
Hierarchical Segmentation of Videos
into Shots and Scenes using Visual

Content

prepared by

Andrew Thompson

supervised by

Robert Laganière and Pierre Payeur

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements
For the M.A.Sc. degree in

Electrical and Computer Engineering

School of Information Technology and Engineering
Faculty of Engineering
University of Ottawa

c© Andrew Thompson, Ottawa, Canada, 2010

Abstract

With the large amounts of video data available, it has become increasingly
important to have the ability to quickly search through and browse through
these videos. With that in mind, the objective of this project is to facilitate
the process of searching through videos for specific content by creating a
video search tool, with an immediate goal of automatically performing a
hierarchical segmentation of videos, particularly full-length movies, before
carrying out a search for a specific query.

We approach the problem by first segmenting the video into its film units.
Once the units have been extracted, various similarity measures between
features, that are extracted from the film units, can be used to locate specific
sections in the movie.

In order to be able to properly search through a film, we must first have
access to its basic units. A movie can be broken down into a hierarchy
of three units: frames, shots, and scenes. The important first step in this
process is to partition the film into shots. Shot detection, the process of lo-
cating the transitions between different cameras, is executed by performing
a color reduction, using the 4-Histograms method to calculate the distance
between neighboring frames, applying a second order derivative to the result-
ing distance vector, and finally using the automatically calculated threshold
to locate shot cuts.

Scene detection is generally a more difficult task when compared to shot
detection. After the shot boundaries of a video have been detected, the next
step towards scene detection is to calculate a certain similarity measure which
can then be used to cluster shots into scenes. Various keyframe extraction
algorithms and similarity measures from the literature were considered and
compared. Frame sampling for obtaining keyframe sets and Bhattacharya
distance for similarity measure were selected for use in the shot detection
algorithm.

A binary shot similarity map is then created using the keyframe sets and
Bhattacharya distance similarity measure. Next, a temporal distance weight
and a predetermined threshold are applied to the map to obtain the final
binary similarity map. The last step uses the proposed algorithm to locate
the shot clusters along the diagonal which correspond to scenes.

These methods and measures were successfully implemented in the Video
Search Tool to hierarchically segment videos into shots and scenes.

ii

Acknowledgements

I would like to express my gratitude to my supervisors, Robert Laganière
and Pierre Payeur, for giving me the opportunity to further my education
at the University of Ottawa, and for their expertise, kindness, and patience
during the process.

My gratitude goes to Adele Reinhartz for providing an interesting and
challenging project, and to Diana Inkpen and Martin Scaiano for their assis-
tance with the text-based subtitle searching procedure implemented in the
Video Search Tool. Thanks also goes to Bogdan-Emanuel Ionescu for his
help in implementing his shot detection algorithm and to Jason Shim for his
help performing the manual segmentation of the films.

A special thanks to my family for their support and encouragement.

iii

Contents

1 Introduction 1
1.1 Video Analysis and Hierarchical

Segmentation . 2
1.1.1 Background Work . 2
1.1.2 System Limitations . 7

1.2 Objectives . 8
1.3 Structure of the Thesis . 8
1.4 Contributions . 9

2 Shot Detection 10
2.1 Previous Methods . 10
2.2 Selected Method . 14

2.2.1 Color Reduction . 14
2.2.2 4−Histograms Method 15
2.2.3 2nd Derivative Method 16
2.2.4 Automatic Threshold Computation 16

2.3 Conclusion . 17

3 Keyframe Extraction and Similarity Measures 18
3.1 Keyframe Extraction . 18
3.2 Frame Similarity Measures . 21
3.3 Shot Similarity Measures . 23

3.3.1 Dominant Color . 25
3.3.2 Motion . 26
3.3.3 Edges . 28
3.3.4 Other Measures . 29

3.4 Experimental Comparisons . 31
3.4.1 Frame Similarity Measures 31

vi

3.4.2 Keyframe Extraction Methods 42
3.5 Conclusion . 44

4 Scene Detection 46
4.1 Previous Methods . 46
4.2 Proposed Method . 54
4.3 Experimental Comparison . 60

4.3.1 Comparison Measures 60
4.3.2 Results . 61

4.4 Conclusion . 65
4.4.1 Video Search Tool . 66

5 Conclusion 67
5.1 Summary . 67
5.2 Contributions . 68
5.3 Future Work . 69

A Shot Detection Examples 79

B Scene Detection Results: Bar Graphs 83

C Scene Detection Results: Similarity Maps 87

D Scene Detection Examples 91

E Video Search Tool 95

vii

List of Tables

3.1 Precision, Recall, F-Measures at each threshold (minNDCR
10:1) for the compared frame similarity measures 41

3.2 Precision, Recall, F-Measures at each threshold for the com-
pared keyframe extraction methods 42

3.3 Time to Compute . 44

4.1 Scene Detection WindowDiff Values, The Shawshank Redemp-
tion . 62

4.2 Scene Detection WindowDiff Values, 3:10 to Yuma 63
4.3 Scene Detection WindowDiff Values, Gran Torino 63

viii

List of Figures

3.1 Manually created ground truth for the four segments of the
movie. A black dot appears when the shot on the x-axis is
similar to the shot on the y-axis 33

3.2 Frames from shots 6, 7, and 8 34
3.3 Frames from shots 36, 37, 38, 43 34
3.4 Frames from shots 44, 45, and 51 35
3.5 Frames from shots 59, 60(a), 60(b), 61, 65, 66, and 68 36
3.6 DET curves resulting from each frame similarity method being

applied to the four selected movie segments 40
3.7 DET curves of each keyframe selection method 43

4.1 A Section of the movie The Shawshank Redemption’s Binary
Shot Similarity Map . 55

4.2 Largest Sum of Forward Shot Similarities, example 56
4.3 Triangle (red) on the Full Similarity Map, example 57
4.4 Formed Triangle (red) from Furthest Shot and Ratio Calcula-

tion, example . 58
4.5 Overlap Condition 1 . 59
4.6 Overlap Condition 2 . 59

A.1 The Shawshank Redemption shots 80
A.2 3:10 to Yuma shots . 81
A.3 Gran Torino shots . 82

B.1 The Shawshank Redemption Bar Graphs 84
B.2 3:10 to Yuma Bar Graphs . 85
B.3 Gran Torino Bar Graphs . 86

C.1 The Shawshank Redemption GT1 88

ix

C.2 The Shawshank Redemption GT2 88
C.3 The Shawshank Redemption Results, Proposed Method 88
C.4 3:10 to Yuma GT1 . 89
C.5 3:10 to Yuma GT2 . 89
C.6 3:10 to Yuma Results, Proposed Method 89
C.7 Gran Torino GT1 . 90
C.8 Gran Torino GT2 . 90
C.9 Gran Torino Results, Proposed Method 90

D.1 The Shawshank Redemption Scenes Proposed Method 92
D.2 3:10 to Yuma Scenes Proposed Method 93
D.3 Gran Torino Scenes Proposed Method 94

E.1 Basic Keyword Search . 97
E.2 Advanced Keyword Search . 97
E.3 Clip Options . 98
E.4 Video Search Tool . 99

x

Chapter 1

Introduction

With the large amounts of video data available, it has become increasingly
important to have the ability to quickly search through and browse through
these videos. Before performing any kind of search, the first step is usually
to hierarchically segment the video into its film units. Typically, these units
consist of the video frames, shots, and scenes. Frames are the single images
that make up the video, shots are the contiguous sequence of frames that
have been captured from a single camera, and scenes, which are much more
difficult to define because of the semantics involved, can be given the general
definition of being the groups that are made up of multiple shots that revolve
around a single dramatic person, incidence, or location. Once the units
have been extracted, various similarity measures between features that are
extracted from the film units can be used to locate specific sections in the
movie.

The objective of this project is to facilitate the process of searching
through videos for specific content. However, the immediate goal is to be
able to automatically perform a hierarchical segmentation of videos, specifi-
cally full-length movies, using only their visual content.

There have been several different approaches to video analysis and hi-
erarchical segmentation of video in recent years. The following paragraphs
will highlight various methods and techniques that have been employed by
different authors, throughout the literature, for video analysis, video segmen-
tation, and video retrieval in particular.

1

1.1 Video Analysis and Hierarchical

Segmentation

1.1.1 Background Work

The first work to be examined is that of Zhu et al. [1]. The authors employ
a shot-based approach to classify shots hierarchically for medical videos and
to group them into different categories for retrieval.

Shot detection is performed using a MPEG compressed video method
which uses the DC images and an automatic threshold detection method.
Once the shots are obtained, the 10th frame of each shot are selected as the
representative keyframes and HSV color histograms and Tamura textures
(coarseness, directionality, contrast) are extracted from each keyframe.

Shots are then compared with their neighbors to create groups of shots
by clustering those which are similar spatially, with respect to similar back-
ground, or similar temporally. The resulting groups are classified as being
either temporally related or spatially related.

Once the groups are obtained, a representative shot, that is the shot
that best represents the content of the group, is selected. Groups are then
merged into scenes if the similarity, measured as the best similarity between
the groups’ shots, between successive groups is greater than a threshold. A
representative group for each scene is then selected. The last segmentation
step is to cluster similar scenes by comparing the groups of one scene with
the groups of another scene. The scene grouping precess is continued until
the predetermined number of scene clusters is reached.

Having finished the video segmentation, event mining is performed to
detect certain events within scenes. Several features are extracted with the
goal of classifying scenes into 3 different medical categories: presentations,
clinical operations, or doctor to patient dialogs. Visual features are extracted
from keyframes to classify them into several different types: slides and clip-
art frames, black frames, frames with faces, frames with large skin areas, and
frames with blood red regions. Audio features are then used to determine
when there is a speaker change between shots. The audio for each shot is then
divided into clips of at least 2 seconds in length and these clips are classified
into clean speech and non-clean speech segments using 14 audio features and
a Gaussian Mixture Model classifier. The clip most like the speech clip is
selected as the representative audio clip of the shot. These representative

2

clips are then compared to determine if the audio from different shots belong
to the same speaker.

The classification of scenes into the predefined groups is then done based
on the following definitions: presentation scenes contain slide and clip-art
frames, a minimum of 1 face frame, no speaker change between shots, and
a minimum of 1 temporally related group. Dialog scenes contain many face
frames, speaker changes at neighboring shots which both contain face frames,
a minimum of 1 spatially related group, and at least 2 shots that belong to
the same speaker. Clinical Operation scenes contain no speaker changes, at
least one blood red or large skin area frame, and at least half of the keyframes
from the shots should contain skin regions.

The authors create a tool for skimming through the videos, a user can
skim through the videos using any of the videos units, either keyframes,
shots, groups, scenes, or clusters of scenes and also by the type of scene.

Zhu et al. [2] organize videos by first segmenting them into hierarchical
units then by extracting several features for retrieval purposes.

Shot detection is performed using an MPEG compressed video domain
method which uses information from I, B, and P-frames. An I-frame, an
Intra-coded frame, contains the entire information of a single frame from
the video. The other two types contain part of the image information and
require less space to store. A P-frame, a Predicted frame, only contains the
information that has changed from the previous I-frame, while a B-frame, a
Bi-directional frame, contains information that has changed from the previ-
ous frame or is different from the information in the following frame.

Again utilizing the information from MPEG compressed videos, camera
motion classification is performed. Motion vector information is extracted
from macroblocks in the video’s P-frames and a 14-bin feature vector is used
to characterize the motion vectors of each frame. This vector is made up of
a 2-bin motion vector energy histogram, a 4-bin motion vector orientation
histogram, a 4-bin motion vector mutual relationship histogram, and a 4-bin
motion vector vertical mutual relationship histogram. These feature vectors
are examined for certain conditions to classify them into one of the camera
motion types: either pan, tilt, zoom, rolling, or still motion. The detected
motion should last at least 3 P-frames to be considered and to be stored in
the final motion feature vector for the shot.

Subsequently keyframes are extracted from each shot to represent its

3

content. Keyframes are extracted for every type of motion found in the shot,
so for each motion type, the motion magnitude of each P-frame is calculated
and the keyframes are selected with the following criteria: for still motion,
the frame with the smallest motion magnitude of the shot is chosen as the
keyframe. For all other motion types, the largest motion magnitude is first
located, then the frames with the minimum magnitude points to the left and
right of this maximum point are selected as keyframes.

After shot detection, motion classification, and keyframe selection, hier-
archical video content organization is performed using the same methods of
[1] to obtain groups, scenes, and clusters of scenes.

The authors select various features to assess similarity between videos and
for use in the retrieval process. A 256-bin HSV color histogram and a 10-bin
coarseness texture histogram are extracted at the frame level and, at the
shot-level, an average color histogram, camera motion, keyframe matching,
and the shot length are used.

In [3], the authors build a content-based video browsing and retrieval sys-
tem. They organize the video by performing a segmentation to locate shots
and scenes, then extract keyframes from each scene to represent the con-
tent. In their application, they are able to browse by scene or keyframe and
perform searches using textual indices.

The first step in the segmentation process is to divide the video into
an audio stream and a video stream. Using the signal energy, non-silent
segments are detected in the audio stream. These audio segments are then
classified into either speech, music, or environmental sound.

Next, shot detection is performed and an expanding window grouping
algorithm is used to cluster shots into scenes. Keyframes are then extracted
from each scene using an adaptive keyframe extraction technique. Using this
method, for each scene, frames are clustered based on the similarity of their
HSV color histograms and keyframes are extracted from the clusters that
have a large enough size.

Scene detection is performed by analyzing both the audio and visual seg-
ments. The authors postulate that there are 3 types of scenes that can be
classified and detected based on the found audio and visual segments. The
first category is audio-visual scenes which contain color and sound consis-
tency and are detected when the audio segmentation and visual segmentation
produce common boundaries. Next are the audio scenes which are detected

4

when one audio segment contains multiple video segments. The last scenes
are classified as dialog scenes. These are located when the visual similarity
analysis between shots indicates a similar environment and when the entire
segment contains multiple speaker changes.

Text analysis is then performed to label the located scenes. This is done
by applying a text extraction and recognition algorithm on each of the scene’s
keyframes. The resulting vector of words is used to represent the content of
a scene.

Dong and Li [4] perform hierarchical segmentation of documentary videos.
Their method first employs a combination of audio and text segmentation to
locate scene boundaries, scenes are then further divided into shots, keyword
extraction is performed, and video scene summarization is accomplished us-
ing the extracted keywords.

The authors decide to use a top down approach at video segmentation,
and find the scenes before locating the shots. Audio segmentation is first per-
formed using signal energy to classify speech and non-speech segments. The
length of the non-speech segments are calculated and used to perform a pause
detection-based approach to cluster audio segments. Text segmentation using
the TextTiling method is applied to the video transcript. This method locates
topic boundaries in the transcript using the similarity between neighboring
text blocks. The audio and text boundaries that are shared are then chosen
as the scene boundaries. Once the scenes have been extracted, shots are
located using the local color histogram difference between successive frames
in a scene.

In order to be able to quickly locate different videos and scenes, the
authors first label each scene with the keywords from the video scene’s tran-
script that have a frequency of appearance greater than a threshold. These
keywords are also used in conjunction with web-services to extract relevant,
public domain documents. These documents are found with various annota-
tions such as titles, authors, and URLs. Next, video scene summarization is
performed using a text-based method. To provide an idea of the content of
each scene, the first few ‘utterances’, which are speech units that are usually
bounded by silence, are extracted from the transcript. They are located by
expanding from keyword to keyword or from keyword to silence segment.

5

Fu et al. [5] have chosen to perform a hierarchical video segmentation for
use in a video browsing application. They have three main stages to their
video analysis procedure: first, shot detection is performed, then a good
measure for video shot similarity is selected, and lastly scene changes are
detected.

Before shot detection, the authors perform a color quantization by ap-
plying a color transformation from the RGB color space to the HSV color
space and grouping colors that belong to the same quantization level to ob-
tain a total of 72 colors. A 72-bin color histogram is then obtained for each
of the film’s frames and normalized Euclidean distance is used to obtain the
similarity between neighboring frames, compared as the histogram difference.

Shot detection is accomplished using a sliding window method. The mean
and standard deviation of histogram difference is calculated within each win-
dow and if the standard deviation is smaller that a predetermined threshold,
a twin-threshold method is applied to determine if the current frame is a
shot boundary. The two thresholds, used in the twin-threshold method, are
obtained using the previously calculated mean and standard deviation. The
lower threshold is equal to the mean plus twice the standard deviation, and
the higher threshold is an additional 2 standard deviations away. The first
threshold is used to locate potential shot transition candidates and the sec-
ond threshold is used to filter these candidates to locate the actual boundary.
Once the shot boundaries are located, the middle frame of each shot is se-
lected as its representative keyframe.

Their next step is to select a shot similarity measure to be used in the
scene detection process. The measure selected is a combination of color,
texture, and keyword similarity. The intersection value between the color
histograms of the representative keyframes is used as the color similarity
value between different shots. A Homogeneous Texture Descriptor is used
as the texture similarity measure. Next, keywords are extracted from the
transcript of each shot, placed in a vector, then arranged by their frequency.
To obtain what the authors refer to as ‘semantic’ similarity, the keyword
vector of one shot is compared with the vector of another shot. These three
similarity measures are combined into a weighted sum to represent the overall
similarity between shots.

Scene detection is performed using the Splitting and Merging Forces
method, which will be explained in detail later in the Scene Detection chap-
ter, combined with their shot similarity measure.

6

1.1.2 System Limitations

Without performing a thorough testing of the systems presented above,
certain limitations can be noticed.

A few of the systems are built for very specific types of videos, for example
medical videos or educational documentary videos. These will, most likely,
not perform as well on different types of videos such as full-length feature
films.

Other systems select keyframes in what seem like unreliable manners, such
as selecting the 10th frame of the shot or the middle frame of the shot. A
more extensive keyframe extraction method would help to obtain keyframes
that better represent the entire content of the shot.

In the second system presented [2], before performing segmentation, the
weights for the similarity measure must be manually selected, similarly in
the fourth system [4], the text segmentation parameters are manually tuned.
The segmentation process, including the selection of weights and parameters,
should be automatic or done prior to the creation of the system.

The user interfaces for the constructed video skimming or video browsing
tools appear to be, in some cases, overly complex in such a way that a first
time user of the system would not be able to immediately use it. It should
be easy and intuitive to use such that any user can easily employ the tool
without any prior knowledge of the system.

Lastly, none of the papers presented above attempt to properly define
what a scene is. They give short general definitions but do not indicate
how they have constructed their scene ground truths that were used in the
testing processes. This is important because without a proper definition the
semantics, a scene can be interpreted very differently by different people.

These are some of the issues that will be examined when creating the
Video Search Tool.

Having examined different approaches, it is evident that video analysis
and hierarchical segmentation systems use different combinations of features
extracted from images, audio, and text to achieve satisfactory segmentation
and to search through the resulting film units.

7

1.2 Objectives

As was previously stated, the objective of this project is to facilitate the
process of searching through videos for specific content by constructing a
Video Search Tool that will perform segmentation of videos, then is able
to perform keyword queries through the video’s subtitle transcript. The
immediate goal is to perform a hierarchical segmentation of videos into shots
and scenes using visual content. It should be noted that offline methods are
examined.

A thorough examination of methods for shot detection, keyframe extrac-
tion, scene detection, along with an inspection of shot similarity measures will
be done. Selected shot detection and keyframe extraction methods will be
chosen for implementation and a new algorithm for locating scene boundaries
will be explained and tested against current methods. The chosen methods
and measures will then be implemented into the Video Search Tool.

The works presented in this thesis were put together with the final goal
of creating a Video Search Tool that first segments the video into shots and
scenes, and can also perform keyword queries through the video’s subtitle
transcript.

To reiterate, the objectives are:

• Experimentally evaluate methodologies for keyframe extraction and
similarity measures estimation;

• Develop an innovative technique to cluster similar shots into scenes,
strictly relying on visual features from the shots;

• Merge the selected and newly developed approaches into a Video Search
Tool.

1.3 Structure of the Thesis

The following chapters will involve the multiple steps taken to create a
Video Search Tool. For performing automatic segmentation of videos, various
techniques, measures, and their combinations will be presented and evalu-
ated. The subsequent chapters will be presented in the following order: Shot
Detection, Keyframe Extraction and Shot Similarity, and Scene Detection.

The document is structured in the following way:

8

• Chapter 2 will present several shot detection methods that have been
previously employed in the literature as a background to the shot de-
tection method that we have chosen to implement.

• Chapter 3 will examine different keyframe extraction methods along
with several frame and shot similarity measures that have been previ-
ously employed in the literature. Certain of these methods and mea-
sures will be chosen for testing and comparison in order to select an
appropriate keyframe extraction method and shot similarity measure
to be used in the scene detection process.

• Chapter 4 will present various scene detection methods found through-
out the literature, followed by a detailed description of the proposed
scene detection method. Several methods, along with our proposed
method, are then tested and compared.

• Chapter 5 will conclude the thesis with an overview of the works
presented, our contributions, and future work.

1.4 Contributions

The following items describe the unique contributions of this thesis.

• A unique approach to evaluating similarity measures and keyframe ex-
traction methods for their application to video segmentation;

• An innovative technique for performing scene detection based on visual
content;

• An implementation of the selected and newly developed approaches
and methods into a Video Search Tool.

9

Chapter 2

Shot Detection

In order to be able to properly search through a film, we must first have
access to its basic units. A movie can be broken down into a hierarchy of three
units: frames, shots, and scenes. The movie’s frames are already available, so
the next important step in this process is to partition the film into shots. A
shot can be defined as a contiguous sequence of frames captured by a single
camera, that is a same viewpoint, and so shot detection is the process of
locating the transitions between each of these cameras.

Shot detection is an important first step, however, not the main focus.
This chapter will first describe various previous methods that have been
commonly employed to detect shots. This will serve as a preliminary intro-
duction to the shot detection method that has been chosen, which will be
subsequently presented.

2.1 Previous Methods

There have been many different methods for shot detection with most at-
tempting to accurately locate the transitions between shots such as cuts,
fades, and dissolves. Generally, cuts, which can be defined as abrupt transi-
tions between shots, make up the vast majority of transitions in films and as
such, we will focus on detecting cuts as the boundaries between shots.

Most cut detection algorithms follow a general path. First, certain param-
eters will be extracted from each frame or image, next these characteristics
will be compared using a similarity measure, and lastly a threshold will be
applied to determine the locations of cuts.

10

The following will present several different types of methods for cut and
shot detection that follow this path. These algorithms can be divided into
edge-based methods, motion-based methods, methods that use computed
features of compressed video, such as MPEG, and histogram-based methods.

In [6], Zabih et al. apply an edge-based method to detect shot transitions.
Their idea is to use the location of intensity edges in successive images to
find when an old edge is far from a new edge. Their method first involves
performing a Canny edge detection on neighboring frames, then determin-
ing the translation needed to align both images. Next, the proportion of
entering edge pixels, ρin, and the proportion of exiting edge pixels, ρout, are
determined using a threshold distance, r.

ρin is the fraction of edge pixels in the second image that are greater than a
distance r from the edges in the first image. It is calculated as:

ρin = 1−
∑

x,y Ē[x+ δx, y + δy]E ′[x, y]∑
x,y E[x+ δx, y + δy]

(2.1)

ρout is the fraction of edge pixels in the first image that are greater than a
distance r from the edges in the second image. It is calculated as:

ρout = 1−
∑

x,y E[x+ δx, y + δy]Ē ′[x, y]∑
x,y E[x, y]

(2.2)

where E and E ′ are the first and second binary images obtained after edge
detection, Ē and Ē ′ are those binary images with each edge pixel dilated by
a radius r, and δx and δy are the translations required to align both images.

After these two measures are obtained, the maximum between the two is
kept as its associated ρ value. Once these values are acquired for all of the
film’s frames, the peaks of ρ indicate the location of a shot transition.

Osian and Van Gool [7], employ a motion-based method that utilizes global
motion compensation information and then apply an adaptive threshold to
perform shot detection. They compare each set of frames by computing
an affine transformation to align both frames before comparing them. The
transformation is calculated in two steps. First each image is divided into
20 x 15 blocks, and the best motion vector is calculated for each individual
block. Next, a hierarchical search is executed to determine a transformation

11

that approximates the entire set of motion vectors. They use the average
pixel difference between the motion compensated images as the similarity
measure. Once this metric is obtained for the entire film, they make use of a
sliding window of 16 frames to locate cuts. For every position of the sliding
window, they inspect for the following conditions to determine if there is a
cut between the two middle frames of the window.

1. If the current difference of the middle frames is greater than a threshold,
and

2. If the current difference is the largest within the current position of the
window, then

3. If the average difference of the previous frames is greater than the
average difference of the next frames, then a cut is marked between the
two middle frames. Otherwise

4. If the current difference is greater than the variance within the window
× the average window difference, and

5. If the trend in the first half of the window is a linearly increasing differ-
ence and the trend in the second half is linearly decreasing difference,
and the maximum of the two differences is not comparable to the dif-
ference of the middle frames, then a cut is marked between the two
middle frames.

Wang et al. [8] use the information from the MPEG compressed domain,
namely macroblock type information of B-frames and P-frames, to locate
shot boundaries. They state that at a shot change location there is a specific
type of macroblock information. Before a shot change, most macroblocks
in B-frames are forward motion compensated. Macroblocks in P-frames are
intra-coded before a shot change because of a change in video content. After
a shot change, most of the macroblocks in B-frames are backward motion
compensated. Using this knowledge, they are able to determine when a shot
transition occurs.

In [9], Yeo and Liu also use information obtained from the MPEG com-
pressed domain to perform shot detection. They extract DC images from
I-frames, B-frames, and P-frames because they are spatially reduced version

12

of the original images that retain most of the global image features and the
authors believe they are ideal for shot detection. Once they have obtained
the DC images, they smooth the images in order to make them less sensi-
tive to object and camera motion. Next, pixel differences between successive
images are computed and a sliding window method is applied to determine
where to mark a shot boundary. There are two conditions that must be met
in order for a boundary to be marked: firstly, the pixel difference should be
the maximum within the sliding window and secondly, it should be n times
greater than the next highest difference. The authors have experimentally
determined the n value to be between 2.0 and 3.0.

Histogram-based shot detection methods are among the most popular.
Rasheed and Shah [10] employ 16-bin HSV normalized color histograms,
composed of 8-bins for Hue, 4-bins for Saturation, and 4-bins for Value, to
represent frame content. Histogram intersection is then performed on each
pair of neighboring frames to obtain a distance metric. The distances are
then compared to a threshold, Tcolor, to determine the locations of cuts. A
cut is declared if

Dint(fi, fj) =
∑

b∈allbins

min(Hi(b), Hj(b)) < Tcolor (2.3)

Chasanis et al. [11] use a very similar method but choose to use χ2 dis-
tance to measure the difference between frames before applying a threshold,
Tsh, which they have experimentally determined to be 0.15. In this case, a
shot boundary is marked if

Dχ2(fi, fj) =
∑

b∈allbins

(Hi(b)−Hj(b))
2

Hi(b) +Hj(b)
> Tsh (2.4)

Le et al. [12] expand on this method by attempting to eliminate false shot
boundaries caused by large object motion. The magnitude of the motion
vector is calculated for each frame and, for a previously detected cut, if the
magnitude is greater than a threshold then the cut is determined to be falsely
placed due to motion and is removed.

Liu et al. [13] also use a histogram-based method. First they divide each
frame into a 4×4 grid, obtaining 16 sections of the image, before calculating a
16-bin HSV color histogram for each individual block. To obtain the distance
between two frames, the Euclidean distance is calculated for each individual

13

block and an average of these distances is used as the final distance measure.
The resulting distances are then compared to a threshold, Td, and a shot
boundary is detected if

Deucl(fi, fj) = C1

16∑
n=1

C2

√√√√ 16∑
b=1

(Hi(n, b)−Hj(n, b))2

 > Td (2.5)

where the normalization constants C1 = 1
16

and C2 = 1√
2
, and n is the nth

sub-image, and b is the bth bin in the histogram of the sub-image.

A feature tracking based method is employed in [14]. They begin by quan-
tifying inter-frame differences by first tracking features from frame to frame,
pruning false tracking with the use of a Minimum Spanning Tree, and lastly
computing the square of percentage feature loss.

This measure is then used to compute a linear discriminator. A histogram
of the squared percentage feature loss is obtained and the PDF (probability
density function), along with the first derivative of the PDF are calculated.
These are used to locate where tracking succeeded and where tracking failed,
in other words, to locate the shot cuts.

2.2 Selected Method

Having presented different techniques for shot detection, cut and transi-
tion detection, the shot detection method that was selected for use in our
video segmentation process will be presented. This shot detection method
was taken from Ionescu, Buzuloiu, Lambert, and Coquin’s “Improved Cut
Detection for the Segmentation of Animation Movies” [15]. It was selected
because it offers ease of implementation and has demonstrated high efficiency
throughout our experimentation process.

2.2.1 Color Reduction

A typical movie frame can easily be made up of millions of different colors,
and with such a large number of possible RGB combinations, calculating the
color histogram for each of the film’s frames becomes a very tedious task.

14

Thus, in order to simplify this process and greatly reduce the computation
time, a color quantization, or color reduction, should be applied before any
other steps are performed. Before applying a color reduction technique, a
spatial sub-sampling of the original image is done such that the new image
is reduced to a size 4 times smaller than the original. This step will also
greatly reduce the computational complexity of the subsequent calculations.

Color reduction is then performed in the Lab space using the fixed “Web-
master” palette [16], which is composed of 216 colors. Every color of the
image is then replaced by the closest palette color.

Once the colors of an image have been quantized, its color histogram is
then computed for use in the cut detection algorithm.

2.2.2 4−Histograms Method

The general idea behind the cut detection algorithm, is to measure the
visual discontinuity between frames. This is done by calculating the Eu-
clidean distance between each successive frame’s color histogram. In order
to reduce the effects of object movement the 4-histograms method is used.
This method consists of simply splitting each image into four quadrants, cal-
culating their respective color histograms, then calculating four Euclidean
distances between the quadrants’ histograms of successive images.

djE(k) =

√√√√(Nc∑
c=1

[
Hj

(k+1)(c)−H
j
k(c)

]2
)

(2.6)

where Nc is the total number of colors, c is the index of the color, k is
the image number, and j is the quadrant number.

The average of these four distances is then used as the final distance
between the two frames.

dE(k) =
1

4

4∑
j=1

djE(k) (2.7)

15

2.2.3 2nd Derivative Method

After having obtained each distance for the entire length of the film, to
better locate the cuts and further reduce the influence of movement, the 2nd

Derivative method is applied. Since a cut is represented by a large enough
dissimilarity between frames, applying a derivative to the distance vector dE
will help to distinguish these points. It has been determined that performing
up to the second order derivative will effectively accomplish this without
increasing or adding noise to the distance vector.

The derivatives are calculated as the difference between the distances,
dE(k), estimated on successive frames. The first derivative is:

ḋE(k + 1) =

{
dE(k + 1)− dE(k), if dE(k + 1) ≥ dE(k)

0, otherwise
(2.8)

The second derivative, d̈E, is calculated in the same way by replacing dE
with ḋE. The negative values are set to 0 because they contain redundant
information, as the locations of the cuts will always be positive peaks in the
distance vector.

d̈E(k + 1) =

{
ḋE(k + 1)− ḋE(k), if ḋE(k + 1) ≥ ḋE(k)

0, otherwise
(2.9)

Now we have a vector with more distinguishable cut locations.

2.2.4 Automatic Threshold Computation

To calculate a proper threshold for different films, an automatic threshold-
ing method is used. The first step is to calculate the average second derivative
of the distance value from the d̈E vector.

aved̈E =
1

Nk

Nk−1∑
k=0

d̈E(k) (2.10)

where Nk is the size of d̈E, which depends on the number of frames in the
film.

This average value is then used in the definition of local maximum to
locate the peaks of the distance vector d̈E. A local maximum is defined as a
point that meets the following conditions:

16

d̈E(k)is a local maximum if

d̈E(k) > aved̈E , and

d̈E(k − 1) < d̈E(k), and

d̈E(k + 1) < d̈E(k)

(2.11)

The final threshold value, τcut, is obtained by calculating the average
value of all the local maximum peaks and a cut at frame k is detected if the
following conditions are met:

cut detected if

d̈E(k − 1) < τcut, and

d̈E(k) > τcut, and

d̈E(k + 1) < τcut

(2.12)

2.3 Conclusion

This chapter presented several shot detection methods from the literature.
These included edge-based methods, motion-based methods, methods that
use computed features of compressed video, and histogram-based methods.

The chosen shot detection method and its various procedures were also
described. Ionescu’s shot detection method can be broken down into sev-
eral different stages. First, color reduction is applied to each of the video’s
individual frames using the “Webmaster” palette, which has a total of 216
colors. The 4−Histograms method is then used to calculate the distance
between each frame and to obtain the distance vector for the entire film.
Once this vector is acquired, the 2nd Derivative method is applied to the
vector in order to more clearly distinguish the cut locations. An automatic
threshold is then computed and applied to the new vector to locate the shot
boundaries. A selection of shots detected using this method can be seen in
Appendix A. The three films used throughout to evaluate the performance of
the selected methods were chosen, due to the origins of this project, because
of their religious subject matter.

Once the shot detection method is effectuated and the shots are obtained,
the next step is to determine appropriate keyframe extraction methods and
shot similarity measures which can be used in the scene detection process.

17

Chapter 3

Keyframe Extraction and
Similarity Measures

Scene detection is generally a more difficult task when compared to shot
detection. Shots can be defined as a sequence of frames continuously cap-
tured from a single camera whereas scenes are a series of shots that are
related semantically and contain a common background, action or story. Af-
ter the shot boundaries of a video have been detected, using the method
described in the last chapter, the next step towards scene detection is to cal-
culate a certain similarity measure which can then be used to cluster shots
into scenes. The following examines previously employed keyframe and shot
similarity measures found in the literature which were used in scene detec-
tion. This chapter is organized into four main sections: keyframe extraction,
frame similarity, shot similarity measures, and the last section, experimental
comparisons, will compare selected similarity measures and keyframe extrac-
tion algorithms and select one of each for use in scene detection. They will
be presented in that order.

3.1 Keyframe Extraction

Keyframe extraction is performed on shots in order to save computation
time by avoiding the effort of using all the frames in the video. The keyframes
selected should be those frames that represent the most important content
of the shot. Several different methods have been employed throughout the
literature. Some authors use the middle frames of the shots as the repre-

18

sentative frames [17][18] and others choose to select the first and last frames
[8]. Another simple method used is to sub-sample the shot at a fixed rate to
extract several keyframes [19][20]. The other methods that will be presented,
extract the selected frames that satisfy a chosen criterion.

In [21], Detyniecki and Marsala select one keyframe from the beginning
and another one from the end of the shot. To find the frames in those areas,
Euclidean distance between the frame histograms are computed. Those that
are significantly different from the others are selected as either the beginning
frame or as the ending frame.

Le et al. [12] employ a curve of cumulative frame difference by calculating
the cosine distance between successive frames. Keyframes are chosen as the
frames that correspond to the midpoints between consecutive high points on
the curve [21].

In [23], the first step to obtaining a set of keyframes is to select the middle
frame and add it to an empty set. Next, the other frames are compared to
those in the set. If the current frame’s similarity with those in the set, which
is computed as color histogram intersection, is below a certain threshold then
it is added to the set. This is repeated until all of the shot’s frames have
been examined, thus obtaining a set of different keyframes to represent the
shot content. Similar methods are also employed in [24][25][26].

The first step in the method presented in [13] is to compute what they
refer to as the stability of the frames in a shot. It is calculated as follows:

S(fi) = 1− (V isSim(fi−1, fi) + V isSim(fi, fi+1))

2
(3.1)

where V isSim(x, y) is the visual similarity between frames x and y. Once this
has been calculated, the frames with local maximum stability are selected
as candidate keyframes. If the difference between candidate keyframes is
less than a threshold, the middle frame between them is chosen as the new
candidate in their place. This process is repeated until no keyframes can
be replaced. The next step is to divide the frames between two successive
keyframe candidates into two classes. The partition position p is selected as:

19

p = argmin

(
p∑

n=i+1

V isSim(ki, fn) +

j−1∑
n=p+1

V isSim(fn, kj)

)
(3.2)

where fn is a frame between keyframes ki and kj. Next, the new candidate
keyframes are selected as the frames that are most similar to their clustering
center. The final keyframes of the shot are obtained after a few iterations.

In [27], Sano et al. use motion information to first divide shots into two
kinds of sub-shots, those that are considered active and those that are non-
active. This is done by dividing the frames into 3 × 3 blocks in which the
motion vectors are summed. Frames are deemed active if the sum exceeds a
certain threshold. The authors claim that by selecting representative images,
keyframes, from the non-active sub-shots, the robustness of the keyframe
comparison method is improved. Toharia et al. [28] employ a similar method
using the activity of the shot to help determine which keyframes to select.
Activity is measured for all of the frames in the shot and the middle frame
between frames that have activity higher than a certain threshold, or be-
tween these frames and the shot boundaries, are selected as the representative
keyframes for the shot.

Ngo et al. [29] also use motion, which is obtained by analysis of spatio-
temporal image volumes [30], in their keyframe selection algorithm. The
selection of keyframes varies depending on whether the motion type is static,
a pan or tilt, a zoom, or if it is viewed as tracking an object. For static shots
one frame is used, for zooms the first and last frames are used. However, if
the shot contains a pan or tilt, a panoramic image is obtained by warping
the images together to use for comparison. If it is object tracking, the object
is used to compare shots.

In [11], Chasanis et al. attempt to obtain unique keyframes from a shot by
clustering the frames using a common spectral clustering method in which
the number of clusters is determined automatically. Once the clusters are
obtained, the keyframes are selected as the medoids of the clusters, which
are defined as being the frames that have the highest similarity to all the
other frames in the cluster.

20

Once the representative keyframes of each shot are extracted, these can be
used to estimate the similarity between shots. This is discussed in the next
sections.

3.2 Frame Similarity Measures

One of the most commonly used techniques to determine similarity be-
tween shots is to perform a pair-wise comparison between color histograms
of keyframes extracted from the shots. This can be viewed as a frame simi-
larity measure. In most methods, the first step of this process is to perform a
color reduction, also referred to as color quantization, on the original frames.
This step can greatly reduce the computational time for the steps that follow
it. Next, color histograms are obtained for each of the keyframes and a visual
similarity between keyframes can be calculated using several methods.

The two most commonly used methods to obtain visual similarity are Eu-
clidean distance V isSimEucl(x, y) and histogram intersection V isSimint(x, y).
In the latter method, the degree of similarity is proportional to the region of
intersection.

V isSimEucl(x, y) =

√ ∑
h∈bins

(Hx(h)−Hy(h))2 (3.3)

V isSimint(x, y) =
∑
h∈bins

min(Hx(h), Hy(h)) (3.4)

where, Hx(h) is the color histogram of frame x at bin h.

In [31], Sasongko, Rohr, and Tjondronegoro calculate the visual similarity
between the keyframe HSV histograms of the two shots using the chi-squared
test.

V isSimχ2(x, y) =
∑
h∈bins

(Hx(h)−Hy(h))2

Hx(h) +Hy(h)
(3.5)

The authors also note that placing more importance on the hue has been
found to be effective so they put more emphasis on the hue of each keyframe
by weighting each channel as follows: 4 for hue, 2 for saturation, and unity
for value.

21

Zhai and Shah [23] compute the visual similarity between keyframes as the
Bhattacharya distance between RGB color histograms, which have 8 bins for
each of the red, the green, and the blue channels.

V isSimBhatt(x, y) = − ln

(∑
h∈bins

√
Hx(h)Hy(h)

)
(3.6)

Ren et al. [32] decided to divide the keyframes into 9 regions, a 3x3 grid. A
weight of 2 is assigned to the four corner and center regions and unity weight
for the four remaining regions. A weighted sum of the intersection distances
of each region is used as the similarity measure. Noguchi and Yanai [33] also
divide the center frame of the shot, which they use as the keyframe, into
3x3 regions before computing RGB histograms and calculating intersection
distance.

Another frame similarity measure that is employed to characterize the
spatial distribution of color in a frame is the MPEG7 color layout descriptor.
It is extracted from an image in four steps. First the image is divided into
8x8 blocks, then dominant colors are selected and represented in YCbCr
color space. Next, an 8x8 discrete cosine transform (DCT) is applied to the
Y, Cb, and Cr components to obtain three sets of DCT coefficients. Lastly,
these coefficients are zigzag scanned to obtain the first few low-frequency
coefficients which are then quantized to form the descriptor [34]. In [35], Naci
et al. calculate the similarity between frames using a Gaussian function, the
Euclidean distance between color layout descriptors (CLD), and a scaling
parameter ε. It is computed as

V isSimcld(x, y) = e−
||CLDx−CLDy ||2

ε2 (3.7)

where CLDx is the color layout descriptor of frame x. A similarity matrix is
created once similarities between all frames have been computed.

The authors of [36] use the same method, but take advantage of the
similarity matrix to compute the minimum distance between the keyframes
of the shots being compared as the final similarity measure. Color layout
descriptor combined with edge histogram descriptor is used in [19].

The methods in [21], [27], [37], [38], and [39] use variations of the simi-
larity metrics described above. They mostly use color histograms in HSV

22

space, segments of a predefined length or keyframes to represent shots, and
histogram comparison.

The next section discusses how shot similarity can be evaluated from the
presented frame similarity measures.

3.3 Shot Similarity Measures

After keyframes are selected, the shot similarity measure used in [25] by
Zhao et al., can be obtained by calculating a pair-wise visual similarity be-
tween the keyframes of two shots. The largest obtained keyframe similarity
is selected as the representative one between the shots. This can be done for
each pair of shots, depending on the requirements of the method.

ShotSim(si, sj) = max
{
V isSim(kim, k

j
n)
}

(3.8)

where kim is the mth keyframe of shot i.
In their case, they used V isSimint, defined in eq.(3.4), as the frame similarity
measure which would yield ShotSimint as the shot similarity measure.

Before direct use of this measure in the grouping process, the temporal
distance of each shot is also weighted into the similarity measure. The middle
frame numbers fmid of the shots being compared, the standard deviation of
shot durations σsd throughout the video and, in this specific case, the number
of shots Ns, are added to the equation.

W (si, sj) = exp

(
−(f imid − f

j
mid)

2

√
Nsσ2

sd

)
× ShotSim(si, sj) (3.9)

Ngo et al. [29] employed an almost identical measure, but chose to weight
their similarity measure using the total number of frames, Nf , instead of
shots, along with an experimentally obtained temporal parameter γ.

w(si, sj) = exp

{
−γ × |f j − f i|

Nf

× ShotSim(si, sj)

}
(3.10)

where |f j − f i| is the temporal distance between shots i and j.

23

The final similarity measure used in [23] is computed as the maximum of
a constant C subtracted by the visual similarity, defined in eq.(3.6), between
the keyframes of the two shots being compared.

SimBhatt(si, sj) = max(C− V isSimBhatt(k
i
m, k

j
n)) (3.11)

Lu et al. [17] suggested the use of a spatio-temporal dissimilarity function
that can use any shot color histogram similarity measure. They also decided
to weight this function with the temporal distance between the middle frames
of the two shots.

Dis(si, sj) = 1− ShotSim(si, sj)× e−ζ×dT (si,sj) (3.12)

where ζ controls the slope of the exponential and dT is the distance between
middle frames of shots i and j.

Le et al. [12] extract three different features from keyframe color his-
tograms to characterize the shot content. Keyframes are divided into regions
and the mean µb, the variance σb, and the skew skb of the histograms are
calculated as follows:

µb =
1

Nh

Nh∑
i=1

Hb[i] (3.13)

σb =
1

Nh

Nh∑
i=1

(Hb[i]− µb)2 (3.14)

skb =
1

Nh

Nh∑
i=1

(Hb[i]− µb)3 (3.15)

where, Hb[i] is the histogram of bth region of the keyframe, i is the bin
number, and Nh is the number of histograms.

In [40], Ren and Jiang employ a similarity measure that includes luminance
histogram correlation, ch(i, j), and DC-image difference. The histograms and
the DC-images are computed in the YCbCr color space. The Y, Cb, and Cr
components of an image are extracted as Y

(i)
DC , U

(i)
DC , and V

(i)
DC respectively,

where i is the frame number. The luminance components are used to compute
image difference cd(i, j).

24

cd(i, j) = 1−
∑

m,n |Y
(i)
DC(m,n)− Y (j)

DC(m,n)|

min
[∑

m,n Y
(i)
DC(m,n),

∑
m,n Y

(j)
DC(m,n)

] (3.16)

ch(i, j) =

∑
m hi(m)hj(m)∑
m[hi(m)]2

(3.17)

where hi is the luminance histogram of DC-image Y
(i)
DC . The overall similarity

metric is computed as a weighted sum of the two.

Other papers chose to incorporate several other features as well as color
histograms into their similarity measures. Motion, edge information, and
color layout descriptor are among the most common.

In [41], a gradient distribution descriptor is added to the similarity mea-
sure. It is calculated from histograms of the magnitude of the image intensity
gradient. Shape and color similarity measures are used in [28]. The authors
use Zernike invariants [42] as the shape descriptors and quantified histograms
as the color feature. In [43], the authors employ object tracking and a shot
color invariant feature, obtained from a color ratio gradient which is insensi-
tive to object positions, shadows and illuminations, to represent the contents
of a shot. The authors of [44] extract a 30-dimensional feature vector from
the shots. It is composed of 1st, 2nd, and 3rd order moments of each R, G,
and B color histograms, along with the mean and variance values of three
high-pass sub-bands for each of the R, G, and B planes, and also 1st, 2nd,
3rd order moments of what the authors refer to as the motion magnitude
histogram.

3.3.1 Dominant Color

Lin and Zhang [45] chose to use dominant color histograms to obtain a
correlation measure between two shots. It is calculated as the intersection of
HSV dominant color histograms. Their method for the extraction of domi-
nant colors is detailed in the following.

The first step is to obtain the color histograms for all of the frames in
the video. 10 bins are allocated for hue, 5 for saturation, and 5 for lightness
(value), together they form a 3D color histogram. The next step is to identify
the local maximum points and surround them with spheres of 3 units in

25

diameter, creating color objects. The first few objects with the most pixels
are the dominant objects. Using the pixels from these objects, a new 3D
dominant color histogram is then obtained.

Once this is performed for all of the frames in a shot, the distances be-
tween dominant objects in adjacent frames is calculated. If this distance is
smaller than a threshold, then the objects are considered to be the same.
This is done for all the frames in a shot. Finally, an overall dominant color
histogram is formed by using the dominant objects with the longest durations
within the shot and weighting them by their duration.

The same authors along with Q.Y. Shi, expand on the methods by adding
what they call spatial structure histograms in [46]. K-means clustering is
applied to perform color quantization in order to obtain color-blob maps.
From these maps various distribution features are extracted. Each is used
to describe certain aspects of the image: 8 bin area histograms for spatial
complexity, 16 bin position histograms for spatial configuration, 8 bin de-
viation histograms in the X and Y direction and 8 bin span histograms for
the shape distribution. These measures are combined into a spatial similar-
ity measure, SshSim, which is then lastly added to the measure obtained
from the dominant color histograms, DchSim, in order to compute the final
similarity measure.

Simdcss(si, sj) = DchSim(si, sj) + SshSim(si, sj) (3.18)

3.3.2 Motion

In [26], Sakarya and Telatar combine visual similarity and motion simi-
larity into their metric. They argue that during dialogue scenes, which may
span several shots, the motion content is generally low and, on the other
hand, action scenes will have high motion from actor or camera movement.
Therefore, they conclude that it is useful to combine the two features. The
visual similarity between frames within a shot is first computed as the in-
tersection distance between normalized 16 bin HSV color histograms, which
have 8 bins for hue, 4 for saturation, and 4 for value. The motion content
of the video, Mot, is then calculated using the previously calculated visual
similarity feature, eq.(3.4), between frames.

26

Mot =
1

b− a

b−1∑
f=a

(1− V isSimint(f, f + 1)) (3.19)

where a and b are the indices of the first and last frames of the shot.
The visual similarity between shots is then computed as the maximum visual
similarity of all possible pairs of their keyframes and the motion similarity is
computed as:

MotSim(si, sj) =
2×min(Moti,Motj)

Moti +Motj
(3.20)

where Moti is the motion content of shot i.
The final measure is a weighted sum of the two similarities and in this par-
ticular paper, they are both equally weighted by a factor of 0.5. It is also
weighted by the temporal distance between the middle frames of each shot
by multiplying it by

e

(
− 1
d
·|
fimid−f

j
mid

σsd
|2
)

(3.21)

where f imid is the middle frame of shot i, and d was manually selected to be
20.

Wang et al. [8] use visual and motion similarity measures almost identical
to the ones from [26]. The difference is that they normalize each measure
and weight the final shot similarity using their mean and standard deviations.
For visual similarity, they are calculated as follows:

µv =
1∑F

j=1(Ns − j)

F∑
j=1

Ns−j−1∑
i=0

V isSimint(si, si+j) (3.22)

σv =

√√√√ 1∑F
j=1(Ns − j)

F∑
j=1

Ns−j−1∑
i=0

(V isSimint(si, si+j)− µv)2 (3.23)

where F is the forward search range and Ns is the number of shots.
The mean and standard deviation of motion similarity, µm and σm respec-

tively, are calculated in a similar manner. The weights are then calculated
using these values.

27

Wv =
σv

σv + σm
(3.24)

Wm =
σm

σv + σm
(3.25)

The final shot similarity metric is then calculated as the weighted sum of the
normalized visual and motion similarity measures.

ShotSimvm(si, sj) =
σv

σv + σm
× V isSim(si, sj)− µv

σv

+
σm

σv + σm
× MotSim(si, sj)− µm

σm
(3.26)

Motion is also employed in the visual distance measure of [18]. A weighted
summation of RGB color histogram difference, HSV color histogram dif-
ference, and motion compensated matching error (motion estimations) are
used. Optical flow is another form of motion that has been employed in
determining shot similarity [47]. The authors use the Lucas-Kanade method
for point-based tracking to estimate the optical flow.

In [20], Chen et al. first segment their shots into those that contain
camera motion, referred to as dynamic shots, and those without, static shots.
They sample the dynamic shots by taking one frame for every ten and use a
mean block histogram to represent the static ones. YUV histograms of each
of the sampled frames from the dynamic shots are computed. Once this is
done, normalized cosine is used as the distance measure between shots. The
final similarity measure is calculated as the average of, at most, the five best
similarities between the shots.

3.3.3 Edges

Another feature that has been observed in the literature is edge informa-
tion. Chen et al. [48] use the distribution density of edges in a frame to
determine its texture. The first step to obtaining their shot similarity mea-
sure is to create static background mosaics for each shot [49][50]. Once this
is accomplished, several features are computed from HSV color histograms.
First, each histogram bin with non-zero count is deemed a color object. Next,
density of distribution λi1, compact of distribution λi2, scatter λi3, and the

28

number of active blocks in the image frame λi4 are calculated for each back-
ground. An average of a feature is used if a shot contains more than one
background. The difference of spatial distribution within a shot, Ds(ci, cj)
is then calculated as the sum of the Euclidean distances between each fea-
ture, where ci and cj are color objects. Edges of an image are obtained by
using the Canny edge detector. The image is then divided into 16x16 regions
and a region is deemed textured if it contains more edge points than a set
threshold. The ratio of textured blocks is then calculated for each image
and averaged for the shot. The texture similarity between two shots is the
minimum value of the two. Once all these measures have been calculated,
the final shot similarity is calculated as:

ShotSimλ(si, sj) =
1

K

∑
(u,v)∈Ω

Sig(Ds(u, v))×min(H̄i(u), H̄j(v))

+wt ×min(ti, tj) (3.27)

where

Sig(x) =
1

1 + e10×x−5

is a form of the sigmoid function, and where Ω is the set of similar color
objects from shots si and sj whose Euclidean distance is below a certain
threshold and where H̄i is the average histogram of shot si, K is the image
size, wt is the weight of the texture feature and t is the texture value.

In [24], an edge is defined as a significant color change in the hue, lightness,
or saturation histograms obtained from a sequence of shots. The authors,
Truong et al., use an edge detector to obtain the H, L, and S edge signals.
They then combine them into a single signal before applying a threshold
to extract edges. Lastly, a similarity measure that employs HLS color his-
tograms is used to find the exact scene transition position within the temporal
extension of detected edges.

3.3.4 Other Measures

Others who chose to employ support vector machines [51] or hidden Markov
models [52] for scene detection, do not directly compute a similarity measure.
They do, however, extract many features that they believe to be useful to
describe and classify shots. Examples of audio features extracted include

29

short-time zero crossing rate, bandwidth, mean of the spectral flux, silence
ratio, harmonic ratio, high zero-crossing rate ratio, low shot-time energy
ratio, volume standard deviation, volume dynamic range, volume undulation,
non-silence ratio, standard deviation of zero crossing rate, standard deviation
of pitch, non-pitch ratio, and frequency centroid. Color features can include
color histograms, dominant colors, mean and standard deviation of colors.
Motion and edge information is also used.

Dynamic programming was performed in two different papers to obtain a
similarity between shots. In [11], Chasanis et al. perform a local sequence
alignment of the keyframes within two shots using the Smith-Waterman algo-
rithm. A visual similarity matrix is first computed using HSV color histogram
difference, with 8, 4, and 4 bins for HSV respectively.

V isSimalgn(fi, fj) = 1−
128∑
h=1

(Hi(h)−Hj(h))2

Hi(h) +Hj(h)
(3.28)

This matrix is then used in the alignment algorithm and the normalized re-
sulting score is the final similarity measure.

Liu et al. in [13], perform a global alignment using the Needleman-
Wunsch algorithm. Keyframes of two shots are aligned and it is determined
whether they are matched, partly matched, or not matched at all. To deter-
mine if they are matched two scores which use HSV color histogram difference
are calculated and compared.

In [53], Bredin et al. use principal component analysis (PCA) or linear
discriminant analysis (LDA) to create a footprint of a shot. D-dimensional
color histograms H i

j are obtained for every frame j within the shot i as well
as an overall set of feature vectors H.

H =
Ns⋃
i=1

{
H i
j

}
j∈[1,N i

f]
(3.29)

where Ns is the total number of shots and N i
f is the number of frames in the

shot i and H i
j is the color histogram of frame j of shot i.

PCA is then apply to H in order to reduce the dimension and maximize
the variance of the data set. Only the first two principal components are

30

kept.

V = PCA(H) =
Ns⋃
i=1

{
vij
}
j∈[1,N i

f]
(3.30)

Here vij is a 2-dimensional vector composed of the first two principal
components.

LDA can also be applied to minimize the overall intra-class variance and
to reduce the dimensions of the feature vector. Before this is done, the shot
numbers are added to H.

H̄ =
Ns⋃
i=1

{
(H i

j, i)
}
j∈[1,N i

f]
(3.31)

LDA is then applied to H̄ and, as with PCA, the first two components are
kept.

V̄ = LDA(H̄) =
Ns⋃
i=1

{
v̄ij
}
j∈[1,N i

f]
(3.32)

where vij and v̄ij are the resulting 2D vectors from PCA and LDA respectively.
Next, a 2D 30-bin histogram can be computed from the resulting sets V

or V̄ . The histogram can then be arranged into a binary footprint of the shot.
The x and y components represent the first and second dimension of the 2D
vectors vij or v̄ij that form the sets previously mentioned. In a footprint, a
bin is set to 0 (white) if it is empty or set to 1 (black) if it is not. These
footprints can then be used as a similarity measure between shots.

3.4 Experimental Comparisons

Having presented various methods for keyframe extraction, frame and shot
similarity, selected methods will be chosen for comparison and review. The
ground truth, along with several other measures, will be employed to establish
an appropriate threshold for each method and, subsequently, to select the
similarity measure and keyframe extraction method which perform best.

3.4.1 Frame Similarity Measures

Because most keyframe extraction methods require the use of a frame
similarity measure, the first step will be to compare some frame similarity
measures.

31

As seen in section 3.3, these measures perform pair-wise comparisons of
the keyframes extracted from the shots. Intersection, eq.(3.4), Euclidean
Distance, eq.(3.3), and Bhattacharya Distance, eq.(3.6) were chosen for com-
parison. These measures were chosen because Euclidean distance is a typical
distance measure, Intersection is commonly used when employing histograms,
and Bhattacharya distance measures the similarity between two probability
distributions, which in our case are the color histograms since they represent
the distribution of color in an image.

Comparison Measures

The creation of a ground truth is essential to the process of comparing
different measures. A ground truth of four segments from the movie The
Shawshank Redemption has been constructed. For all four segments, each
shot within the segment has been manually compared with each of the oth-
ers within the same segment. If two shots are judged to be similar, the
similarity point on the map is assigned a value of 1, shown as a black point
on the map; otherwise it is assigned a value of zero, shown as a white point
on the map. Using these values, similarity maps, or similarity matrices, of all
four segments were created and combined into a single map. The combined
segments, each individually outlined, can be seen in Figure 3.1. The seg-
ment boundaries on the ground truth similarity map are bounded by (1, 35),
(36, 43), (44, 59), and (60, 105). They are composed of 8157, 410, 1358, and
7647 frames respectively. Shots from one segment were not compared to the
shots of another and as such when calculating the comparison measures, the
areas outside the segment boundaries were also ignored.

The first segment is composed of a scene in the movie where the main
character Andy is accused of murder and is sent to jail. It occurs in a court
room with some flashback shots to other areas. Examining Figure 3.2, it was
determined that shots 6 and 7 are not similar and that shots 6 and 8 are
similar.

The second segment is where another character, Red, is being evaluated
by a group for parole. Figure 3.3 shows that shots 36 and 37 are not similar,
shots 36 and 38 are similar, and that shot 43 is not similar to either 36, 37,
or 38.

In the third segment, Andy enters a bank and has dealings with the
bankers. In this segment, we have an example of where cuts have been

32

Figure 3.1: Manually created ground truth for the four segments of the movie.
A black dot appears when the shot on the x-axis is similar to the shot on the
y-axis

falsely detected because of fast motion of a large object in the middle of
the frame. However, the resulting “sub-shots” should still be deemed to be
similar as we can see with shots 44 and 45. Figure 3.4 shows that shots 44
and 45 are similar, and shots 44 and 51 are not similar.

In the last segment Red is searching for something outdoors. This is a
long outdoor segment, that includes an area with roads, one in a field, and
another in the woods. Figure 3.5 shows as sample of frames taken from the
segment. Shots 59 and 60 are similar, another frame taken from shot 60
shows that shots 60 and 61 are not similar, shots 65 and 66 are similar, and
shots 66 and 68 are not similar.

An NxN similarity matrix is computed for each of the four segments us-
ing one of the three frame similarity methods, Intersection, Euclidean Dis-

33

Figure 3.2: Frames from shots 6, 7, and 8

Figure 3.3: Frames from shots 36, 37, 38, 43

34

Figure 3.4: Frames from shots 44, 45, and 51

tance, and Bhattacharya Distance. Their resulting similarity matrices are
aptly named simMapInter, simMapEucl, and simMapBhatt. The keyframe
sets used are obtained by sampling the shots every 10 frames, since this
method does not require the use of frame similarity to extract the keyframes
(keyframe extraction methods are evaluated in the next section). Frame
similarity is rather used to construct the shot similarity matrix according
to equation 3.8. The matrices are then normalized such that 1 is the most
similar and 0 is not similar at all.

They are normalized as follows:

For Intersection, we simply divide by the maximum value.

simMapIntern =
simMapInter

max(simMapInter)
(3.33)

For Euclidean distance usually a distance of 0 indicates the highest similarity,
so we first divide by the maximum value then invert the results.

simMapEucln = 1− simMapEucl

max(simMapEucl)
(3.34)

35

Figure 3.5: Frames from shots 59, 60(a), 60(b), 61, 65, 66, and 68

36

For Bhattacharya distance the first step is to make the smallest distance 0,
then divide by the maximum value.

simMapBhatttemp = 1− simMapBhatt

max(simMapBhatt)
(3.35)

simMapBhattn =
simMapBhatttemp

max(simMapBhatttemp)
(3.36)

These normalized matrices are then thresholded and the resulting matri-
ces are compared with the ground truth to obtain true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) values. This is
done for multiple thresholds, with the threshold varying from 0 to 1.

These values are then used to compute several measures that can be used
to compare and evaluate the results. These measures include Precision,
Recall, F -Measure, F2-Measure [54], and the Normalized Detection Cost
Rate (NDCR) [55].

Precision can be defined as the percentage of true detections with respect
to the overall declared event. It is calculated as:

Precision =
TP

TP + FP
(3.37)

Recall can be defined as the percentage of true detections with respect to
the overall events actually present in the sequence. It is calculated as:

Recall =
TP

TP + FN
(3.38)

F -Measure can be used to combine the two previous measures and is defined
as the harmonic mean of Precision and Recall. It is a measure of accuracy
that considers both Precision and Recall, it is a weighted combination of
the two. In this form, it is equally balanced between both and is calculated
as:

F -Measure =
2(Precision×Recall)
Precision+Recall

(3.39)

There is also the F2-Measure, which weightsRecall twice as much as Precision.

F2-Measure =
5× (Precision×Recall)
4× Precision+Recall

(3.40)

37

In order to select a proper threshold, two error rates, the probability of
a miss (Pmiss) and the false alarm rate (Rfa), are combined into a single
detection cost rate. A cost is then associated to each error depending on the
type of problem (Cmiss, Cfa). Here, misses indicate that two shots were not
deemed to be similar, when in fact they should have been, and false alarms
are the opposite. In our case, a higher cost for misses has been selected be-
cause we would prefer to obtain more similarities and not miss potentially
important similarities.

Pmiss is calculated as:

Pmiss =
FN

Ntarget

(3.41)

where Ntarget is the number of similar shots in the ground truth.

Rfa is calculated as:

Rfa =
FP

Tqueries
(3.42)

where Tqueries is the total number of shots being compared.

A Normalized Detection Cost Rate is then calculated using Rtarget, which
has the effect of balancing the error types with respect to the priors, and the
cost for each error. Rtarget is the a priori target rate and is estimated as the
number of similar shots over the total number of shots in the ground truth.
Choosing a cost for false alarms and for misses (Cfa, Cmiss) the normalized
detection cost rate is then calculated as:

NDCR = Pmiss +Beta×Rfa (3.43)

where Beta =
Cfa

Cmiss×Rtarget

The minimum NDCR across all threshold values is selected as the deci-
sion threshold for its associated similarity measure.

One way of visualizing the capabilities and the effectiveness of the similar-
ity measures is to plot a Detection Error Tradeoff curve (DET) [56]. Gen-
erally, the task of detecting similarities involves balancing failures to detect
similarities and false similarities. The DET curve plots error rates on both

38

axes, miss probability versus false alarm rate, using a logarithmic scale. This
allows for a better viewing of the performance of each system as the area
between each plot is increased and the tradeoff between the error types can
be better observed. The DET curves will plot the resulting miss probability
versus the false alarm rate for threshold values between 0 and 1 with a step
size of 0.0001. The minimum NDCR points are also indicated on the curve
for each system, one showing an equal cost between misses and false alarms
(Cmiss=1, Cfa=1, 1:1) and the other with the selected cost ratio (Cmiss=10,
Cfa=1, 10:1). A higher cost is associated to misses because we would pre-
fer to have some extra false similarities and not miss potentially important
ones. The optimum threshold value, the normalized threshold value, will
be the one that results in the minimum NDCR point (10:1). It should also
be noted that on these plots, straight lines correspond to normal likelihood
distributions, and that the diagonal y = −x represents random performance.

Results

When selecting the thresholds for shot similarity with each measure, the
threshold at the minimum NDCR mark is used as a good initial value. Be-
fore choosing the cost for a false alarm and missed similarity, the problem
must first be examined. In the case of detecting shot similarities in movies,
we selected a slightly higher cost associated to misses than to false alarms
because for this situation it should be less harmful if there are a few more
similarities than if important similarities are missed. In other words, we want
to be certain to find all similar shots, even with the possibility of a few false
similarities.

The resulting DET curves and the associated Precision, Recall, F -
Measure, and F2-Measure values, obtained by comparing the results from
each method to the four segment ground truth, can be seen in Figure 3.6 and
Table 3.1. It should be noted that it has been observed that the minimum
NDCR with both costs set to 1 also corresponds to the minimum FP + FN
point.

39

Figure 3.6: DET curves resulting from each frame similarity method being
applied to the four selected movie segments

40

Table 3.1: Precision, Recall, F-Measures at each threshold (minNDCR 10:1)
for the compared frame similarity measures

Method Normalized
Threshold
Value

Precision Recall F-Measure F2-Measure

Intersection 0.8184 0.3535 0.8521 0.4997 0.6646
Euclidean 0.8452 0.2948 0.9057 0.4448 0.6403
Bhattacharya 0.9709 0.3436 0.8891 0.4956 0.6748

Decision

Comparing each similarity method using costs of 10 for a missed simi-
larity and 1 for a false alarm, the minimum NDCRs are calculated for the
three methods and the DET curves are plotted in Figure 3.6. The Normal-
ized Threshold Values listed in the table correspond to the minimum NDCR
values.

Examining the DET curves, one can see that the performance of these
V isSim methods do not differ by much. At the minimum NDCR value, with
the selected cost of 10:1, the Euclidean Distance measure has the largest
False Alarm probability (Pfa) of approximately 30%. It also, however, has
the smallest Miss probability (Pmiss), which should be expected, at around
9.5%.

The Intersection method resulted in a Pfa of about 23% with a Pmiss of
14.9%. The Bhattacharya distance method gave a Pfa of around 25% and a
Pmiss of 11.2%. Taking into consideration the fact that we have weighed more
heavily on the probability of a miss, after observing the DET curves and the
results at the minimum NDCR the methods would have to be ranked in the
order of: Bhattacharya Distance, Intersection, and Euclidean Distance.

It is difficult to decide on a measure when examining the similarity maps,
because the methods perform so similarly, therefore the Precision and Recall
values from Table 3.1 will also be examined. It can be seen that the Recall
values are all fairly high, and looking at the F -Measure, which is a 1-to-
1 balance between Precision and Recall, it is difficult to select between

41

Table 3.2: Precision, Recall, F-Measures at each threshold for the compared
keyframe extraction methods
Method Normalized

Threshold
Value

Precision Recall F-Measure F2-Measure

Beginning and
Ending Region
Keyframes

0.9618 0.3520 0.8706 0.5013 0.6725

Middle
Keyframes

0.9741 0.3132 0.7652 0.4444 0.5938

Sampled
Keyframes

0.9709 0.3436 0.8891 0.4956 0.6748

Intersection and Bhattacharya but if Recall is given more weight, as we have
also chosen to employ a higher cost for misses, and employ the F2-Measure
then Bhattacharya Distance slightly edges out Intersection. For this reason,
Bhattacharya Distance will be chosen as the frame similarity measure.

3.4.2 Keyframe Extraction Methods

Three keyframe selection methods from section 3.1 have been chosen for
comparison. The first method involves simple sampling of frames across
all shots every 10 frames (as we did in section 3.4.1), the second involves
selecting one keyframe from the beginning and another from the end regions
of the shot [21], and the third method begins with selecting the middle frame
of the shot, adding it to a set, and recursively comparing the other frames
of the shot with those in the set and adding them to it if they are different
enough from those in the set [23].

The keyframe extraction methods are evaluated using the same measures,
previously described in section 3.4.1, that were used to select a frame simi-
larity method.

Results

The resulting DET curves and the associated Precision, Recall, F-Measure,
F2-Measure, and Normalized Threshold Value can be seen in Figure 3.7 and
Table 3.2.

42

Figure 3.7: DET curves of each keyframe selection method

43

Table 3.3: Time to Compute

Method Time to Select
Keyframes (sec.)

Time to Compute
Similarities (sec.)

Total Time
(sec.)

Sampled
Method

9.859186 342.147752 352.0069

Beginning and
Ending Region
Method

988.740170 6.482721 995.2229

Decision

Examining the DET curves shown in Figure 3.7, it is clear that the Middle
keyframe selection method has the worst performance compared to the other
two methods of sampling the frames and selecting a keyframe from the begin-
ning and the end region of a shot. The main reason for its bad performance
is most likely because the method, more often than not, only selects a single
keyframe per shot and so does not properly represent the full content of the
shot.

The other two methods perform similarly and it can be shown that the
major difference is computation time. The Sampling method is quick to
select keyframes but quite slow to compute shot similarity as there are more
keyframes to examine, especially for longer shots. On the other hand, the
Beginning and Ending region method takes longer to select keyframes but is
much faster to compute shot similarity, having only 2 keyframes per shot to
examine. If we examine the total time taken (see Table 3.3), the Sampled
method is almost 3 times faster, therefore it will be chosen as the keyframe
selection method.

3.5 Conclusion

This chapter presented various keyframe extraction methods and shot sim-
ilarity measures used in scene detection within the literature. Keyframe
extraction methods, frame similarity measures, shot similarity measures, in-
cluding those that employ dominant color, motion or edges, were examined.

Intersection, Euclidean distance, and Bhattacharya distance were cho-

44

sen for comparison to select the most appropriate similarity measure. The
DET curves of each method is the first to be examined, and when tak-
ing into consideration that the probability of a missed similarity carries a
greater cost, Bhattacharya distance was ranked first after this test. Next,
Precision, Recall, F -Measure, and the F2-Measure are evaluated for each
of the three similarity measures. Intersection and Bhattacharya distance were
very close when looking at the first three comparison measures but with the
F2-Measure, Bhattacharya distance slightly edges out Intersection as the
similarity measure of choice.

Keyframe extraction methods were the next to be compared. Three
methods were selected: frame sampling to obtain keyframe sets, selecting
keyframes from the beginning and ending regions of shots, and the last
method that first adds the middle frame of the shot to the keyframe set
and recursively adds more depending if they are different enough from the
current frames in the set. The resulting DET curves show the first two meth-
ods are very close in performance and eliminate the Middle keyframe method
from the mix. In order to choose between the two remaining methods time to
select keyframes and time to compute similarity were examined. The Sam-
pled keyframe method finished with the highest rank by taking a third of the
time to be executed.

The different frame similarity measures are relatively close in terms of
effectiveness but Bhattacharya achieves an overall better performance. For
shot similarity, the most important aspect is to select several keyframes.
Simple sub-sampling performs as well as the more complex methods and is
very efficient.

Having selected Bhattacharya distance as the similarity measure and the
Sampled keyframe method to obtain keyframes, the next step is to employ
these with an efficient scene detection method.

45

Chapter 4

Scene Detection

Once the similarity measure and keyframe extraction methods have been
determined, the next step is to use them to group or cluster similar shots
into scenes.

4.1 Previous Methods

From the literature examined, a graph-based shot clustering approach was
among the most common methods. The authors of [17], [25], [26], [29], and
[35] all used a slight variation of the same method. In [25], Zhao et al. create
an undirected graph G = (V,E) where the vertices V , the nodes of the graph,
represent the shots, and the edges E have a weight w(si, sj) assigned to them
which is the similarity value between the shots i and j. Once the graph is
complete, it is divided into clusters, which are groups of shots, using the
Normalized Cuts algorithm. The algorithm removes edges between clusters
Cn and Cm by minimizing the Ncut(Cn, Cm) value which is defined as:

Ncut(Cn, Cm) =
cut(Cn, Cm)

assoc(Cn, V)
+

cut(Cn, Cm)

assoc(Cm, V)
(4.1)

where
cut(Cn, Cm) =

∑
si∈Cn,sj∈Cm

w(si, sj) (4.2)

assoc(Cn, V) =
∑

si∈Cn,sj∈V

w(si, sj) (4.3)

46

The authors approximate a discrete solution to the minimization of
Ncut(Cn, Cm) by solving the equation:

minxNcut(x) = miny
yT (D −W)y

yTDy
(4.4)

where
di =

∑
j

w(si, sj)

D = diag(d1, d2, ..., dn)

W (si, sj) = w(si, sj)

y = (1 + x)−
∑

xi>0 di∑
xi < 0di

(1− x)

and x is an indicator vector where x = 1 if node i is in Cn or −1 otherwise.
V is the set of all shots contained in Cn and Cm.

The algorithm is repeated on the clusters until the original graph is par-
titioned into M parts by M − 1 operations. In this paper, the number of
clusters, or number of scenes, M is either set manually or determined by
two other methods. The first is to stop the partitioning operations once the
Ncut value is above a threshold Tcut, which is determined by Tcut = a

√
Ns+c,

where a=0.02, c=0.l3, and Ns is the number of shots. The second is to make
use of the Q-function [57]:

Q(pm) =
m∑
c=1

[
assoc(Cc, Cc)

assoc(V, V)
−
(
assoc(Cc, V)

assoc(V, V)

)2
]

(4.5)

where pm is a partition of the shots into m sub-groups by m − 1 cuts. The
number of scenes is then determined by M = argmax(Q(pm)).

Naci et al. [35] use Spectral clustering by Normalized cuts and minimize
the value of Ncut(Cn, Cm) [58] by finding the eigenvalues and eigenvectors
of the similarity matrix, which is composed of pairwise similarities between
shots, keyframes of shots, or of all frames. They determine that the second
smallest eigenvalue is the minimal value of Ncut(Cn, Cm). Every entry x(2)(i)

47

of the second eigenvector x(2) corresponds to a point i in the data set and
can be clustered as follows:

if x(2)(i) < 0 i ∈ Cn
if x(2)(i) > 0 i ∈ Cm

The graph is repeatedly partitioned until Ncut(Cn, Cm) is smaller than a
preset threshold NCUT .

In [29], Ngo et al. minimize Ncut(Cn, Cm) using a standard eigensystem

D−
1
2 (D −W)D−

1
2 z = λz (4.6)

where D is a diagonal matrix with
∑

j w(si, sj) along the diagonal and W is
the similarity matrix. As previously seen, the second smallest eigenvalue is
used to find the sets Cn and Cm. The graph is repeatedly partitioned until
Ncut(Cn, Cm) is smaller than a threshold Ts = µsim+σsim, where µsim is the
average shot similarity and σsim is the standard deviation of shot similarity.

Once this has been accomplished, time order information is added to
create a directed temporal graph TG(V,E), where vertices V represent the
clusters and the edges E are weighted by the transition probabilities between
clusters. A directed edge is added from cluster Cn to cluster Cm if shot si is
in the first and shot si+1 in the second. The transition probabilities can be
computed as:

Pr(Cm|Cn) =
1

|Cn|
∑
si∈Cm

∑
sj∈Cn

τ(i− j) (4.7)

where Ns is the number of shots, |Cn| is the number of shots in cluster Cn,
and

τ(x) =

{
1, if x = 1

0, otherwise

The last step is to divide the latest graph into scenes. The authors note that
there must be at most one edge between scenes and that a scene is composed
of at least one cluster. Keeping these in mind, the scenes are detected by
first computing the shortest paths, using Dijkstra’s algorithm, between the
cluster with the first shot and the cluster with the last shot. All edges have
unity weight. Edges between clusters Ci and Cj are then removed if i = j+1

48

and if there is no path between Ci and Cj, these clusters belong to different
scenes.

Sasongko et al. [31] also use a graph-based approach. They build an
undirected graph as in the previous methods, then a minimum spanning tree
is built and the edges that have a distance, which is in terms of similarity,
greater than a threshold are removed. This creates clusters which represent
the scenes. A tree-based peeling strategy is also employed with a graph-based
method in [27].

Another clustering method that has been observed is a window type algo-
rithm where the current shot is compared to certain shots ahead of it and
some behind. In [45], Lin and Zhang define an attraction ratio R(si) for a
current shot i towards a new scene. Using a window of size 3, they calculate
the similarity of the shot with those ahead and behind. If the attraction
ratio is greater than a threshold and if R(si) > R(si−1) and R(si) > R(si+1),
then the attraction is stronger from the right side and the shot starts a new
scene, otherwise it is absorbed into the current scene. The attraction ratio
is calculated as:

R(si) =
(right(si) + right(si+1))

(left(si) + left(si+1))
(4.8)

where,

left(si) = max {sim(si, si−1), sim(si, si−2), sim(si, si−3)} (4.9)

left(si+1) = max {sim(si+1, si−1), sim(si+1, si−2)} (4.10)

right(si) = max {sim(si, si+1), sim(si, si+2), sim(si, si+3)} (4.11)

right(si+1) = max {sim(si+1, si+2), sim(si+1, si+3), sim(si+1, si+4)} (4.12)

The method is improved upon in [46] by dividing the attraction ratio into
a splitting force Fs(si) and a merging force Fm(si). The splitting force for
the current scene boundary candidate is calculated as:

Fs(si|si+1) =
(Fs(si) + 1)/(Fs(si+1))

2
(4.13)

where,

Fs(si) =
left(si)

right(si)
(4.14)

49

and left(si) and right(si) are the same as previously defined.

The merging force for the current scene boundary candidate is calculated
as:

Fm(si|si+1) =
(Fm(si) + Fm(si+1))

2
(4.15)

where,

Fm(si) =
1

3

i−1∑
j=i−3

max {sim(sj, si+1), sim(sj, si+2), sim(sj, si+3)} (4.16)

The forces are normalized into Fm′(si|si+1) and Fs′(si|si+1) using their re-
spective means and standard deviations. The authors note that at an ideal
boundary, the splitting force and merging force should be at a maximum and
minimum respectively. Thus, they specify two conditions upon which a scene
boundary should be declared.

1. Fs′(si|si+1) reaches a maximum and is greater than a threshold T1,
and Fm′(si|si+1) reaches a minimum at the same time.

2. Fs′(si|si+1) reaches a maximum or Fm′(si|si+1) reaches minimum,
and Fs′(si|si+1) is greater than a threshold T2

and Fs′(si|si+1)− Fm′(si|si+1) is greater than a threshold T3.

It should be noted, that the authors experimentally determined the values
of the thresholds.

Lu et al. [59] also attempt to create comparable measures. They employ
what they refer to as a continuity measure. It is a weighted sum of cohesion,
which points out consistency across shots, and disjunction, which points out
inconsistencies. They notice that any number of similarity measures can be
used for cohesion and features such as the length of black frames, silences,
or the appearance of wipes or fades can be used for disjunction.

Wang et al. [8] employ a window-based method to perform shot grouping.
They refer to their method as the overlapping links method. It consists of
three steps which are a forward search, a backward search, and a step to
declare a scene boundary. The method uses a forward search with fw =

50

min(F,CtFutureShot), a backward search with r = min(R,CtPreShot),
where R and F are the backward and forward search range respectively and
CtPreShot and CtFutureShot are the shots before and after the current
shot, respectively.

1. First, find the most similar shot within the forward search range. If
such a shot exists, group the paired shots into the same scene and set
the similar shot as the current shot, otherwise go to step 2.

2. Second, set shot i as the current one and find the most similar previous
shot. If it exists group the paired shots into the same scene and go to
step 1, otherwise, decrease the current shot i by 1 and repeat this step
until the rth previous shot is the current shot.

3. The third step is to declare a scene boundary immediately after the
current shot, set the next shot as the current, and go to step 1.

In [48], Chen et al. first compute similarity between neighboring shots and
if the similarity is smaller than the mean µ of all similarities then a potential
scene boundary is marked between the shots. Usually this method tends to
over segment the video so the authors propose another step to further merge
the candidate scenes. A scene similarity measure is proposed as

SceneSim(G1, G2) =
1

m× n

m∑
i=1

n∑
j=1

ShotSim(s1i, s2j) (4.17)

The candidate scenes G1 and G2 are similar if SceneSim(G1, G2) is greater
than µ − σ

2
, where σ is the standard deviation of all similarities between

shots. The merging of candidate scenes is then performed with a five step
algorithm.

1. Set the expanding scene to be the first scene, say Gi.

2. Compare the scene with two following scenes Gi+1 and Gi+2.

3. If the expanding scene is similar to scene Gi+2, merge all three scenes,
set the new scene as the expanding scene and go to 2.

4. If the expanding scene is similar to scene Gi+1, group the two scenes,
set the new scene as the expanding scene, and go to 2.

51

5. If none of the scenes are similar, set scene Gi+1 as the expanding scene
and go to 2.

This is continued until all of the scenes have been examined.

Several other papers employ similar shot grouping methods [11][13]. In
[11], each shot is compared with the next 3, if one of the shots is deemed
similar then the two similar shots and all the shots in between are grouped
together. This is repeated until all shots have been inspected. The similarity
measure is compared with a threshold to determine if the shots are similar.
A comparable algorithm, referred to as bi-directional searching, is used in
[32].

One very simple, and most likely error-prone method, used to group shots
[21][24][27][28], is to perform pair-wise comparison of shots and to consider
the end of the first as a scene boundary if the similarity measure between
the two is below a certain threshold.

A k-means clustering approach is used in [18] and [33]. The general idea is
to further divide shots into sub-shots, by sub-sampling them based on shot
duration, then apply k-means clustering to find and merge similar sub-shots.
This does not, however, take the temporal layout of the shots into consid-
eration which is a measure that should be incorporated into shot clustering
methods for scene detection. The authors of [44] apply a modified k-means
algorithm for shot clustering.

Hierarchical agglomerative clustering is performed in [20] and [38]. It
begins by creating as many clusters as there are segments, or shots, and at
each step the closest two clusters are merged until there remains a single
cluster. Euclidean distance between HSV color histograms is used as the
distance measure. Once the final tree is obtained, it is then cut at a level
where the number of leaves equals the chosen number of clusters or scenes.

In [47], Yamasaki et al. employ Gaussian Mixture models (GMM) in their
method for clustering shots. Initially, the number of clusters is equal to the
number of shots. The next 5 steps are detailed in the following:

1. The distances between all clusters are calculated.

52

2. The two closest clusters are modeled with a single Gaussian.

3. If the number of clusters Nc is smaller than a maximum Tmax, return
to 1.
If Nc < Tmax and greater than a minimum Tmin, go to 4.
Otherwise, if Nc < Tmin go to 5.

4. Form a GMM from the Gaussians obtained in the previous steps and
compute description length DL.

DL(Nc) = −l + wscp (4.18)

where

p =
1

2

[
(c− 1) + c

{
n+

1

2
n(n+ 1)

}]
logNf (4.19)

and l is the likelihood of the GMM, Nf is the total number of frames,
c is the mixture of the GMM, n is the dimension of the features, P is
a penalty with respect to the number of scenes, and wsc is a predeter-
mined weight to adjust the estimated number of scenes.

5. The optimal number of scenes is then determined by

N̂c = argminNcDL(Nc) (4.20)

They also change some of the parameters in the algorithm in order to
cluster similar scenes.

The authors of [51] and [52] use similar techniques for scene boundary
detection. Zhu and Ming [51] first combine audio and visual features into
a single feature vector then employ a Support Vector Machine to classify
segments into either news, commercial, cartoon, music, weather, tennis, bas-
ketball, or football. Once this has been performed, if the classification process
has been accurate, the scene transitions can easily be found. In [52], the same
method is used but with a Hidden Markov model to classify shots.

Zhai and Shah [23] remark that scene boundaries are located where there
are changes in the properties of what they refer to as the central concept,
which can be environment, topics or sub-themes. This can be seen as a
change-point problem and they use a Markov chain Monte Carlo in their

53

approach to scene detection since it has been commonly employed to solve
these sorts of problems. Other methods that have been used for grouping or
finding similar video segments include a frame and shot labeling method [37],
one that employs a Longest Common Subsequence model [19], a Greedy RSC
clustering algorithm [12], and a k-nearest neighbors method is employed in
[60].

4.2 Proposed Method

After having examined a number of different scene detection methods
found in the literature, our proposed method will be presented in detail in
the following paragraphs.

Using the previously selected frame similarity measure and keyframe ex-
traction method (see section 3.4) a shot similarity map is created. The full
N × N similarity map, where N is the number of shots in the film, is not
constructed because of the long computation time that it would require. In-
stead, after manually testing different lengths, it was decided that each shot
should be limited to a window of 60 shots in the forward direction and 60
shots in the backwards direction. The similarity map uses the normalized
color histogram values to obtain a similarity value between two shots.

For every similarity point between shot si and shot sj:

ShotSimmap(si, sj) = min
{
V isSimbhatt(k

i
m, k

j
n)
}

(4.21)

A temporal distance weight is also added to the similarity value, such that
the further apart the shots are the less likely they are to be similar. This
weighting function is essentially an inverse Gaussian with its lowest point at
0 and its width determined by the total number of shots:

Wtd(si, sj) = r ×
[(

1− 1

σ
√

2π
e−

(si−sj)
2

2σ2

)
+

(
1

σ
√

2π

)
− 1

]
(4.22)

where r = 0.049 × σ
√

2π, σ = round
(
round(N)

100
+ 1
)

, round(N) rounds the

value of N to the nearest integer, and N is the number of shots.

54

The final similarity measure used in the computation of similarity points
for the map is:

Simmap(si, sj) = ShotSimmap(si, sj) +Wtd(si, sj) (4.23)

Once the temporal distance weight is added to the similarity values, the
threshold value for Bhattacharya distance is adjusted for non-normalized
Bhattacharya distance values and applied to the similarity map such that
similarity values less that the threshold are deemed to be similar and are
assigned a value of 1 (black), otherwise they are assigned a value of 0 (white).

Now with a binary shot similarity map, clusters of similar shots, depicted
as black regions, can be observed on the map. These clusters are located
along the diagonal and are in a square-like shape. The objective is to ob-
tain the boundaries of these clusters to use as scene boundaries. A section
of the binary shot similarity map obtained from the movie The Shawshank
Redemption is shown in Figure 4.1.

Figure 4.1: A Section of the movie The Shawshank Redemption’s Binary Shot
Similarity Map

Since the map is symmetrical, we only need to examine one half of the
map, either side of the diagonal, and locate the triangular clusters.

55

The first step is to find the starting point, the first shot of the cluster.
Generally, the starting shots will have a large number of similar shots ahead
of them, that is a large number of forward similarities. Forward shots can
be defined as the shots that succeed the current shot but are within the
window of 60 shots in the forward direction. This is due to the similarity
map having been constrained to this amount in both directions and as such
the similarities beyond these limits are not calculated.

For each shot, the sum of forward shot similarities is calculated using the
binary similarity map. The shot with the largest sum is then chosen as the
starting point to find the first cluster, see Figure 4.2. More often than not,
the first starting point, the one with the overall largest sum, will mark the
beginning of the biggest cluster.

Figure 4.2: Largest Sum of Forward Shot Similarities, example

From the found starting shot, the distance, in terms of shots, to its fur-
thest similar shot is obtained. This distance is used to create the first triangle
whose boundaries will mark the initial cluster, see Figure 4.3.

Once those initial boundaries are located, the number of similar shots
inside the triangle, N−, and the number of shots above the triangle, N+, are

obtained and the ratio (N−−N+)
AreaofTriangle

is used as the measure which determines

56

Figure 4.3: Triangle (red) on the Full Similarity Map, example

the quality of the selected boundaries, Figure 4.4. This ratio is chosen be-
cause the clusters are not always filled with similar points, so this ratio will
ensure that the most appropriate cluster will be found, rather than the one
with the greatest number of similar shots within.

The size of the cluster is then reduced by one shot in each direction and
the ratio is calculated for these triangle boundaries. This is repeated, a
reduction by one shot and the calculation of the ratio, until the minimum
size of 3 shots is attained. This size is chosen because it is assumed that
scenes should contain a minimum of 3 shots.

When this has been done and all the ratios have been calculated, the
triangle (boundaries) that results in the highest ratio is selected as the chosen
boundaries for the cluster. The sums of forward similarities within the found
cluster are set to 0 so they will not be considered in the next runs. The
above procedures are then repeated, finding the highest sum, creating the
triangle and calculating its ratio, selecting the highest ratio and clearing the
sums within the chosen boundaries, until the highest sum value is less than
a threshold.

Once this is done and no further clusters can be found, overlapping po-

57

Figure 4.4: Formed Triangle (red) from Furthest Shot and Ratio Calculation,
example

tential scenes are dealt with using the following guidelines: If the overlap is
greater than a threshold number of shots, or if the overlap is for more than
50% of one of the potential scenes, then the overlapping potential scenes are
merged into a single scene. Figure 4.5. Otherwise the intersecting region is
examined and for each of the possible non-overlapping combinations of the
two potential scenes, the ratios are calculated for both sections and added

together:
(N−1 −N

+
1)

AreaofTriangle1
+

(N−2 −N
+
2)

AreaofTriangle2
. The combination that yields the

highest ratio value of this sum is selected as the cutting point between the
scenes. Figure 4.6.

To summarize, the proposed scene detection method can be broken down
into the following steps. First, calculate the similarity map using eq.(4.23)
and the limiting window of 60 shots in the forward and backward direction.
Next, threshold the map to obtain a binary similarity map. The general
algorithm for locating scene clusters is then applied.

1. For each shot, calculate the sum of forward shot similarities.

58

Figure 4.5: Overlap Condition 1

Figure 4.6: Overlap Condition 2

2. Find the shot with the largest sum, shot si.

3. Create a triangle from the furthest similar shot to shot si.

4. Count the number of similar shots inside the triangle, N−, and the
number of similar shots above the triangle, N+. Calculate the ratio

(N−−N+)
AreaofTriangle

.

5. Repeat from step 3 while reducing the triangle size to a minimum size
of 3 shots.

6. Select the triangle with the highest ratio value.

59

7. Set the sums (of forward shot similarities) of the shots within this
potential scene to 0. Repeat from 2 until the highest sum value is less
than a threshold.

8. Manage overlapping clusters. If the overlapping region is greater than
a threshold or contains 50% of one of the clusters, merge the two.
Otherwise examine each of the possible non-overlapping combinations
and select the one which results in the highest ratio value.

4.3 Experimental Comparison

Having presented various methods for scene detection, selected methods,
along with the proposed method, will be chosen for comparison and review.

4.3.1 Comparison Measures

In order to be able to determine the efficiency of various scene boundary
and clustering algorithms, ground truths must first be constructed. It should
be noted that when we refer to Ground Truth for scenes, it is in fact a
relative term. This is because ideally the Director’s Cut is the absolute
ground truth. However, it is difficult to obtain this for each film and, as
such, our “relative” ground truths are used. Three films were selected for
testing and two ground truths were created manually for each of the following
films: The Shawshank Redemption, 3:10 to Yuma, and Gran Torino. Two
different subjects, or educated users, each created their own ground truths.
They separately marked the scene boundaries for the entirety of each movie
while using the scene definition from [24] as a guideline.

1. When there are no two interwoven parallel actions: a change in location,
or time, or both defines a scene change.

2. An establishing shot, although maybe different in location to its corre-
sponding scene, is considered part of that scene, as they are unified by
dramatic incidence.

3. When parallel actions are present and interleaved, and there is a switch
between one action to another, a scene boundary is marked if and only
if the duration of the action is shown for at least 30 seconds.

60

4. A montage sequence that involves “dynamic cutting”, where shots con-
taining different spatial properties are rapidly joined to convey a single
dramatic event, forms a single scene.

While the usual measures applied to evaluate the efficiency of information
retrieval methods are Precision and Recall they tend to not be sensitive to
near misses. In the context of scene boundary detection, near misses should
not be penalized as much as complete misses or boundaries detected much
further away and, for this reason, the WindowDiff evaluation metric [61] has
been chosen to compare scene boundaries.

This metric calculates the error using a moving window with a length of
k, that is set to half the average ground truth segment size, in other words
half the average size of a scene. For each position of the window, the number
of ground truth boundaries, ri, and algorithm boundaries, ai, are compared.
A penalty is added if the number of boundaries are not equal.

WindowDiff(gt, alg) =
1

N − k

N−k∑
i=1

(
|b(gti, gti+k)− b(algi, algi+k)| > 0

)
(4.24)

where, b(i, i + k) is the number of boundaries between position i and i + k,
N is the total number of shots in the movie, gti is the ith boundary from the
ground truth, and algi is the ith boundary found using the algorithm to be
tested.

WindowDiff is similar to a distance measure, the smaller the WindowDiff
value the closer the two scene boundary results are to each other.

4.3.2 Results

A number of shot clustering and scene boundary detection methods were
selected and implemented, based on the details found in their respective pa-
pers, to be evaluated alongside our method. The first is a simple Neighboring
method [27] (page 51) which places a scene boundary between two shots if
they are not considered similar. The Neighbor Merge method expands on
the neighboring method by further merging those potential scenes [48] (page
51). The Attraction Ratio method [45] (page 49) and its improved version
the Splitting and Merging Forces method [46] (page 49), the Overlapping
Links method (OLM) [8] (page 50), a Modified Overlapping Links method

61

Table 4.1: Scene Detection WindowDiff Values, The Shawshank Redemption

Scene Boundary
Method

Number of Scene
Boundaries (SB)

WindowDiffGT1

(122 SB)
WindowDiffGT2

(123 SB)
Neighbor 511 1.9075 1.8535
Neighbor Merge 149 0.7790 0.7303
Attraction Ratio 518 1.8086 1.7705
Splitting and
Merging Forces

274 1.0037 0.9646

Overlapping
Links

144 0.6965 0.6679

Modified OLM 102 0.6245 0.5970
Window-of-3 128 0.6510 0.6298
Our Method 99 0.5315 0.5050

Other Ground
Truth

- 0.1957 0.1957

SB : Scene Boundaries
WindowDiffGT1: WindowDiff value when compared to Ground Truth 1
WindowDiffGT2: WindowDiff value when compared to Ground Truth 2

[62], and a Window-of-3 method, which clusters using a forward search with
a window of 3 [11] (page 52), were also selected. The similarity measure
and keyframe extraction method employed for each of these measures, if re-
quired, are the previously selected (see section 3.4) Bhattacharya distance
and Sampled keyframe method with their appropriate thresholds.

These methods were compared with both of the ground truths of each
film. The two different ground truths were also compared (Other Ground
Truth in the tables) to obtain an idea of the variations due to semantics even
when employing a standard scene definition.

As was previously explained, the WindowDiff distance method was se-
lected as the scene boundary comparison method because of its ability to
incorporate near misses into the metric and not simply apply a penalty for a
direct true or false. When examining the result tables, Table 4.1, Table 4.2,
and Table 4.3, the number of boundaries detected along with the WindowDiff
value of each different method can be observed.

The WindowDiff results between the pair of ground truths for each film

62

Table 4.2: Scene Detection WindowDiff Values, 3:10 to Yuma

Scene Boundary
Method

Number of Scene
Boundaries (SB)

WindowDiffGT1

(47 SB)
WindowDiffGT2

(35 SB)
Neighbor 964 9.9591 14.4523
Neighbor Merge 317 3.0427 4.5514
Attraction Ratio 778 8.0291 11.7297
Splitting and
Merging Forces

561 5.6316 8.2740

Overlapping
Links

365 3.6176 5.3310

Modified OLM 303 3.0037 4.4209
Window-of-3 339 3.3541 4.9327
Our Method 116 1.0640 1.4786

Other Ground
Truth

- 0.2241 0.3166

Table 4.3: Scene Detection WindowDiff Values, Gran Torino

Scene Boundary
Method

Number of Scene
Boundaries (SB)

WindowDiffGT1

(82 SB)
WindowDiffGT2

(95 SB)
Neighbor 498 2.8970 2.3952
Neighbor Merge 87 0.6659 0.6504
Attraction Ratio 440 2.4360 1.9397
Splitting and
Merging Forces

171 1.0122 0.9050

Overlapping
Links

72 0.6396 0.6291

Modified OLM 35 0.5793 0.5822
Window-of-3 66 0.6018 0.6084
Our Method 84 0.4494 0.4915

Other Ground
Truth

- 0.2250 0.1998

63

averages at a distance of about 0.22, this difference is caused by the slight
differences in semantic understanding from the ground truth creators even
when each is employing the same standard definitions of a scene.

The number of boundaries detected can usually be used as an early indi-
cator of the efficiency of the detection method. The Neighbor method gen-
erally returns a very high number of scene boundaries because of its simple
and straightforward approach of marking boundaries only where the similar-
ity between neighboring shots does not satisfy the threshold. Examining the
three result tables, this method has the highest WindowDiff values for each
of the tested movie ground truths. Continuing from the Neighboring method
to the Neighbor Merge method by grouping the similar scenes, from those
that were previously found, brings the number of scene boundaries down to a
more reasonable amount which is much closer to the ground truth numbers.
As a result of the merging, the WindowDiff values are also much improved
but the method still sits 5th best out of 8 methods.

The Attraction Ratio method produces the second highest amount of
boundaries and the WindowDiff values obtained also reflect this and are
relatively high as well. A slight variation of this method, the Splitting and
Merging Forces method produces approximately half the number of bound-
aries and also improves the WindowDiff distance values but they are still
not within a satisfactory range.

The Overlapping Links method uses a combination of forward and back-
ward searches to locate scene boundaries. For all of the tested movies, with
the exception of 3:10 to Yuma, which turned out to be a fairly difficult movie
to segment, the number of boundaries detected with this method are fairly
close to the ground truth numbers. The WindowDiff results obtained are
decent but not outstanding. The modified Overlapping Links method, modi-
fied in a way to avoid the backward search component, generally generated a
number of scene boundaries a fair bit below the Overlapping Links numbers
and the ground truth numbers. Its calculated WindowDiff distance results,
however, are better than the ones obtained in the non-modified method. This
would indicate that even though a small number of boundaries are found, the
locations of these boundaries are much closer to the locations of those in the
ground truths.

The last method tested before our proposed method, is the Window-of-3
method. This method uses a sliding window with a size of 3 shots to group
similar shots until a similar shot is not found in the window. The number of
boundaries located varies quite a bit from movie to movie but the WindowDiff

64

values are generally in the top half with regards to performance.
Finally, our proposed method for scene detection finds a number of bound-

aries which is close to the movie’s ground truth numbers except for 3:10 to
Yuma where the number of boundaries is quite a bit higher than its ground
truth’s but are still closer to the actual number than the other methods
tested. The WindowDiff results for this method show its superiority as they
are all the top ranked result for each ground truth. In addition to the Win-
dowDiff values, the found scene boundaries for the first 800 shots can be
seen in Appendix B. When examining these bar graphs, it is relatively clear
that the boundaries found with our proposed method are consistently the
closest to those observed in the ground truths. The scene boundaries for our
proposed method can also be observed on the similarity maps, containing
the first 400 shots, in Appendix C. In addition, the first few scenes detected
using our proposed method can be seen, with the middle keyframes used to
represent the shot content, in Appendix D.

4.4 Conclusion

This chapter presented various scene detection methods from the litera-
ture. Several different types were examined including graph-based meth-
ods, window-type methods, shot grouping methods, and other clustering-
based methods that employed different algorithms such as k-means cluster-
ing, Gaussian mixture models, and support vector machines.

The proposed scene detection method and its various procedures were also
described. The first step is to create a similarity map of the film using the
previously chosen keyframe extraction method and shot similarity measure.
The similarity map is limited to 60 shots in the forward direction from the
diagonal and 60 shots in the backward direction to avoid the tedious process
of calculating the entire map. A temporal distance weight is then applied
to the map and a threshold, the minimum NDCR value for Bhattacharya
distance, is applied to determine if shots are similar or not and to change
the map into its binary form, 1 for similar or 0 otherwise. The last step is to
process this similarity map by locating the square clusters along the diagonal
which correspond to the movie’s scenes.

Several different scene detection methods were then applied to three films,
The Shawshank Redemption, 3:10 to Yuma, and Gran Torino, and compared
using the WindowDiff method, in order to determine their efficiency at locat-

65

ing scene boundaries. Eight methods were compared: the Neighbor method,
the Neighbor Merge method, the Attraction Ratio method, the Splitting and
Merging Forces method, the Overlapping Links method, a modified version
of the Overlapping Links method, a Window-of-3 method, and the proposed
method. Since it is difficult to define what a scene is and because scene detec-
tion is semantics oriented, two ground truths were created, each by different
subjects, for all three films.

The results vary slightly per movie in terms of method efficiency and
number of boundaries. It can be seen that the segmentation for 3:10 to
Yuma is much more difficult than the other movies. Examining this movie’s
scene detection results, it is evident that it is a complex case as performance
is low for all techniques. For our proposed method in particular, this can be
explained by inspecting the Figures C.4, C.5, and C.6 of Appendix C. The
similarity maps are very diffuse and without several clear clusters which ex-
plains why the method over-segments this movie. The diffuse similarity maps
is likely due to the fact that the locations, which define a large percentage
of the scenes, are generally large ones such as valleys or small towns. Even
with this difficulty, the proposed method still outperforms the other scene
boundary detection methods and gives results that are most similar to each
film’s ground truth.

4.4.1 Video Search Tool

Having selected a shot detection method, a keyframe extraction method,
a shot similarity measure, and a scene boundary detection algorithm, they
were implemented to segment videos in the Video Search Tool.

The objective was to create a tool that facilitates browsing and searching
through a video by hierarchically organizing the video into its film units.
The Video Search Tool is readily capable of this. The initial step, when
using the tool for the first time, is to load the video and perform shot and
scene detection. The respective boundaries are then saved for future use.
Next, the subtitles should be loaded, in order to perform keyword searches.
Once a search has been carried out, the results will be displayed in the form
of subtitles that contain the keyword or a synonym of the keyword. These
subtitles can be selected (clicked) to view the single subtitle, the entire shot
which contains the subtitle, or the entire scene that contains the subtitle.
See Appendix E for a detailed description of the Video Search Tool.

66

Chapter 5

Conclusion

The works presented in this thesis were put together with the final goal
of creating a Video Search Tool that first segments the video into shots and
scenes strictly using visual content, and can also perform keyword queries
through the video’s subtitle transcript.

5.1 Summary

First, various types of shot detection algorithms were examined such as
edge-based methods, motion-based methods, MPEG-based methods, and
histogram-based methods before presenting the selected method. The shot
detection is done by first performing a color reduction from RGB to the Lab
color space using the 216 colors of the “webmaster” palette, calculating the
average Euclidean distance between the four regions of the color histograms
of neighboring frames, applying a second order derivative to the resulting
distance vector, and finally using the automatically calculated threshold to
locate shot boundaries.

In the second chapter, keyframe extraction methods, frame similarity,
and shot similarity measures were presented. Keyframe extraction methods
such as selecting the middle frame, and frame clustering to select keyframes,
frame similarity measures including Intersection, Euclidean distance, and
Bhattacharya distance, and shot similarity measures including histogram-
based, dominant color-based, motion-based, and edge-based measures, were
presented. Selected similarity measures were tested and compared using DET
curves and certain statistical measures. Bhattacharya distance provided the

67

best results and was chosen for use. Next, keyframe extraction methods
were compared in order to select a method, and also with the purpose of
determining whether a complex method would give better results than simple
frame sampling. In the end, obtaining keyframe sets by sampling frames was
selected for use.

Having chosen the similarity measure and keyframe extraction method,
the next chapter considered scene detection methods. Graph-based, window-
based, and shot clustering-based methods were among the previously used
methods that were examined. An original method, initially for use with fea-
ture films but which can also be used on any video, was then presented with
a detailed procedure. A shot similarity map of the film is first constructed
using the Bhattacharya distance metric to compute the visual similarity be-
tween shot’s keyframes. A window of 60 shots in the forward direction and 60
shots in the backwards direction is used to limit the size of the similarity map
and save on computation time. A temporal distance weight is then added
to the shot similarity values, in order to ensure that shots which are a great
temporal distance from each other, are less likely to be deemed similar. Next,
a threshold is applied to create a binary shot similarity map which consists
of similar shots, with a value of 1, and non-similar shots, with a value of 0.
The last step involves locating the square clusters of similar shots along the
diagonal of the binary map, which are taken as the scenes for the film.

A selection of scene detection methods were then tested alongside our pro-
posed method. Experimentation with 3 movies demonstrated that the pro-
posed method outperforms every other, in terms of scene boundary locations
with respect to those of the ground truths, measured using the WindowDiff
metric.

The chosen approaches were implemented in a Video Search Tool, see
Appendix E.

5.2 Contributions

The following items describe the unique contributions of this thesis.

• Shot similarity measures along with keyframe extraction methods were
examined and compared. Using a manually constructed ground truth,
composed of four segments from the movie The Shawshank Redemp-
tion, DET curves were used to select appropriate thresholds and several

68

measures were calculated. It was found that the combination of Bhat-
tacharya distance along with the Sampled keyframe selection method
was best suited for this problem.

• A new approach to scene detection, which is based strictly on visual
features from the shots, was developed. It first involves creating a shot
similarity map using the selected shot similarity and keyframe extrac-
tion method. Next, a temporal distance weight and a predetermined
threshold are applied to the map to obtain the final binary similarity
map. The last step uses the proposed algorithm to locate the shot
clusters along the diagonal which correspond to scenes.

• The proposed method, along with the selected shot detection and key-
frame selection methods, were implemented and are applied in the cre-
ated Video Search Tool. It first segments the video into shots and
scenes, then is able to perform keyword queries through the video’s
subtitle transcript.

5.3 Future Work

The works presented in this thesis were done so for the goal of implementing
a hierarchical video segmentation and searching system. There are several
improvements that are being looked into to ameliorate current methods and
to add extra functionalities to the program.

One improvement being examined is the application of multimodal scene
detection using a combination of textual segmentation, M. Scaiano’s method
[63], along with the visual segmentation method that is currently used. The
idea is to employ a text segmentation method to locate topical scene breaks
in the film subtitles. Once these boundaries are located, they can be used to
reinforce the scene boundaries found with the current method. This could
prove to be an effective method for enhancing the precision of the scene detec-
tion method on movies which are difficult to segment using visual methods,
such as 3:10 to Yuma.

Among other additions under consideration, is the option to include the
ability to add notes to a time segment on a video timeline, in other words
performing video annotation. This could be done for a frame, shot, scene,
or a video segment of a manually selected length. In addition, the annota-

69

tions would be included in the search process, thus adding an extra layer of
searchable text information to the video.

Another interest is to add to the searching capabilities by performing
a search to locate particular visual cues throughout the movie. This is a
specific application which would have to be predefined before its addition
to the system. For example, for a user whose interests lie in the field of
Religious studies, it may be interesting to locate the sections in the video
where a person is walking by or in water, or when a person is with their
arms wide open standing in a cross or t-shape position. One example of this
situation is the escape scene in The Shawshank Redemption.

The possibility of using an automatic thresholding method, to calculate
the threshold for similarity for each different movie, should also be explored
to determine if it would enhance scene detection performance.

In addition to the proposed improvements above, the ability to save video
clips and to sort the results returned from the search by different categories,
such as relevance and time, can be added.

70

Bibliography

[1] X. Zhu, W.G. Aref, J. Fan, A.C. Catlin, and A.K. Elmagarmid, “Medical
Video Mining for Efficient Database Indexing, Management, and Access”,
In Proceedings of the 19th International Conference on Data Engineering,
pp. 569-580, 2003.

[2] X. Zhu, A.K. Elmagarmid, X. Xue, L. Wu, and A.C. Catlin, “Insight
Video: Toward Hierarchical Video Content Organization for Efficient
Browsing, Summarization, and Retrieval”, IEEE Transactions on Mul-
timedia, Vol. 7, No. 4, pp. 648-666, 2005.

[3] Y. Zhu and D. Zhou, “Video Browsing and Retrieval Based on Mul-
timodal Integration”, In IEEE/WIC International Conference on Web
Intelligence, pp. 650-653, 2003.

[4] A. Dong and H. Li, “Educational Documentary Video Segmentation and
Access through Combination of Visual, Audio, and Text Understanding”,
IEEE International Symposium on Signal Processing and Information
Technology, pp. 652-657, 2005.

[5] C.J. Fu, G.H. Li, X.W. Xu, and K.X. Dai, “Mining Video Hierarchical
Structure for Efficient Management and Access”, Proceedings of the Fifth
International Conference on Machine Learning and Cybernetics, pp. 1013-
1018, August 2006.

[6] R. Zabih, J. Miller, and K. Mai, “A Feature-Based Algorithm for Detect-
ing and Classifying Production Effects”, Multimedia Systems, Vol. 7, No.
2, pp. 119-128, March 1999.

[7] M. Osian and L. Van Gool, “Video Shot Characterization”, Machine
Vision and Applications, Vol. 15, No. 3, pp. 172-177, July 2004.

71

[8] X. Wang, S. Wang, H. Chen, and M. Gabbouj, “A Shot Clustering Based
Algorithm for Scene Segmentation”, International Conference on Com-
putational Intelligence and Security Workshops, pp. 259-262, Dec. 2007.

[9] B.L. Yeo and B. Liu, “Rapid Scene Analysis on Compressed Video”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 5, No.
6, pp. 533-544, December 1995.

[10] Z. Rasheed and M. Shah, “Scene Detection in Hollywood Movies and
TV Shows”, IEEE Computer Society Conference on Computer Vision
and Patter Recognition, Vol. 2, pp. 343-348, 2003.

[11] V. Chasanis, A. Likas, and N. Galatsanos, “Video Rushes Summariza-
tion Using Spectral Clustering and Sequence Alignment”, In Proceedings
of the TRECVID BBC Rushes Summarization Workshop (TVS 2008) at
ACM Multimedia, New York, NY, USA, pp. 75-79, 2008. ACM.

[12] D.-D. Le, N. Putpuek, N. Cooharojananone, C. Lursinsap, and S. Satoh,
“Rushes Summarization Using Different Redundancy Elimination Ap-
proaches”, In Proceedings of the TRECVID BBC Rushes Summarization
Workshop (TVS 2008) at ACM Multimedia, New York, NY, USA, pp.
100-104, 2008. ACM.

[13] Y. Liu, Y. Liu, and T. Ren, “Rushes Video Summarization using Audio-
Visual Information and Sequence Alignment”, In Proceedings of the
TRECVID BBC Rushes Summarization Workshop (TVS 2008) at ACM
Multimedia, New York, NY, USA, pp. 114-118, 2008. ACM.

[14] A. Whitehead, P. Bose, and R. Laganiere, “Feature Based Cut Detection
with Automatic Threshold Selection”, In Proceedings of Content Based
Image and Video Retrieval CIVR, pp. 410-418, 2004.

[15] B. Ionescu, V. Buzuloiu, P. Lambert, D. Coquin, “Improved Cut De-
tection for the Segmentation of Animation Movies”, IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 641-
644, 2006.

[16] Visibone, “Webmaster Palette”, http://www.visibone.com/colorlab,
2006.

72

[17] S. Lu, I. King, and M.R. Lyu, “Video Summarization by Video Structure
Analysis and Graph Optimization”, IEEE International Conference on
Multimedia and Expo, vol. 3, pp. 1959-1962, June 2004.

[18] Z. Liu, E. Zavesky, B. Shahraray, D. Gibbon, and A. Basso, “Brief and
High-Interest Video Summary Generation: Evaluating the AT&T Labs
Rushes Summarizations”, In Proceedings of the TRECVID BBC Rushes
Summarization Workshop (TVS 2008) at ACM Multimedia, New York,
NY, USA, pp. 21-25, 2008. ACM.

[19] W. Bailer and G. Thallinger, “Comparison of Content Selection Methods
for Skimming Rushes Video”, In Proceedings of the TRECVID BBC
Rushes Summarization Workshop (TVS 2008) at ACM Multimedia, New
York, NY, USA, pp. 85-89, 2008. ACM.

[20] F. Chen, J. Adcock, and M. Cooper, “A Simplified Approach to Rushes
Summarization”, In Proceedings of the TRECVID BBC Rushes Sum-
marization Workshop (TVS 2008) at ACM Multimedia, New York, NY,
USA, pp. 60-64, 2008. ACM.

[21] M. Detyniecki and C. Marsala, “Adaptive Acceleration and Shot Stack-
ing for Video Rushes Summarization”, In Proceedings of the TRECVID
BBC Rushes Summarization Workshop (TVS 2008) at ACM Multimedia,
New York, NY, USA, pp. 109-113, 2008. ACM.

[22] C. Gianluigi and S. Raimondo, “An innovative algorithm for key frame
extraction in video summarization”, In Journal of Real-Time Image Pro-
cessing, vol. 1, no. 1, pp. 69-88, 2006.

[23] Y. Zhai and M. Shah, “A General Framework for Temporal Video Scene
Segmentation”, IEEE International Conference on Computer Vision, vol.
2, pp. 1111-1116, Oct. 2005.

[24] B.T. Truong, S. Venkatesh, and C. Dorai, “Scene Extraction in Motion
Pictures”, IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 1, Jan. 2003.

[25] Y. Zhao, T. Wang, W. Hu, Y. Du, Y. Zhang, and G. Xu, “Scene Segmen-
tation and Categorization Using NCuts”, IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-7, June 2007.

73

[26] U. Sakarya and Z. Telatar, “Graph Partition Based Scene Boundary
Detection”, 5th International Symposium on Image and Signal Processing
and Analysis, pp. 544-549, Sept. 2007.

[27] M. Sano, Y. Kawai, and N. Yagi, “Video Rushes Summarization Uti-
lizing Retake Characteristics”, In Proceedings of the TRECVID BBC
Rushes Summarization Workshop (TVS 2008) at ACM Multimedia, New
York, NY, USA, pp. 95-99, 2008. ACM.

[28] P. Toharia, O. D. Robles, L. Pastor, and A. Rodriguez, “Combining Ac-
tivity and Temporal Coherence with Low-level Information for Summa-
rization of Video Rushes”, In Proceedings of the TRECVID BBC Rushes
Summarization Workshop (TVS 2008) at ACM Multimedia, New York,
NY, USA, pp. 70-74, 2008. ACM.

[29] C.W. Ngo, Y.F. Ma, and H. J. Zhang, “Video Summarization and Scene
Detection by Graph Modeling”, IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 15, no. 2, pp. 296-305, Feb. 2005.

[30] C.W. Ngo, T.C. Pong, H.J. Zhang, and R.T. Chin, “Motion-based Video
Representation for Scene Change Detection”, In the International Journal
of Computer Vision, vol. 50, no. 2, pp. 127-142, Nov. 2002.

[31] J. Sasongko, C. Rohr, and D. Tjondronegoro, “Efficient Generation
of Pleasant Video Summaries”, In Proceedings of the TRECVID BBC
Rushes Summarization Workshop (TVS 2008) at ACM Multimedia, New
York, NY, USA, pp. 119-123, 2008. ACM.

[32] R. Ren, P. Punitha, and J. Jose, “Video Redundancy Detection In
Rushes Collection”, In Proceedings of the TRECVID BBC Rushes Sum-
marization Workshop (TVS 2008) at ACM Multimedia, New York, NY,
USA, pp. 65-69, 2008. ACM.

[33] A. Noguchi and K. Yanai, “Rushes Summarization Based on Color, Mo-
tion and Face”, In Proceedings of the TRECVID BBC Rushes Summa-
rization Workshop (TVS 2008) at ACM Multimedia, New York, NY,
USA, pp. 139-143, 2008. ACM.

[34] E. Kasutani and A. Yamada, “The MPEG-7 Color Layout Descriptor:
a compact image feature description of high-speed image/video segment

74

retrieval”, International Conference on Image Processing 2001, vol. 1, pp.
674-677, Greece, 2001.

[35] S. Naci, U. Damnjanovic, B. Mansencal, J. Benois-Pineau, C. Kaes,
and M. Corvaglia, “The COST292 Experimental Framework for RUSHES
Task in TRECVID 2008”, In Proceedings of the TRECVID BBC Rushes
Summarization Workshop (TVS 2008) at ACM Multimedia, New York,
NY, USA, pp. 40-44, 2008. ACM.

[36] V. Valdes and J. M. Martinez, “Binary Tree Based On-line Video Sum-
marization”, In Proceedings of the TRECVID BBC Rushes Summariza-
tion Workshop (TVS 2008) at ACM Multimedia, New York, NY, USA,
pp. 134-138, 2008. ACM.

[37] D. Gorisse, F. Precioso, S. Philipp-Foliguet, and M. Cord, “Summariza-
tion Scheme based on Near-duplicate Analysis”, In Proceedings of the
TRECVID BBC Rushes Summarization Workshop (TVS 2008) at ACM
Multimedia, New York, NY, USA, pp. 50-54, 2008. ACM.

[38] E. Dumont and B. Merialdo, “Sequence Alignment for Redundancy Re-
moval in Video Rushes Summarization”, In Proceedings of the TRECVID
BBC Rushes Summarization Workshop (TVS 2008) at ACM Multimedia,
New York, NY, USA, pp. 55-59, 2008. ACM.

[39] R. Laganière, R. Bacco, A. Hocevar, P. Lambert, G. Pais, and B.
Ionescu, “Video Summarization from Spatio-Temporal Features”, In Pro-
ceedings of the TRECVID BBC Rushes Summarization Workshop (TVS
2008) at ACM Multimedia, New York, NY, USA, pp. 144-148, 2008.
ACM.

[40] J. Ren and J. Jiang, “Hierarchical Modeling and Adaptive Clustering
for Real- time Summarization of Rush Videos in TRECVID08”, In Pro-
ceedings of the TRECVID BBC Rushes Summarization Workshop (TVS
2008) at ACM Multimedia, New York, NY, USA, pp. 26-30, 2008. ACM.

[41] V. Beran, M. Hradis, P. Zemcika, A. Herout, and I. Reznicek, “Video
Summarization at Brno University of Technology”, In Proceedings of the
TRECVID BBC Rushes Summarization Workshop (TVS 2008) at ACM
Multimedia, New York, NY, USA, pp. 31-34, 2008. ACM.

75

[42] P. Toharia, O.D. Robles, A. Rodriguez, and L. Pastor, “A Study of
Zernike Invariants for Content-Based Image Retrieval”, In Proceedings of
the 2007 IEEE Pacific Rim Symposium on Image Video and Technology,
PSIVT2007, volume 4872 of Lecture Notes on Computer Science, pp.944-
957, Santiago, Chile, Dec. 2007.

[43] C.-R. Huang and C.-S. Chen, “Video Scene Detection by Link-
Constrained Affinity-Propagation”, IEEE International Symposium on
Circuits and Systems, pp. 2834-2837, May 2009.

[44] P.P. Mohanta and S.K. Saha, “Semantic Grouping of Shots in a Video
using Modified K-Means Clustering”, Seventh International Conference
on Advances in Pattern Recognition, pp. 125-128, February 2009.

[45] T. Lin and H.J. Zhang, “Automatic Video Scene Extraction by Shot
Grouping”, IEEE International Conference on Pattern Recognition, vol.
4 , pp. 39-42, Sept. 2000.

[46] T. Lin, H.J. Zhang, and Q.Y. Shi, “Video Scene Extraction by Force
Competition”, IEEE International Conference on Multimedia and Expo,
pp. 753-756, Aug. 2001.

[47] K. Yamasaki, K. Shinoda, and S. Furui, “Automatically Estimating
Number of Scenes for Rushes Summarization”, In Proceedings of the
TRECVID BBC Rushes Summarization Workshop (TVS 2008) at ACM
Multimedia, New York, NY, USA, pp. 129-133, 2008. ACM.

[48] L.H. Chen, Y.C. Lai, and H.Y. Liao, “Video Scene Extraction Using Mo-
saic Technique”, 18th International Conference on Pattern Recognition,
vol. 4, pp. 723-726, 2006.

[49] L.H. Chen, C.W. Su, H.Y. Liao, and C.C. Shih, “On the Preview of
Digital Movies”, Journal of Visual Communication and Image Represen-
tation, vol. 14, no. 3, pp.357-367, Sept. 2003.

[50] L.H. Chen, Y.C. Lai, C.W. Su, and H.Y. Liao, “Extraction of Video
Objects with Complex Motion”, Pattern Recognition Letters, vol. 25,
no. 11, pp.1285-1291, Aug. 2004.

76

[51] Y. Zhu and Z. Ming, “SVM-based Scene Classification and Segmenta-
tion”, International Conference on Multimedia and Ubiquitous Engineer-
ing, pp. 407-412, April 2008.

[52] J. Huang, Z. Liu, and Y. Wang, “Joint Scene Classification and Seg-
mentation Based on Hidden Markov Model”, IEEE Transactions on Mul-
timedia, vol. 7, no. 3, June 2005.

[53] H. Bredin, D. Byrne, H. Lee, N.E. O’Connor, and G.J.F. Jones, “Dublin
City University at the TRECVid 2008 BBC Rushes Summarisation
Task”, In Proceedings of the TRECVID BBC Rushes Summarization
Workshop (TVS 2008) at ACM Multimedia, New York, NY, USA, pp.
45-49, 2008. ACM.

[54] C.J. van Rijsbergen, “Information Retrieval”, Butterworths, London,
1979.

[55] TRECVID 2009, “CBCD Evaluation Plan TRECVID 2009 (v1)”,
http://www-nlpir.nist.gov/projects/tv2009/Evaluation-cbcd-v1.3.htm,
2009.

[56] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
“The DET Curve in Assessment of Detection Task Performance”, In Proc.
Eurospeech ’97, pp. 1895-1898, 1997.

[57] S. White and P. Smyth, “A Spectral Clustering Approach to Finding
Communities in Graphs”, In SIAM International Conference on Data
Mining, pp. 274-285, 2005.

[58] T. Wang, S. Feng, P. P. Wang, W. Hu, S. Zhang, W. Zhang, Y. Du, J. Li,
J. Li, and Y. Zhang, “THU-Intel at Rush Summarization of TRECVID
2008”, In Proceedings of the TRECVID BBC Rushes Summarization
Workshop (TVS 2008) at ACM Multimedia, New York, NY, USA, pp.
124-128, 2008. ACM.

[59] X. Lu, Y.F. Ma, H.J. Zhang, and L. Wu, “An Integrated Correlation
Measure for Semantic Video Segmentation”, IEEE International Confer-
ence on Multimedia and Expo, vol. 1, pp. 57-60, Nov. 2002.

[60] G. Quenot, J. Benois-Pineau, B. Mansencal, E. Rossi, M. Cord, F. Pre-
cioso, D. Gorisse, P. Lambert, B. Augereau, L. Granjon, D. Pellerin, M.

77

Rombaut, and S. Ayache, “Rushes Summarization by IRIM Consortium:
Redundancy Removal and Multi-Feature Fusion”, In Proceedings of the
TRECVID BBC Rushes Summarization Workshop (TVS 2008) at ACM
Multimedia, New York, NY, USA, pp. 80-84, 2008. ACM.

[61] L. Pevzner and M.A. Hearst, “A Critique and Improvement of an Eval-
uation Metric for Text Segmentation”, Computational Linguistics, Vol.
28, No. 1, pp. 19-36, March 2002.

[62] A. Hanjalic, R.L. Lagendijk, and J. Biemond, “Automated High-
Level Movie Segmentation for Advanced Video-Retrieval Systems”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 9, No.
4, pp. 580-588, June 1999.

[63] M. Scaiano, D. Inkpen, R. Laganière, “Automatic Text Segmentation for
Movie Subtitles”, In Proceedings of the Canadian AI 2010 Conference,
pp. 295-298, 2010.

78

Appendix A

Shot Detection Examples

The following are examples of shots detected using the selected method,
which was described in section 2.2. The shots were sampled every 25 frames,
however some frames were omitted in order to avoid too much repetition.
Frames from the same shot are placed on the same line and shots that are
not temporally neighboring the previous or next shot are separated by a
horizontal line.

It should be noted that because most of the transitions between shots are
cuts, the detection of fades and dissolves, among other transitions, were not
used in the shot detection algorithm. The results validate this decision as
there are few observed incidents of false detections due to those transitions.

79

F
ig

u
re

A
.1

:
T

h
e

S
h
aw

sh
an

k
R

ed
em

p
ti

on
sh

ot
s

80

Figure A.2: 3:10 to Yuma shots

Figure A.3: Gran Torino shots

82

Appendix B

Scene Detection Results: Bar
Graphs

In order to visualize the scene boundary results in a different manner,
the boundary locations for the ground truths and the resulting boundaries
for each tested method will be displayed as bar graphs for the first 800
shots of each movie. The ground truth’s graphs will be presented first and
will be followed by the tested method’s graphs placed in order of increasing
WindowDiff values (WindowDiffGT1 + WindowDiffGT2).

83

F
ig

u
re

B
.1

:
T

h
e

S
h
aw

sh
an

k
R

ed
em

p
ti

on
B

ar
G

ra
p
h
s

84

F
ig

u
re

B
.2

:
3:

10
to

Y
u
m

a
B

ar
G

ra
p
h
s

85

F
ig

u
re

B
.3

:
G

ra
n

T
or

in
o

B
ar

G
ra

p
h
s

86

Appendix C

Scene Detection Results:
Similarity Maps

In order to better visualize the scene boundary results, the boundary loca-
tions for the first ground truth (GT1), the second ground truth (GT2), and
for the proposed method will be marked on a similarity map for the first 400
shots.

87

Figure C.1: The Shawshank Redemption GT1

Figure C.2: The Shawshank Redemption GT2

Figure C.3: The Shawshank Redemption Results, Proposed Method

88

Figure C.4: 3:10 to Yuma GT1

Figure C.5: 3:10 to Yuma GT2

Figure C.6: 3:10 to Yuma Results, Proposed Method

89

Figure C.7: Gran Torino GT1

Figure C.8: Gran Torino GT2

Figure C.9: Gran Torino Results, Proposed Method

90

Appendix D

Scene Detection Examples

The following are examples of scenes detected using our proposed scene
detection method. The first few scenes of each film are shown, separated by
a horizontal line. The middle frames of the shots were chosen to represent
the shots contained within each scene.

91

F
ig

u
re

D
.1

:
T

h
e

S
h
aw

sh
an

k
R

ed
em

p
ti

on
S
ce

n
es

P
ro

p
os

ed
M

et
h
o
d

92

F
ig

u
re

D
.2

:
3:

10
to

Y
u
m

a
S
ce

n
es

P
ro

p
os

ed
M

et
h
o
d

93

F
ig

u
re

D
.3

:
G

ra
n

T
or

in
o

S
ce

n
es

P
ro

p
os

ed
M

et
h
o
d

94

Appendix E

Video Search Tool

The goal of this project was to create a tool that would facilitate the
process of browsing and searching through a movie. The Video Search Tool,
shown in Figure E.4, was created using Microsoft Visual C++ and Qt, a
cross-platform application and UI framework. The following paragraphs will
present a step by step guide to using the program.

The first step, before browsing or searching, is to perform video segmen-
tation on the desired video to obtain its video units: its shots and scenes.
Open a movie by selecting File→Open→Video.

If the shot boundaries for the film were acquired in a previous run, they
can be loaded by going to File→Load Cuts and selecting the appropriate
.cuts file. Otherwise, begin shot detection by pressing the first Go in the
Segmentation group box, this will initialize the process. The progress bar
indicates at what stage the shot detection is at.

The shot detection process is made up of several steps. To begin, color
reduction and color histogram extraction is carried out for each individual
frame. Once the histograms are all obtained, the distance is calculated as the
average Euclidean distance between the four quadrants of each neighboring
frame’s color histogram. Next, a second order derivative is applied to the
distance vector and a threshold is used to locate the shot boundaries.

If the scenes were obtained in a previous run, they can be loaded by going to
File→Load Scene Boundaries and selecting the appropriate .sceneBoundary

95

file. Otherwise, if the shot boundaries were obtained in a previous run but
the scenes were not, the histograms file must first be loaded before scene
detection can be performed by going to File→Load Histograms and select-
ing the appropriate .histograms file. To complete the segmentation, scene
detection can be performed by pressing the second Go.

The scene detection process is done in the following steps. First, the
keyframe sets are obtained for every shot by sampling every 10 frames. The
similarity map will then be calculated and a threshold applied to obtain a
binary map and finally the scenes are located on the map using our proposed
method.

After video segmentation, the subtitles can be loaded by going to
File→Open→Subtitle and selecting the appropriate .srt file. The subtitles
will then be indexed and stored with their associated time stamps. The
indexing needs to be performed once and is saved in a .index file. The
subtitles will be displayed once the indexing process is finished.

The video is now ready for browsing and searching. To perform a keyword
search, simply type it into the search text box and press Search or hit Enter
on the keyboard. The resulting subtitles which contain this keyword will be
displayed in the results box and the number of returned results will also be
displayed, Figure E.1. An advanced search can also be done by clicking the
Advanced Search check box before pressing Search or Enter. By performing
an advanced search, subtitles that contain synonyms of the keyword will also
be added to the results box, Figure E.2.

Clip options can be modified before selecting a subtitle to view. The clip
can be extended by selecting Pad the Clip and choosing how many seconds to
add to the beginning and the end of the clip. Another option is to choose Use
Cut Delimitation, which if selected when viewing a subtitles, will show the
entire shot that contains the chosen subtitle. Similarly, if Use Scene Bound-
ary Delimitation is selected, the entire scene, which contains the subtitle,
will be viewed, Figure E.3. Cut delimitation and scene boundary delimita-
tion cannot be selected together, since scenes are made up of multiple shots,
but padding can be applied to the shot or scene delimitation clips.

96

Figure E.1: Basic Keyword Search

Figure E.2: Advanced Keyword Search

97

Figure E.3: Clip Options

After selecting the clip options, the clip can be viewed by double clicking
the desired subtitle in the Search Results box and pressing Play in the Con-
trol box. The clip will automatically pause once the selected delimitation
has been reached and to continue viewing from this point, simply press Play
again. The loaded video can also be browsed in the traditional manner by
navigating with the slider and using the control buttons.

98

Figure E.4: Video Search Tool
1. Search Text Box

2. Search button to initiate the keyword search

3. Display Subtitles button to display the entire subtitles list in the results
box

4. Advanced Search checkbox to include synonyms of the keyword in the
search process

5. Pad the Clip checkbox and spinbox to add time to the beginning and
the end of the video clip

6. Use Cut Delimitation checkbox to begin and end the video clip at shot
boundaries

7. Use Scene Boundary Delimitation checkbox to begin and end the video
clip at scene boundaries

8. Go button to perform Shot Detection

9. Go button to perform Scene Detection

10. Progress Bar indicating the stages of Shot Detection or Scene Detection

11. Indicating what is displayed in the search results box

12. Search Results box containing the results of the search or all of the
film’s subtitles

13. Number of subtitle results in the box

14. Video

15. Subtitles

16. Video Control box with slider bar and time display, restart, play, and
pause buttons

99

	Introduction
	Video Analysis and Hierarchical Segmentation
	Background Work
	System Limitations

	Objectives
	Structure of the Thesis
	Contributions

	Shot Detection
	Previous Methods
	Selected Method
	Color Reduction
	4-Histograms Method
	2nd Derivative Method
	Automatic Threshold Computation

	Conclusion

	Keyframe Extraction and Similarity Measures
	Keyframe Extraction
	Frame Similarity Measures
	Shot Similarity Measures
	Dominant Color
	Motion
	Edges
	Other Measures

	Experimental Comparisons
	Frame Similarity Measures
	Keyframe Extraction Methods

	Conclusion

	Scene Detection
	Previous Methods
	Proposed Method
	Experimental Comparison
	Comparison Measures
	Results

	Conclusion
	Video Search Tool

	Conclusion
	Summary
	Contributions
	Future Work

	Shot Detection Examples
	Scene Detection Results: Bar Graphs
	Scene Detection Results: Similarity Maps
	Scene Detection Examples
	Video Search Tool

