; essentially, corresponding faces were to form the usual rectified image

pair. Forcing the cubes in a particular configuration by rotating them was sufficient to

accomplish our goal. This was convincingly illustrated by 3D data.

In chapter 4, pushing the rectification another step further, we aimed at solving the

pose recovery problem in the case of cubes. Thus was introduced a two-stage algorithm

that proceeded by first estimating the rotations and then the translations of the camera

positions much to the delight of “divide and conquer” partisans. Assumptions made
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about negligible rotations after the first stage were justified by the result of the second

stage and the final reconstruction of the original configuration. Results were obtained

for an indoor and outdoor scene respectively for 4 and 6 panoramas to end this chapter

and our study.

In each of the chapter we noted a few elements that affected the performance of each

of the presented algorithms. For the image triplet rectification, apart from the heavy

dependency on the fundamental matrix that was already mentioned a few times, we noted

that the capture process was somewhat constrained even before any processing was to

be done. As far as the cube rectification is concerned the most important issues were the

matches - which were hand selected - across the panoramas and the estimation of the

essential matrix. Finally for the pose recovery problem, the use optimization approaches

was slowed down by heavy jacobian computations. All this naturally leads us to the

possible future work that can be related to our study. Instead of taking the burden of

guaranteeing the pursue of all possible aspects as ramifications of this work, we will give

possible guidelines and directions for further studies.

First, feature detection was and still is quite an important part of machine vision.

Having been confronted to it in the first stage of all presented algorithms, it could be

interesting to investigate the possibility of using the strong detectors available nowadays

such as SIFT [19] to find well spread - we emphasize the well spread character - features

across a pair or multiple images. This should also be extended to cubic panoramas. The

pose recovery problem for example could be completely automatized if a good tracking

algorithm for multiple panoramas is developed.

Moreover, as far image rectification is concerned, algorithms taking into a account

really general configurations of camera positions should be explored. This is interesting

since the treated pairs of images would not be constrained to contain the epipoles before

any valid processing can take place. Besides, the homography solution proposed here is

simple and fast and could serve as starting point to more complex, optimization based,

procedures such as the ones used in [25].

Finally, for the ones that are performance oriented, one could look at an implemen-

tation of our two-stage pose recovery algorithm that would include the sparse matrix

method presented in [14] among others. This could speed up the solution and therefore

allow a greater number of panoramas to be processed faster.

These suggestions, far from taking away from our study, are supplements that, if

completed, could give great range to the preliminary work started here. Our main

contribution is essentially the formalization of the cubic panoramas epipolar geometry
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and the complete solution to the pose recovery applied to those. Moreover, our study

has the particularity of easily being adaptable to any king of panorama be it cylindrical

or purely spherical. Notions such as the essential matrix would still be valid therefore so

would be the rectification and pose recovery procedures.

This study was conducted as part of the NAVIRE1 project developed at the Uni-

versity of Ottawa. The objective of the project being the “effective and natural virtual

navigation in image-based renditions of real environments”, our study mainly answered

some issues related to cubic panorama interpolation thanks to the cube rectification and

to navigation thanks to the pose recovery solution. Overall, we have successfully met

the goals that were set originally and definitely improved our knowledge of spherical

panorama represented as cubes.

1http://www.site.uottawa.ca/research/viva/projects/ibr/



Appendix A

From 3D coordinates to cube 3D

coordinates

The objective here is simple. Given any vector p = (x, y, z) in 3D space, we are looking

for its projection pc = (xc, yc, zc) onto the cube of interest. The projection mentioned

here is in respect to the center of the cube which is also considered the center of the

world reference frame. This correspondence could be useful in the generation of a new

cube, allowing the computation of the new position of a point of the cube after a given

rotation is applied to the cube.

The principle is quite simple. The vector p is perceived as a ray’s direction and we

are looking for the intersection of the latter ray with one of the cube faces : it is a matter

of intersecting a line with multiple ( portions of ) planes and choosing the consistent

resulting point.

A.1 Cube Faces : equations

Let us first set the reference frame. The one considered here is such that the front face

of the cube is contained in the plane XY in the direction of negative Z. Moreover the

Y axis points to the “up” face, and so does the X axis with the right face. For a cube

of size s, the different face planes are of the form ax + by + cz + d = 0 with d 6= 0 and

one of (a, b, c) non null for all cases. The equations of these planes are given in the table

below :
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face a b c d

up 0 1 0 − s
2

left 1 0 0 s
2

front 0 0 1 s
2

right 1 0 0 − s
2

back 0 0 1 − s
2

down 0 1 0 s
2

A.2 Intersection Line - Plane

Let us consider a vector p = (xp, yp, zp) with its origin at (0, 0, 0). We note pi one of the

coordinates of p with i ∈ 1, 2, 3. We suppose that at least one of the coordinates of p is

non null and of index n. If all coordinates are null, the intersection problem is pointless.

p intersects a plane Π of equation ax + by + cz + d = 0 and of normal v = (a, b, c) :

• If p and v = (a, b, c) are orthogonal i.e p.v = 0, the intersection is a line and is

infinite.

• Else, the ray of equation x
xp

= y
yp

= z
zp

= intersects Π at the point pc such that:

pn
c =

−d

vn + 1
pn

3∑

i6=n,i=1

vipi

, with i, n ∈ {1, 2, 3}

Recall that n stands for the index of a non null coordinates of p. The other

coordinates of the intersection point pc are given by :

pi
c =

pn
c

pn
pi , with i ∈ {1, 2, 3} \ {n}

A.3 Intersection Line - Cube

A simple systematic approach allows us to recover the intersection of a line of direction

p = (xp, yp, zp) with a cube C at the point pc. From the 6 possible choices we have by

intersecting the line with each of the planes described earlier we only choose the point

pc such that the coordinates that are not exactly equal to s
2

in absolute value are in the

interval :
[− s

2
, s

2

[
. Moreover, the vectors p and pc must have the same orientation i.e

p.v > 0. The algorithm can be summarized as follows :
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• Loop on each face

• Compute the intersection of the line with the current face

• Check the validity of the intersection : coordinates interval, same orientation

• If found finish loop else continue
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3D conversion and plane

intersections

In the case of a cube of side L, faces are located at trivial coordinates in respect to the

cube reference frame : x = ±L
2

for right and left faces, y = ±L
2

for top and down faces,

z = ±L
2

for front and back faces. This allows us to convert easily 2D faces coordinates

into 3D cube reference frame coordinates. In general, if x̃ = (x, y, 1)T is the point of

concern, an affine transformation is applied to x and y to find 2 of the 3 3D coordinates

along the axis x,y or z that form the plane of the face, the third coordinate being a

constant as mentioned above.

TU =




1 0 −L
2

0 0 L
2

0 −1 L
2




TL =




0 0 −L
2

0 −1 L
2

−1 0 L
2




TF =




1 0 −L
2

0 −1 L
2

0 0 −L
2




TR =




0 0 L
2

0 −1 L
2

1 0 −L
2




110



3D conversion and plane intersections 111

face ai bi ci

u a −c gU(b)

l −c −b gL(−a)

f a −b gF(−c)

r c −b gR(a)

b −a −b gB(c)

d a c gD(−b)

Table B.1: Epipolar lines as intersections of cube and epipolar plane

TB =



−1 0 L

2

0 −1 L
2

0 0 L
2




TD =




1 0 −L
2

0 0 −L
2

0 1 −L
2




On the other hand, the fact that the faces lie at particular coordinates allows us also

to find the intersections of a plane with the cube. The epipolar plane is given by Ep if p

is the point of interest. It is a plane that goes through the cube center and therefore is

noted (a, b, c) in projective coordinate. We therefore have the results presented in table

B.1 for the resulting lines li = (ai, bi, ci) on the faces of the cube from the plane (a, b, c).

The functions gi in table B.1 are defined as follows :

gi(m) =
L

2
(m− (ai + bi))



Appendix C

Rotation Matrices

The rotations Ri for i ∈ U, L, F, R, B, D mentioned in the text are obtained by simply

observing the frame on figure 3.2(a). To align the frame each face i a trivial rotation

needs to be applied. We thus can derive the following expressions for each face :

RU = Rx(
π

2
) =




1 0 0

0 0 −1

0 1 0




RL = Ry(
π

2
) =




0 0 1

0 1 0

−1 0 0




RF = Rx(0) =




1 0 0

0 1 0

0 0 1




RR = Ry(−π

2
) =




0 0 −1

0 1 0

1 0 0




RB = Ry(π) =



−1 0 0

0 1 0

0 0 −1




RD = Rx(−π

2
) =




1 0 0

0 0 1

0 −1 0
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Appendix D

Extracting the translation t and

rotation R from the essential matrix

E

O. Faugeras and R. Hartley respectively discussed this procedure in [8, 7] and [14]. An

attempt to summarize the concept is the follows. Based on the equation introduced in

Chapter2,

E = t×R

t and R are the entities sought after knowing E the essential matrix for a pair of

cubes C and C ′. Recall t is direction in which C is with respect to C ′ with coordinates

expressed in C ′ and R is the rotation from C to C ′. t is the first entity to be computed

by solving ET t = 0 with the constraint ||t|| = 1. The fore-mentioned authors recommend

to use the SVD solution approach meaning t is the left singular vector of ET of least

singular value.

Estimating R requires the use of the SVD decomposition of E as USV T = E. [14]

goes into more details about this mentioning first the use of two matrices :

W = Rz(
pi

2
) and Z =

[
(0, 0, 1)T

]
×

Both fore mentioned authors state that there are four solutions possible to the couple

(R, t) explicitly given in [14] by:

(UWV T , t) ; (UWV T ,−t) ; (UW T V T , t) ; (UW T V T ,−t)
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The couple produce the motion parameters from the frame C ′ to C. However, if the

parameters sought after are those describing the motion from C to C ′, one could use the

very simple adjustment :

R̃ = RT and t̃ = −RT t (D.1)

Where the couple (R̃, t̃) are the new motion parameters to be used.

In both cases, the choice of the proper solution requires two matches from which the

depths have to be accordingly showing that both points are in front of the concerned

cameras. In the case of cubic panoramas, the calibration matrix is known and the choice

of points in front faces both greatly ease the extraction process. Points can be extracted

on other faces but the calibration matrices would then just have to be adjusted by a ±90

degrees rotation around one of the trivial axis.



Appendix E

Glossary of Terms

DLT Normalized Direct Linear Transform algorithm used in the solution of over-determined

linear systems. Useful for the computation of the homography, fundamental matrix

and essential matrix from pairs of matches.

“L-triplet” Triplet of images captured following a pattern that resembles the letter

“L”. One image on top of a regular stereo pair.

Cube Short for cubic panorama. It is one the possible format that is used to represent

a spherical image. It is the format of choice in this thesis.

Cube Alignment Procedure by which a set of cubes is transformed into a new set

where all cubes have parallel corresponding faces.
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