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Abstract

This thesis presents a framework for automatic recognition of human actions in uncon-

trolled, realistic video data such as movies, internet and surveillance videos. In this

thesis, the human action recognition problem is solved from the perspective of local

spatio-temporal feature and bag-of-features representation. The bag-of-features model

only contains statistics of unordered low-level primitives, and any information concern-

ing temporal ordering and spatial structure is lost. To address this issue, we proposed

a novel multiscale local part model on the purpose of maintaining both structure infor-

mation and ordering of local events for action recognition. The method includes both a

coarse primitive level root feature covering event-content statistics and higher resolution

overlapping part features incorporating local structure and temporal relationships. To

extract the local spatio-temporal features, we investigated a random sampling strategy

for efficient action recognition. We also introduced the idea of using very high sampling

density for efficient and accurate classification.

We further explored the potential of the method with the joint optimization of two

constraints: the classification accuracy and its efficiency. On the performance side, we

proposed a new local descriptor, called GBH, based on spatial and temporal gradients. It

significantly improved the performance of the pure spatial gradient-based HOG descriptor

on action recognition while preserving high computational efficiency. We have also shown

that the performance of the state-of-the-art MBH descriptor can be improved with a

discontinuity-preserving optical flow algorithm. In addition, a new method based on

histogram intersection kernel was introduced to combine multiple channels of different

descriptors. This method has the advantages of improving recognition accuracy with

multiple descriptors and speeding up the classification process. On the efficiency side,

we applied PCA to reduce the feature dimension which resulted in fast bag-of-features
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matching. We also evaluated the FLANN method on real-time action recognition.

We conducted extensive experiments on real-world videos from challenging public

action datasets. We showed that our methods achieved the state-of-the-art with real-

time computational potential, thus highlighting the effectiveness and efficiency of the

proposed methods.
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Chapter 1

Introduction

Recognizing human action from image sequences has been a main interest of many in-

dustry and research communities for years with the goal of automatic analysis of visual

events. With over 100 hours of video uploaded to YouTube every minute1, and millions

of surveillance cameras all over the world, the amount of digital video has grown expo-

nentially in recent years. With the ubiquity of cheap digital sensors and the technology

advances of computing power, storage capacity and networking, the need for reliable,

automatic recognition of the visual events in the video is critical for many important

applications, such as intelligent video surveillance, content-based video annotation and

retrieval, human-robot interaction, and smart home, etc.

Video surveillance plays a major role in the war against the crime. Law enforcement

and government use surveillance videos to analyse human action and pose to identify

illegal or suspicious behaviour. Surveillance cameras are used not only to help police

find criminals after the crime happened, but also to prevent it from happening. For

example, an automatic real-time video analysis system can detect a terrorist’s action of

dropping explosive bags in an airport and send alarm signal to security guards.

1http://www.youtube.com/yt/press/statistics.html

1



Introduction 2

Action recognition is an important tool to understand the content of on-line videos.

The traditional methods for video search have relied on text, such as those extracted

from closed caption, speech analysis, or manual annotation. Annotating the unlabelled

videos is labour-intensive, and as videos grow explosively, it is impractical to do manual

annotation on all objects and events that occurred in a video.

Further application areas include smart home, human-computer interaction and games.

A typical smart home application for action recognition is to perform the fall detection

of elderly persons living alone at home. For human-computer interaction and games,

Microsoft Kinect enables users to control and interact with Xbox without using a physi-

cal controller. This is achieved by full-body 3D motion analysis, facial recognition, voice

recognition, and acoustic source localization.

These examples show the importance of automatic recognition of human actions.

1.1 Problem statement

There are different definitions for actions in the literature [10, 37, 70, 72]. In this study, we

adopt the same action hierarchy as [70, 82]: action primitive, action and activity. Action

primitives are atomic entities which consist of the motion of human body parts, such as

feet, head and hands etc. An action can be decomposed into a series of subsequent action

primitives. It often includes full-body motions, such as running, boxing and hand waving.

However, there are certain types of actions involving only part of the body parts, such as

chewing, which consists of periodic action primitives of lip and jaw movement. Activities

often contain complex sequence of actions with much longer temporal durations. They

are often performed by several humans.

The main theme of this thesis is to perform automatic recognition of human actions

in uncontrolled, realistic video data such as movies, internet and surveillance videos.
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We put an emphasis on the joint optimization of two constraints: the accuracy and

the efficiency. We aim on automatic classification of actions without considering context

explicitly. However, our approaches may include implicit context information which helps

to improve the performance. For example, the dining table background in “chewing” and

water background in “diving” can provide discriminative information.

1.2 Motivations and objectives

Local spatio-temporal features and bag-of-features(BoF) representations [21, 48, 50, 123]

have recently become popular for action recognition due to their simplicity and good

performance. The success of such approaches can be attributed to their relatively inde-

pendent representation of events which has better tolerance to certain conditions in the

video, such as illumination, occlusion, deformation and multiple motion.

While impressive progress has been made, there are still some problems that need

to be addressed. Firstly, bag-of-features approach only contains statistics of unordered

primitive “features” from the image sequences, and any information of temporal relation

or global spatial structure is ignored. A more discriminative method should include

global structure information and ordering of local events.

Secondly, most methods extract local spatio-temporal features by extending inter-

est point detectors from 2D image domain. They were originally designed for feature

matching, not for selecting the most discriminate patches for classification. Interest

point detectors [123] or selected features [53] by unsupervised learning have been shown

to be very useful for simple KTH dataset [95] with single, staged human actions and

uncorrelated backgrounds. We argue that it is more suitable to include the background

information for real-life challenging datasets [45, 62, 85] because some of the background

features are highly correlated with the foreground actions(e.g . diving with water back-
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ground and skiing with snow background), and thus provide discriminative information

for the foreground categories.

Thirdly, most existing action recognition methods use computationally expensive

feature extraction, which is a very limited factor considering the huge amount of data

to be processed. Also, sparse interest point representations may miss important aspects

of the scene and therefore do not generate enough relevant information for classification.

In contrast, dense sampling methods can provide a very large number of feature patches

and thus can potentially produce excellent performance. The better results are generally

observed as the feature density increased [120, 123]. However, the increase in the number

of processed points adds to the computation complexity even if simplified techniques are

used, such as integral video and approximative box-filters.

It should also be noted that when dealing with large multi-class datasets [45, 85], the

non-linear SVMs are often used for training and testing. The non-linear SVMs are more

expensive when compared to their linear counterparts. Nevertheless, there are recent

approaches [60, 115] using approximate additive kernels for fast training. To improve

the classification accuracy, a recent trend is to combine multiple channels of different

descriptors [121, 136], which leads to more computational complexity.

We aim to overcome these challenges in this study. Local spatio-temporal features and

bag-of-features representations normally include three steps: how to extract local spatio-

temporal patches, how to represent them and how to classify the video based on the

statistics of the features. For all three steps we propose solutions to address these chal-

lenges. More specifically, we focus on efficiently extracting local features, improving the

performance of feature descriptors, addressing the orderless issue of the bag-of-features

representation, and improving the efficiency and accuracy of the classification process.
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1.3 Main contribution of the thesis proposal

This thesis contributes to several research domains, including, but not limited to: com-

puter vision, image processing, pattern recognition, machine learning and computational

intelligence. This work makes several contributions showing the efficiency and effective-

ness of the proposed methods for visual event classification:

• A novel multiscale local part model is proposed to maintain both structure informa-

tion and ordering of local events for action recognition. The method includes both a

coarse primitive level root model covering event-content statistics and higher reso-

lution overlapping part models incorporating structure and temporal relationships.

Experimental evaluation demonstrates the promise of the proposed method.

• We investigate a random sampling strategy for efficient action recognition. We

introduce the idea of using very high sampling density for efficient and accurate

classification. Compared with existing methods, a major strength of our method

resides in its very high computational efficiency.

• We introduce a new local 3D descriptor based on histogram of oriented spatial-

temporal gradients. It significantly outperforms popular HOG descriptor without

losing high computational efficiency. We also improve the performance of the state-

of-the-art MBH descriptor with a discontinuity-preserving optical flow method.

• A new method based on histogram intersection kernel is proposed to combine multi-

ple channels of different descriptors. This method has the advantages of improving

recognition accuracy with multiple descriptors and speeding up the classification

process in comparison with popular multi-channel RBF-χ2 SVM [121, 136].

• We evaluate the efficiency benefits on bag-of-words matching by applying the PCA
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technique to reduce dimensionality and the fast approximate nearest neighbour

search method.

1.4 Publications arising from this report

The following publications have arisen from the work presented in this thesis:

• F. Shi, E. Petriu and R. Laganière. Sampling Strategies for Real-time Action

Recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2013. (Acceptance rate 25.2%) [101]

• S. Wu, F. Shi, M. Jobin, E. Pugin, R. Laganière and E. Petriu. Event Detection

Using Local Part Model and Random Sampling Strategy for Visual Surveillance.

In Proc. of TRECVID 2013.

• C. Whiten, R. Laganière, E. Fazl-Ersi, F. Shi, G. Bilodeau, D. Gorodnichy, J.

Bergeron and E. Choy. VIVA-uOttawa / CBSA at TRECVID 2012: Interactive

Surveillance Event Detection. In Proc. of TRECVID 2012.

• M. R. Abid, F. Shi and E. Petriu. Dynamic Hand Gesture Recognition from Bag-

of-Features and Local Part Model. In Proc. IEEE International Workshop on

Haptic Audio Visual Environments and Games (HAVE), 2012.

• F. Shi, E. Petriu and A. Cordeiro. Human Action Recognition from Local Part

Model. In Proc. IEEE International Workshop on Haptic Audio Visual Environ-

ments and Games (HAVE), 2011. [100]

Submitted paper:
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• F. Shi, R. Laganière and E. Petriu. Local Part Model for Fast Action Recognition.

Submitted to Pattern Analysis and Machine Intelligence, IEEE Transactions on,

2014.

Notebook paper:

• F. Shi, R. Laganière, E. Petriu and H. Zhen. LPM for Fast Action Recognition

with Large Number of Classes. THUMOS: ICCV Workshop on Action Recognition

with a Large Number of Classes, 2013. [99]

1.5 Outline of the thesis

The thesis begins with a literature review on action recognition in Chapter 2. Chapter 3

introduces our approach of local part model. An action recognition framework is also

illustrated. Chapter 4 investigates feature extraction by random sampling. The idea

of using very high sampling density for efficient and accurate action classification is

discussed. In Chapter 5, we present a new local spatial-temporal descriptor, called

GBH. The performance of MBH descriptor is improved with a state-of-the-art optical

flow method. A new method based on histogram intersection kernel is proposed to

combine multiple channels of different descriptors. Chapter 6 gives the strategies to

improve the efficiency of the system. Chapter 7 summarizes the major contributions

with a brief conclusion as well as future works.



Chapter 2

Related Work

In this chapter, we review the state-of-the-art approaches for action recognition in re-

alistic, uncontrolled videos. We first outline the related surveys. Then, we present the

approaches on solving the unordered problem of bag-of-features representation. We will

also discuss the efficient action recognition methods. Finally, we will briefly introduce

the popular public human action datasets.

2.1 Human action recognition

This section reviews the state-of-the-art vision-based human action recognition methods.

Generally speaking, human action recognition can be separated into three steps: feature

extraction, feature representation and classification. From the perspective of feature

representation, we divide existing methods into three categories:

• Body modelling methods represent a human action as 2D or 3D model of human

body parts.

• Global representation methods represent an action using appearances and move-

8
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Figure 2.1: Illustration of walking and running from moving light displays (MLDs). It is
shown that actions can easily be recognized by humans with only a few MLDs attached
to the human body (reprinted from [39]).

ments of the whole human body without any description of body parts.

• Local feature methods represent human actions with a collection of independent

local spatio-temporal regions.

2.1.1 Body modelling methods

Body modelling methods represent actions by employing human body part structure and

positions with either 2D motion patterns [30, 83] or 3D body models [12, 61]. Approaches

in this field are inspired by early Johansson’s psychophysical work on visual interpretation

of biological motion. In [39], he showed that humans can recognize actions solely from the

motion of a few moving light displays (MLD) attached to the human body (Figure 2.1).

A significant amount of early research in action recognition belongs to this field

due to its intuition and biologically plausible to action recognition. Such works include

hierarchical 3D model based on cylindrical primitives [61, 88], blob model [12], stick

figure model [30, 75], trajectories of joint positions [133], landmark points on the human
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Figure 2.2: Silhouette shape masks of tennis strokes (reprinted from [130]).

body [15, 39] etc.

Body modelling methods show relatively good performance on simple, clean datasets.

However, they heavily rely on the detection of human body parts and human poses. The

detection of body parts in itself is not a trivial problem. It often involves very challenge

techniques, such as image/video segmentation, human tracking, 3D reconstruction etc.,

which are still open and active research areas. For uncontrolled, realistic video data,

most body modelling methods can only achieve suboptimal performance due to occlusion,

background clutter, scale change and multiple subjects etc. Some methods [2, 84, 112,

119] are able to achieve relatively better results with particular assumptions on certain

type of motions. Such constrains limit their applications in general.

2.1.2 Global representation methods

Global representation methods represent an action using appearances and movements of

the whole human body without any detection and labelling of individual body parts.

Compared to approaches of body modelling, global representation methods only need to

model global appearances and motions, which is more efficient and robust than to model

every body part. In general, they can be classified into three main categories: shape

mask based methods, optical flow shape based methods and template based methods.

Shape mask based methods
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Figure 2.3: Examples of AMEs and MMSs of 10 different actions from a same subject
(reprinted from [124]).

Typically, the shape mask based methods use silhouettes or contours of the whole human

body from the image sequences. Yamato et al . [130] use silhouette images to recognize

tennis actions (c.f . Figure 2.2). The authors quantize the silhouette image into a grid

of cells, and represent the grid with the ratio of foreground to background pixels from

each cell. They use hidden Markov models (HMM) to learn tennis actions from the grid

representations.

Wang and Suter [124] convert a sequence of human silhouettes into two compact

representations, average motion energy (AME) and mean motion shape (MMS) (as il-

lustrated in Figure 2.3). The AME is computed with a sequence of binary silhouette

images of the moving human based on periodical detection of motions. The MMS is ob-

tained from the single-connectivity binary silhouette using a border. Supervised pattern

classification method with various distance measurements is used for classification.

Weinland and Boyer [126] represent actions with a set of orderless static key-pose ex-

emplars. An action sequence is matched against a set of silhouette exemplars. For each

exemplar the minimum matching distance to any of the frames of the sequence is deter-

mined, and the resulting set of distances is concatenated into a vector representation.

Bayes classifier with Gaussians is used to perform the final classification.

Silhouettes are efficient to compute and are insensitive to texture, colour and illu-
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mination changes. However, the performance of silhouette-based representations heavily

depends on a robust background segmentation, which is a very challenging problem in

realistic settings due to the clutter, occlusion, camera motion and multiple actors etc.

Optical flow shape based methods

Figure 2.4: Optical flow magnitude accumulated in regular grid for a sample of walk
(top) and a sample of run (bottom) (reprinted from [81]).

Another type of global representation methods uses dense optical flow for action recog-

nition. In comparison with shape mask based methods, such approaches don’t depend

on background segmentation. Polana and Nelson [81] compute optical flow for region

of interest (ROI) over the person, and accumulate flow magnitudes in a regular grid of

non-overlapping bins as shown in Figure 2.4. Classification is performed by matching

the descriptors in test sequences to reference motion templates.

Efros et al . [22] track soccer players in sports videos and compute optical flow over

a very small human-centred image window. They split the flow field into four different

channels related to positive and negative as well as horizontal and vertical components

(as shown in Figure 2.5). A blurry process is followed to avoid noisy displacement. For

classification, a test sequence is frame-wise aligned to a database of annotated actions,

and four channels are matched separately. Similar method is used in [125].
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(a) (b) (c) (d)

Figure 2.5: Motion descriptor using optical flow: (a) original image; (b) optical flow;
(c) separating the x and y components of optical flow vectors; (d) final blurry motion
channels from half-wave rectification of each component (reprinted from [22]).

Ali and Shah [4] derive a set of kinematic features from the optical flow. These fea-

tures include divergence, vorticity, symmetric and anti-symmetric flow fields, second and

third principal invariants of flow gradient and rate of strain tensor, and third principal

invariant of rate of rotation tensor. These kinematic modes are computed by performing

Principal Component Analysis (PCA) on the spatio-temporal volumes of the kinematic

features. For classification, the multiple instance learning (MIL) is used to represent

each action video with a bag of kinematic modes. Each video is then embedded into a

kinematic mode-based feature space and the coordinates of the video in that space are

used for classification with the nearest neighbour algorithm.

Template based methods

Unlike shape mark or optical flow methods, which are computed over a short time wid-

ows, template based methods typically learn the appearance over long sequence of video

frames. The templates can be built with image models by stacking multiple silhouette

images into a volumetric representation [9, 11]. Other methods compute templates with

spatio-temporal volume filters, such as 3D FFT [87] and 3D Gaussian third derivative

filters [91].

Bobick and Davis [11] are the first to introduce temporal templates for action recog-
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Figure 2.6: Motion history images (MHI) and motion energy images (MEI) (reprinted
from [11]).

nition. They propose the idea of motion energy images (MEI) and motion history images

(MHI). Figure 2.6 illustrates some examples of MEIs and MHIs. The MEI is a binary

mask built by mapping successive silhouette frames into a single image. It represents

regions of motion. The MHI, on the other hand, weights these regions as a function over

time. Similar approaches include [3, 66], and motion history volumes (MHVs) [127] etc.

Figure 2.7: Space-time shapes (reprinted from [9]).

Blank et al . [9] and Gorelick et al . [28] build space-time shapes (as shown in Fig-

ure 2.7) by stacking a sequence of silhouette images, which are computed through back-

ground subtraction. The properties of the solution to the Poisson equation are explored

to extract salient space-time features. The weighted moments over these features are

calculated and described by a high-dimensional feature vector. For classification, these
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global vectors are matched to space-time shapes in test sequences.

Ke et al . [40] separate the optical flow into its horizontal and vertical components,

and use approximative box-filter operations and integral video structure to speed-up the

feature extraction. They also apply the direct forward feature selection method to select

a small subset volumetric features with a sliding-window approach and arrange them in

a cascade for efficient action detection.

Jain et al . [34] propose an exemplar-based clustering approach to address issues of

Kmeans, and use the exemplar-SVM to learn a discriminative distance metric for each

cluster. They mine discriminative spatio-temporal patches as features and establish

strong correspondence between spatio-temporal patches in training and test videos. In

addition to action classification, their approach has the potential to perform object lo-

calization and fine-grained action detection by using label transfer techniques.

Other methods include dynamic time warping (DTW) [75, 80, 116], which is often

used to deal with temporal data consists of actions with variable durations. Rodriguez et

al . [87] use Maximum Average Correlation Height (MACH) filter to capture intra-class

variability by synthesizing a single action MACH filter for a given action class. The

Clifford Fourier transform is employed to analyse vector valued data obtained from the

response of the filter. Action Bank [91], a high-level representation of video, represents

a video as the collected output of many action detectors that each produce a correlation

volume. 3D Gaussian third derivative filters are used to perform spatio-temporal orienta-

tion decomposition. Actions are treated as composition of energies along spatio-temporal

orientations.
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2.1.3 Local feature methods

Among all action recognition methods, local spatio-temporal features and bag-of-features

(BoF) representations achieved remarkable performance. The success of such approaches

can be attributed to their relatively independent representation of events which has better

tolerance to certain conditions in the video, such as illumination, occlusion, deformation

and multiple motion.

Feature detectors and dense feature points

Laptev and Lindeberg [48] are first to introduce space-time interest point by extending 2D

Harris-Laplace detector. They propose the Harris3D detector. They compute a spatio-

temporal second-moment matrix at each spatio-temporal point with different spatial

and temporal scale, a separable Gaussian smoothing function and space-time gradients.

The authors also apply an optional mechanism to select different spatio-temporal scales.

Schüldt et al . [95] detect and use salient sparse spatio-temporal features with automatic

scale selection based on Harris corner detector.

To produce denser space-time feature points, Dollár et al . [21] use a pair of 1D

Gabor-filter to convolve with a spatial Gaussian to select local maximal cuboids. Interest

points are the local maxima of the response convolution. Willems et al . [129] propose

the Hessian3D detector and extend SURF descriptor to detect relatively denser and

computationally efficient space-time points. The salient points are detected with the

determinant of the 3D Hessian matrix. The position and scale of the interest points are

automatically found without any additional iterative process.

A recent trend is the use of dense sampled points [123] and trajectories [35, 67, 120]

to improve the performance. Most feature detectors are extended from computationally

expensive image feature extraction methods, which is a very limiting factor considering
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the huge amount of data to be processed. Also, sparse interest point representations may

miss important aspects of the scene and therefore do not generate enough relevant infor-

mation for classification. In contrast, dense sampling methods capture most information

by sampling every pixel in each spatial scale.

Scovanner et al . [97] apply random sampling on a video at different locations, times,

and scales to extract feature points. The authors extend 2D SIFT descriptor [58] into

3D SIFT to represent spatio-temporal patches. Wang et al . [123] evaluate and com-

pare previously proposed space-time features in a common experimental setup. The

authors evaluate Harris3D [48], Cuboid [21], Hessian3D and dense sampling, and use a

standard bag-of-features SVM approach for action recognition. They demonstrate that

dense sampling at regular space-time grids outperforms state-of-the-art interest point

detectors. Liu et al . [57] select the most discriminative subset from densely sampled

features using the AdaBoost Algorithm. [63, 117] are based on the idea that eye move-

ment of the human viewers is the optimal predictor of visual saliency. They measure

the eye movement of human observers watching videos, and use the data to produce an

“empirical” saliency map. By using such saliency maps, they prune 20-50% of the dense

features and achieve better results. The requirement of prior eye movement data renders

such methods impractical for real applications.

Trajectory shapes encode local motion information by tracking spatial interest points

over time. Uemura et al . [113] extract features with the KLT tracker [59] and SIFT

descriptor as well as a method for estimating dominant planes in the scene. They use

multiple interest point detectors to generate a large number of interest points for every

frame. Messing et al . [67] obtain feature trajectories using KLT tracker. To represent

feature trajectories with varying length, the authors apply uniform quantization in log-

polar coordinates, with 8 bins for direction, and 5 for magnitude. Human actions are
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Figure 2.8: Trajectories are obtained by detecting and tracking spatial interest points,
and are quantized to a vocabulary of fixed length trajectons (reprinted from [64]).

recognized using a generative mixture of Markov chain models. By matching SIFT

descriptors between two consecutive frames, Sun et al . [108] compute trajectories with

a hierarchical structure to model spatio-temporal contextual information. Actions are

classified with intra- and inter-trajectory statistics. Sun et al . [107] track randomly

sampled points within the region of the long-duration trajectories extracted through

KLT tracker and SIFT descriptor matching.

Instead of using feature trajectories with varying length, Matikainen et al . [64, 65]

employ fixed length feature trajectories for action classification (see Figure 2.8). Tra-

jectories from the video are clustered by Kmeans. For each cluster centre an affine

transformation matrix is computed. The final trajectory descriptor is represented with

information containing both displacement vectors and elements of the affine transforma-
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Figure 2.9: Illustration of dense trajectories description. The dense sampled feature
points are tracked and aligned over frames into fixed length trajectories, which are rep-
resented with local appearance and motion descriptors (reprinted from [120]).

tion matrix for its assigned cluster centre. To generate dense trajectories [120], Wang

et al . sample interest feature points at uniform intervals in space and time and track

them based on displacement information using an efficient dense optical flow algorithm.

Figure 2.9 illustrates the dense trajectories description. The HOG, HOF and MBH de-

scriptors (as shown in Figure 2.10) are used to represent resulting dense trajectories for

action recognition. Later, built on dense trajectories both Jiang et al . [38] and Jain

et al . [34] explore the methods to improve the performance from better camera motion

compensation.

Feature descriptors

For each spatio-temporal feature point (x , y , t , σ, τ), a feature descriptor is computed in

a local neighbourhood centred at (x , y , t) to capture shape and motion information. The

descriptors are critical for the performance of the video recognition.

Laptev and Lindeberg [49] compute and evaluate different type of descriptors: sin-

gle and multi-scale higher-order derivatives (local jets), histograms of optical flow, and
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Figure 2.10: Illustration of the information captured by HOG, HOF, and MBH descrip-
tors (reprinted from [120]).

histograms of spatio-temporal gradients. Histograms of optical flow and histograms of

gradients are computed for each cell over a M × M × M grid layout. The principal

component analysis (PCA) is used to reduce the dimension of features, which are com-

puted by concatenating optical flow or gradient components of each pixel. Their results

show that descriptors based on histograms of optical flow and spatio-temporal gradients

outperform others.

Dollár et al . [21] compare various local space-time descriptors based on normalized

pixel values, brightness gradient, and windowed optical flow. They evaluate different

strategies to build up the descriptor: simple concatenation of pixel values, a grid of local

histograms, and a single global histogram. The authors also apply PCA to reduce the di-

mensionality of each descriptor representation. They report best results on concatenated

gradients.

Scovanner et al . [97] extend 2D SIFT descriptor [58] to represent spatio-temporal

patches, called 3D SIFT. After gradient magnitude and orientation are computed in 3D,

each pixel has two values (θ, φ) which represent the direction of the gradient in three

dimensions. A Gaussian weighted histogram for the 3D neighbourhood around a given
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interest point is constructed. For orientation quantization, the gradients in spherical

coordinates (θ, φ) are divided into equally sized bins, which are represented by a 8 × 4

histogram.

Willems et al . [129] propose an extension of 2D SURF descriptor [8] to 3D spatio-

temporal space, called the extended SURF (ESURF) descriptor. The local spatio-

temporal patch is divided into a grid of M × M × M cells. Each cell is represented

by a vector of weighted sums of uniformly sampled responses of Haar-wavelets along the

three axes.

Laptev et al . [50] combine histograms of oriented spatial gradients (HOG) and his-

tograms of optical flow (HOF) to include both local motion and appearance information.

HOG descriptor is introduced by Dalal and Triggs in [19] for human detection. It is

based on the popular image SIFT descriptor [58]. The gradients and dense optical flow

are computed first. Each local region is subdivided into a grid of N ×N ×M cells. For

each cell, 4-bin HOG histograms and a 5-bin HOF histogram are computed, and then

concatenated into the final HOG/HOF descriptors.

HOG3D descriptor is proposed by Kläser et al . [42]. It is built up on 3D oriented

gradients. A 3D patch is divided into a grid of Mc×Mc×Nc cells. Each cell is then divided

into Mb×Mb×Nb sub-blocks. A mean 3D gradient is computed for each sub-block. Each

mean gradient is quantized using a polyhedron. The 3D histogram of oriented gradients

for the 3D patch is formed by concatenating gradient histogram of all cells. Although it

is very efficient to compute 3D gradients, the orientation quantization with polyhedron

for each sub-blocks is relatively expensive to compute.

MBH descriptor is introduced by Dalal et al . in [20] and used by Wang et al . [120]

on action recognition to achieved state-of-the-art performance. The derivatives are com-

puted separately for the horizontal and vertical components of the optical flow, which
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results in motion compensation. Due to its property of camera motion compensation,

MBH descriptor is shown to outperform other state-of-the-art descriptors on human ac-

tion classification.

Bag-of-features representation

Bag-of-features (BoF) representation is originally applied to document analysis [92]. It

shows great popularity in object classification from images and action recognition from

video data due to its simplicity and good performance. It models video as collections of

local spatio-temporal patches. In a standard bag-of-features approach, a spatio-temporal

patch is represented with one of the feature descriptors as a feature vector. A vocabulary

of prototype features, called “visual words” or “codebook” is obtained by applying a

clustering algorithm ( e.g . Kmeans) on feature vectors computed from training data. A

video is represented as a histogram of occurrences of local features by quantizing the

feature vectors to their closest visual words. [21, 50, 73, 120] are among those methods

which represent videos as bags of local spatio-temporal features and achieve remarkable

performance for action recognition.

However, BoF only contains statistics of unordered “features” from the image se-

quences, and any information of temporal relations or spatial structures is ignored. It

may have problem to discriminate between actions characterized by their structure and

event-orderings, such as stand up and sit down. To preserve the “ordering of events”,

many works are introduced to add geometry and temporal information. Hamid et al .

[31] propose an unsupervised method for detecting anomalous activities by using bags of

event n-grams. In their method, human activities are represented as overlapping n-grams

of actions. While overlapping n-grams can preserve the temporal order information of

events, it causes the dimensionality of the space to grow exponentially as n increases. As
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for more primitive motions, Thurau and Hlavác [111] introduce n-grams of primitive level

motion features for action recognition. Laptev et al . [50] extend image representation of

spatial pyramid [52] to the spatio-temporal domain. The authors divide a video into a

grid of coarse spatio-temporal cells. The whole video is then represented by the ordered

concatenation of the per-cell BoF models. Such ordered concatenation add global struc-

tural information. A greedy approach is used to learn the best combination of overlaid

grids and feature types per action class. Gaidon et al . [26] focus on explicitly capturing

the spatial and temporal structure of actions with structure model. Tang et al . [110] use

a variable-length discriminative HMM model which infers latent sub-actions to explicitly

model the presence of sub-events.

2.2 Efficient action recognition

With over 100 hours of video uploaded to YouTube every minute, and millions of surveil-

lance cameras all over the world, the need for efficient recognition of the visual events in

the video is crucial for real world applications. Most existing action recognition methods

use computationally expensive techniques, which are very limiting factors considering

the huge amount of data to be processed. Nevertheless, there are some methods which

explore efficient action recognition.

Both Ke et al . [40] and Willems et al . [129] use approximative box-filter operations

and integral video structure to speed-up the feature extraction. Patron-Perez and Reid

[6] employ a sliding temporal window within the video and use first-order dependencies

to effectively approximate joint distribution over feature observations given a particular

action. Yeffet and Wolf [132] efficiently classify the action with Local Binary Patterns

and an approximate linear SVM classifier. Yu et al . [134] extend the efficient 2D FAST

corner detector to the 3D domain V-FAST detector, and apply semantic texton forests
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for fast visual codeword generation. Whiten et al . [128] exploit very efficient binary

bag-of-features matching with the Hamming distance rather than the Euclidean distance

through an extension of the popular 2D binary FREAK descriptor.

2.3 Datasets

In this section, we present a brief review on human action benchmark datasets in the

literature. Our discussion focuses on general human action recognition from 2D video

data, rather than 3D data (e.g . Kinect sensors) or datasets for specific applications (e.g .

gesture recognition and human posture analysis etc.).

Over the last decade, the advances in human action recognition have led to the emer-

gence of many benchmarks for action recognition. In early years, as action recognition

technologies are still at the beginning, the benchmarks are recorded “in the lab” based on

staged environments under controlled settings, such as static, uncluttered backgrounds,

single player without occlusion and fixed light conditions etc. They normally contain

atomic actions with several categories. Two most extensively used such datasets are

KTH [95] and Weizmann [9]. Another popular dataset is IXMAS [127] which includes

synchronized, multiple viewpoints of each action. The performances on these datasets

have saturated over the years, with 95.3% [121] on KTH, 100% [94] on Weizmann and

93.6% [121] on IXMAS.

Later, there are more interests in recognizing actions from realistic videos. The

datasets focus on sports broadcasts, TVs and Movies. They include videos with large

variation in human appearance, scale changes, dynamic backgrounds, illumination con-

ditions, etc. The UCF sports [87] dataset has 200 videos with 9 categories from TV

sport broadcasts. Hollywood1 [50] and Hollywood2 [62] collect videos from Holly-

wood Movies with 8 and 12 action classes, respectively. The Hollywood2 is relatively



Related Work 25

large, containing 3669 video clips. Although it only has 12 classes with high quality

clips, it is a very challenging dataset due to large intra-class variation, multiple persons,

camera motion, unconstrained and cluttered background etc.

More recently, benchmarks use videos from various “in-the-wild” sources, such as

motion pictures, Youtube and Google videos. They often contain both high and low

quality clips, captured either by professionals or amateurs. Also, they have a large

number of action categories with significantly more videos than earlier datasets. Such

benchmarks include UCF50 [85], HMDB51 [45] and UCF101 [105]. We will discuss

them in details next.

Other realistic human action benchmarks include TRECVID multimedia event detec-

tion (MED) and surveillance event detection (SER). The TREC Video Retrieval Eval-

uation (TRECVID) [78] is a TREC-style video analysis and retrieval evaluation, which

has provided benchmarks to test the system performance for over ten years. Among five

tasks, MED provides a development and evaluation collection of Internet multimedia

(i.e., video clips containing both audio and video streams) clips. The data consist of

publicly available, user-generated videos from various Internet video sites, with a set of

98,000 search clips. The 2013 evaluation consists of 20 “pre-specified” and 20 new “ad-

hoc” event kits. SER focuses on detecting human behaviors efficiently in vast amounts

surveillance video. The development data consist of about 150-hours airport surveillance

video data, with 100-hours development data and 50-hours evaluation data. Both data

sets were collected in the same busy airport environment.

Our objective is to perform automated recognition of human actions in uncontrolled,

realistic video data. To test the effectiveness and efficiency of our approaches, we will

use most recent realistic large scale datasets, e.g . UCF50, HMDB51 and UCF101.

As a comparison, we will also use an earlier KTH dataset.
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Figure 2.11: KTH action dataset: examples of sequences corresponding to different
types of actions and scenarios (reprinted from [95]).

2.3.1 KTH action dataset

The KTH action dataset [95] is one of the most used datasets in evaluation of action

recognition. It contains six classes of human actions: walking, jogging, running, boxing,

hand waving and hand clapping. There are totally 2391 sequences. The sequences have

spatial resolution of 160 x 120 pixels and a length of four seconds in average with 25

FPS frame rate. The sequences are recorded with 25 subjects in four different scenarios:

outdoors s1, outdoors with scale variation s2, outdoors with different clothes s3 and

indoors s4. The background is homogeneous and static in most cases. The typical clips

are shown in Figure 2.11. The performances on this dataset have saturated over the

years, with state-of-the-art result of 95.3% [121].
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Figure 2.12: UCF50 dataset: examples of sequences corresponding to different types of
actions and scenarios (reprinted from [85]).
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2.3.2 UCF50 action dataset

The UCF50 dataset [85] contains 50 classes and 6680 realistic videos taken from YouTube.

All clips have fixed frame rate and resolution of 25 FPS and 320× 240 respectively. The

videos are grouped into 25 groups, where each group consists of a minimum of 4 action

clips. The video clips in the same group may have similar background or be played by the

same subjects. The dataset is very large and relatively challenging due to camera mo-

tion, cluttered background, large scale change and illumination variation, etc. Samples of

video frames from UCF50 are shown in Figure 2.12. Currently the best performance is

reported in [122] with a mean accuracy of 91.2% based on Leave-One-group-Out (LOGO)

training and testing splits.

2.3.3 UCF101 action dataset

The UCF101 dataset [105] is by far the largest human action dataset with 101 classes

and 13320 realistic video clips taken from YouTube. As an extension of UCF50 dataset,

it includes all clips of 25 groups from UCF50 and adds additional 51 categories. The

action categories can be divided into five types: 1)Human-Object Interaction; 2) Body-

Motion Only; 3) Human-Human Interaction; 4) Playing Musical Instruments; 5) Sports.

All clips have fixed frame rate and resolution of 25 FPS and 320× 240 respectively. The

clips of one action class are divided into 25 groups which contain 4-7 clips each. The

clips in one group may have similar background or be played by the same subjects. The

sample clips are shown in Figure 2.13. It is a challenging dataset with largest number

of classes to date. The state-of-the-art result on this dataset is reported in [122] with

85.9% mean accuracy based on 3-splits evaluation scheme.
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Figure 2.13: UCF101 dataset: examples of sequences corresponding to different types
of actions and scenarios (reprinted from [105]).
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2.3.4 HMDB51 action dataset

The HMDB51 dataset [45] contains 51 action categories, with at least 101 clips for each

category. The dataset includes a total of 6,766 video clips extracted from Movies, the

Prelinger archive, Internet, Youtube and Google videos. The videos are encoded with

a resolution of 240 pixels in height with preserved aspect ratio. The clips have various

video quality, ranged from “High” with detailed visual elements such as the fingers and

eyes to “Low” with large body parts not identifiable. The minimum quality standard is a

minimum of 60 pixels in height for the main actor. The action categories can be grouped

into five types: 1) General facial actions: smile, laugh, chew, talk; 2) Facial actions with

object manipulation: smoke, eat, drink; 3) General body movements: cartwheel, clap

hands, climb, climb stairs, dive, fall on the floor, backhand flip, handstand, jump, pull

up, push up, run, sit down, sit up, somersault, stand up, turn, walk, wave; 4) Body

movements with object interaction: brush hair, catch, draw sword, dribble, golf, hit

something, kick ball, pick, pour, push something, ride bike, ride horse, shoot ball, shoot

bow, shoot gun, swing baseball bat, sword exercise, throw; 5) Body movements for human

interaction: fencing, hug, kick someone, kiss, punch, shake hands, sword fight. Three

distinct training and testing splits have been selected from the dataset, with 70 training

and 30 testing clips for each category. Figure 2.14 shows the examples corresponding to

different types of actions. It is perhaps the most realistic and challenging dataset. The

state-of-the-art result on this dataset reaches only 57.2% in [122].
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Figure 2.14: HMDB51 dataset: examples of sequences corresponding to different types
of actions (reprinted from [45]).



Chapter 3

Local Part Model

3.1 Introduction

Recent studies [21, 48, 50, 123] have shown that local spatio-temporal features can achieve

remarkable performance when represented by popular bag-of-features method. The suc-

cess of such approaches can be attributed to their relatively independent representation

of events which has better tolerance to certain conditions in the video, such as illumina-

tion, occlusion, deformation and multiple motion. Also, the BoF method has the ability

to represent videos with statistical information of local features, with no requirement

for the detection of humans, body parts or joint locations which is very challenging in

uncontrolled realistic videos.

BoF approach was originally applied to document analysis. It gained great popularity

in object classification from images and action recognition from video data due to its

discriminative power. However, BoF only contains statistics of unordered “features”

from the image sequences, and any information of temporal relation or spatial structure

is ignored. In [31], Hamid et al . argued: “Generally activities are not fully defined by their

event-content alone; however, there are preferred or typical event-orderings. Therefore a

32
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model for capturing the order of events is needed.” On the purpose of addressing out-of-

ordering problem of bag-of-features, we propose a novel multiscale local part model to

maintain both global structure information and ordering of local events.

This chapter is structured as follows: The next section will introduce a novel Local

Part Model. The proposed framework will be presented in section 3. Sections 4 will

describe some experimental results and analysis. The chapter is completed with a brief

conclusion.

3.2 3D multiscale local part model

In this section, we propose a novel 3D multiscale part model to address the unordered

problem of bag-of-features representation.

3.2.1 Deformable part model

Our method is inspired by the work of multiscale deformable part model (DPM) [24].

The multiscale DPM uses deformable part models to detect and localize objects of a

generic category from the images. DPM represents objects by a “root” and a collection

of “parts”, arranged in a deformable configuration. Each part captures local appearance

properties of an object, while the deformable configuration is characterized by star-like

connections among the parts. Figure3.1 shows an example of the multiscale DPM. The

DPM is defined by a coarse template covering an entire object, several higher resolution

part templates and a spatial model for the location of each part. The spatial model defines

a set of allowed placements for a part relative to a detection window, and a deformation

cost for each placement. To achieve the high performance of object recognition, the

discriminative training method is used to generalize SVMs for handling latent variables
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Image pyramid  HOG feature pyramid 

Figure 3.1: Example detection obtained with the person model of multiscale deformable
part model from Felzenszwalb et al . (reprinted from [24]). The model is defined by a
coarse template, several higher resolution part templates and a spatial model for the
location of each part.

such as part position.

We aim to maintain both global structure information and ordering of local events for

action recognition. Our method should incorporate both spatio structural information

as [27, 52, 50] and ordering of the events as [31, 111], but avoid the increased dimension-

ality of the n-Grams method [31]. Inspired by DPM, we propose a 3D multiscale part

model for video event analysis. However, instead of adopting deformable “parts”, we

use overlapped “parts” with fixed size and location on the purpose of maintaining both
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structure information and ordering of local events for action recognition. In addition,

unlike DPM which requires bounding box labels for the positive examples, our method

is weakly supervised. It relies neither on part annotations, nor whole object bounding

boxes or pre-trained object detectors.

3.2.2 Local part model

The local part model includes both a coarse primitive level root feature covering event-

content statistics and higher resolution overlapping parts incorporating local structure

and temporal relations. The underlying building blocks for our models are local spatio-

temporal (ST) volume patches, which can be extracted by dense sampling or local spatio-

temporal feature detectors, e.g . Harris3D [48], Cuboid [21], Hessian3D [129]. The local

ST features can be represented by different types of 3D descriptors, such as HOG/HOF

[50], HOG3D [42], MBH [120], ESURF [129] etc.

As shown in Figure 3.2, for a video Vp with size of W ×H×T , we create a new video

Vr with size W/2 × H/2 × T by down-sampling. We then extract local 3D patches at

regular positions and scales in space and time from Vr as coarse features for “root” model.

For every ”root” model, a group of finer “part” models are extracted from the video Vp

with respect to the location where the coarse patch serves as a reference position.

Our model consists of a coarse root patch and a group of higher resolution part

patches. The histograms of root patch and all part patches are concatenated to create a

histogram representation of a local ST feature. Both the coarse root patch and the higher

resolution part patches are described by any of the 3D descriptors ( HOG/HOF [50],

HOG3D [42], MBH [120], ESURF [129] etc.), and act with the same classification power

as the the used descriptor. However, our local part model incorporates the structure and

temporal ordering information by including local overlapping “events”. Thus, it provides
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  temporally 

overlapping parts

spatially 

overlapping parts

ST root  patch 

x

y

t

H

W

T

H/2

W/2

T

Vr

Original Video Vp

corresponding 

full resolution 

cuboid 

lower resolution

cuboid 

ST part  patches 

Figure 3.2: Example of Local Part Model defined with a root and an overlapping grid
of parts. The model includes both a coarse primitive level root patch covering event-
content statistics and higher resolution overlapping part patches incorporating structure
and temporal relationships.

more discriminative power for action recognition

3.3 Implementation details

In order to evaluate the proposed local part model with comparable results, we closely

followed the dense sampling experiments of Wang et al . [123]. In summary, we applied the

proposed local part model to extract local spatio-temporal features by dense sampling at
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multiple spatial and temporal scales, and used them to represent a video with a standard

bag-of-features approach. The sampled 3D ST patches were represented by HOG3D

[42] descriptor, and quantized into their nearest codewords with Euclidean distance as

histograms of visual word occurrences. To generate codewords, we randomly selected

120,000 training features from training data, and used k-means to cluster them into

visual vocabulary. The resulting histograms of visual word occurrences were fed into

a non-linear SVM with RBF(radial basis function) kernel for classification. Figure3.3

shows the framework of the proposed method.

3.3.1 spatio-temporal features by dense sampling

We used the dense sampling to extract local spatio-temporal patches from the video

at different scales and locations. In order to compare the performance fair, we used

similar sampling strategies as those in [42, 123]. A sampled ST patch is decided by 5

parameters [x, y, t, δ, τ ] , where δ and τ are the spatial and temporal scale, and (x, y, t)

is its space-time location in the video. For a 3D patch s = (xs, ys, ts, δs, τs) , a feature

can be computed for a local ST region with the size of width ws , height hs and length

ls given by

ws = hs = δ0 × δs and ls = τ0 × τs (3.1)

where δ0 and τ0 are the initial spatial and temporal scales, respectively, and δs and τs

are the spatial and temporal step factors for consecutive scales.

For the “root” model, we used the similar dense sampling method as the approach

[42, 123]. As stated in Section 3.2.2, we extracted coarse features from the video Vr .

In our experiments, we defined the initial values of δ0 and τ0 , and set scale steps as

δs = τs = (
√

2)i, given i = 0, 1, 2, ..., K as the ith step of the scales.
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y

x

t

c

Figure 3.4: Integral video feature computation. Volume C can be computed with eight
array references: S8 − S7 − S6 + S5 − S4 + S3 + S2 − S1.

As show in Figure 3.2, given a “root” 3D patch with the size of ws × hs × ls at the

location (xs, ys, ts) of video Vr , we first extracted a ST patch of size 2ws × 2hs × ls at

the location (2xs, 2ys, ts) of the high resolution video Vp . To construct a group of fine

“part” models, this patch was then divided into a set of overlapping Ms×Ms×Ns sub-

patches. In our experiments, the neighbouring sub-patches had 50% overlapping area,

which showed good performance.

3.3.2 Integral video

In our experiments, we sampled the volume patches with different spatial and temporal

scales at various location and time for both “root” and “part” videos. One strategy
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to improve computational efficiency is to use spatio-temporal “pyramids” as those in

[50, 51, 120]. However, for each spatio-temporal scale, the video needs to be rescaled

and stored. If we build a spatio-temporal pyramid with σxy = σt =
√
2
2

over a total of 8

spatial scales and 2 temporal scales, the total memory needed would be increased by a

factor of:

z = (1 +

√
2

2
)×

1− (
√
2
2

)8

1−
√
2
2

≈ 5.46. (3.2)

Since our local part model includes a “part” video and a “root” video at half the

resolution, the total memory needed for extra data would be z′ ≈ 5.46× (1 + 1
4
) ≈ 6.83

times the processed video.

Therefore, we employed the same strategies as those in [40, 42] by using integral

video, a memory-efficient alternative. Integral video is a spatio-temporal extension of

the integral image proposed by Viola and Jones [118] for efficient computation of Haar

features. An integral video at spatial location (x, y) and time t is defined as the sum of

all pixel values at locations less than or equal to (x, y, t). The integral video iv can be

described as:

iv(x, y, t) =
∑
t′<=t

∑
y′<=y

∑
x′<=x

i(x′, y′, t′), (3.3)

where i(x′, y′, t′) is the pixel value at the location (x′, y′, t′) of the input image se-

quence. The integral video can be computed efficiently in one pass over the image
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sequence using the following recurrence:

s1(x, y, t) = s1(x, y − 1, t) + i(x, y, t) (3.4a)

s2(x, y, t) = s2(x− 1, y, t) + s1(x, y, t) (3.4b)

iv(x, y, t) = iv(x, y, t− 1) + s2(x, y, t), (3.4c)

where s1(x, 0, t) = s2(0, y, t) = iv(x, y, 0) ≡ 0. Given the input video with size of

(W,H, T ), the computed integral video size is (W + 1, H + 1, L+ 1). Therefore the total

memory requirement for integral video is only marginally more than original video. Also,

with integral video, the sum of values within any rectangular volume can be calculated

with 7 additions/subtractions, independent of the volume’s size and location. As shown

in 3.4, for the 3D rectangular volume c = (x0, y0, t0, w, h, l) with width (w), height (h),

and length (l) at location of (x0, y0, t0), we can compute its sum as:

S0 = iv(x0 + w, y0 + h, t0 + l)− iv(x0, y0 + h, t0 + l)

− iv(x0 + w, y0, t0 + l) + iv(x0, y0, t0 + l)− iv(x0 + w, y0 + h, t0)

+ iv(x0 + w, y0, t0) + iv(x0, y0 + h, t0)− iv(x0, y0, t0). (3.5)

3.3.3 HOG3D descriptor

We used HOG3D [42] descriptor to represent the local ST features. HOG3D is built up

on 3D oriented gradients, and can be seen as an extension of the 2D SIFT [58] descriptor

to video data. As shown in Figure 3.5 , it can be computed as follows:

• Spatio-temporal gradients are computed for each pixel over the video. The mean
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Figure 3.5: HOG3D descriptor computation (reprinted from [42]); (a) the support region
around a point of interest is divided into a grid of gradient orientation histograms; (b)
each histogram is computed over a grid of mean gradients; (c) each gradient orientation is
quantized using regular polyhedrons; (d) each mean gradient is computed using integral
videos.

gradients for each 3D patches are computed efficiently with integral video method.

• A 3D patch is divided into a grid of Mc ×Mc ×Nc cells. Each cell is then divided

into Mb×Mb×Nb sub-blocks. A mean 3D gradient is computed for each sub-block.

• Each mean gradient is quantized using a regular polyhedron.

• For every cell, a 3D histogram of oriented gradients is obtained by summing the

quantized mean gradients of all its blocks.

• The 3D histogram of oriented gradients for the 3D patch is formed by concatenating

gradient histograms of all cells.

Orientation quantization with polyhedron

Built on HOG descriptor, HOG3D uses regular polyhedron to quantize spatio-temporal

3D gradient into a n-bin histogram. A regular polyhedron with congruent faces is re-
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ferred to as platonic solid. There are only five of them: the tetrahedron (4-sided), cube

(6- sided), octahedron (8-sided), dodecahedron (12-sided), and icosahedron (20-sided).

Kläser et al . [42] used the dodecahedron or the icosahedron for 3D gradient quantization.

3.3.4 Bag-of-features representation

We used a standard bag-of-features method to represent a video sequence. Given a

video sequence, a set of local spatio-temporal features are extracted and quantized into

visual words. The classification is performed by measuring the frequency of visual word

occurrences in the video. This method requires a visual vocabulary (or codebook). To

construct word vocabulary, the local ST features are densely sampled from the training

videos and represented with the HOG3D descriptors. The k-means [7] method is applied

to cluster the features into k centres. The word vocabulary of k visual words is thus

created with the centres. Each feature from a video sequence can be assigned to the

closest (Euclidean distance) word from the vocabulary, and videos can be represented as

the histogram of visual word occurrences.

3.3.5 Classification: support vector machines

For classification, we used a non-linear support vector machine (SVM) with a RBF (radial

basis function) kernel:

K(xi, xj) = exp(−γ ||xi − xj||2), γ > 0. (3.6)

For SVM, we used the LIBSVM [18] library. In our experiments, the vector xi was

computed as the histogram of visual word occurrences. Data scaling was performed on

all training and testing samples. The best parameters for the SVM and kernel were found
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through 10-fold cross-validation procedure on training data. For multi-class classification,

we used the one-versus-one approach implemented by max-wins voting.

3.4 Experiments

We have performed a number of experiments to test the performance of the proposed

method. In order to evaluate our method with comparable results, we closely followed

the dense sampling experiments of Wang et al . [123]. In summary, we used the proposed

local part model to extract local spatio-temporal features by dense sampling ST patches

at multiple spatial and temporal scales. The ST patches were described with the HOG3D

descriptor and quantized into visual words using visual vocabulary built with k-means

from training data. The bag-of-features SVM approach was applied for the classification.

We performed our experiments on KTH [95] action dataset 2.3.1. In our experiment,

we followed the experimental settings as those in [42, 120, 123] by dividing the sequences

into testing set (2,3,5,6,7,8,9,10 and 22) and training set (the remaining subjects). We

trained a non-linear SVM on training set and reported the average accuracy over six

classes on testing set.

3.4.1 Parameter settings

We evaluated the overall recognition performance of different experiments based on the

various sampling and HOG3D parameters. Such parameters are:

Dense sampling parameters

We first down-sampled original video by 2 into 80 × 60, with the temporal scale un-

changed. The “root” model was extracted from this video by dense sampling. The
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Feature size
Number of codewords

2k words 3k words 4k words
360 87.83% 89.19% 90.26%
540 88.97% 90.88% 91.19%
864 89.33% 90.79% 91.77 %

Table 3.1: Average accuracy on KTH dataset with 2000, 3000, 4000 codewords. The
experiments were performed to evaluate the proposed LPM, with 1 root and 8 parts.

minimal (initial) spatial size of sampling was set as 12, and the further scales were sam-

pled with a scale factor of σs =
√

2 with up to 8 scales. For the temporal length, the

minimal size of 6 and 10 frames was evaluated, each combined with 2 and 3 sampling

scales with a scale factor of τs =
√

2 , respectively. The overlapping rate for spatio-

temporal dense patches was 50%. As for “part” models, their location and sampling

parameters were decided by the “root” model, given the sampling was performed in the

original high resolution video.

HOG3D parameters

Different combinations of following parameters were examined: number of histogram

cells, number of blocks and polyhedron types(icosahedron or dodecahedron). Other

HOG3D parameters were set based on the optimization of those in [42, 123]: the orien-

tation type as full orientation, number of supporting mean gradients s = 3, and cut-off

value c = 0.25.

BoF visual vocabulary

The codebook size was evaluated with the value of 2000, 3000 and 4000 visual words.
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3.4.2 Experimental results

In our experiments, we chose parameter settings to make it computationally tractable,

mainly by controlling number of cells to limit the vector size of features. Table 3.1 shows

our experimental results with different feature dimensions. In general, the best perfor-

mance is observed with 4000 codewords with feature dimension 864. In all experiments,

4000 codewords give better results than 3000 and 2000 codewords . For feature dimen-

sion, it is shown that the performance improves as feature dimension increases from 360

to 860.

We obtained the average accuracy of 91.77% with following optimal parameters: code-

book size V = 4000; minimal patch size σ0 = 12, τ0 = 6; total sampling scales 8× 8× 3;

number of histogram cells 2× 2× 2; polyhedron type dodecahedron(12); and number of

parts per root 2 × 2 × 2. The dimension for a root model is 2 × 2 × 2 × 12 = 96. The

vector size of a LPM feature is 96× (1(root) + 8(parts)) = 864.

We also observed a slight decreased performance of 91.19% in a feature dimension

of 540 with parameters: codebook size V = 4000; minimal patch size σ0 = 12, τ0 = 10;

total sampling scales 8 × 8 × 2; number of histogram cells 1 × 1 × 3; polyhedron type

icosahedron(20); and number of parts per root model 2×2×2. The feature dimension is

1×1×3×20× (1(root) + 8(parts)) = 540. A performance of 90.26% was achieved when

the dimension is reduced to 360 by changing above parameters as: minimal patch size

σ0 = 12, τ0 = 6; total sampling scales 8× 8× 3; and number of histogram cells 1× 1× 2.

We compared our method with other dense sampling results on the KTH dataset.

Table 3.2 shows the comparison between the average class accuracy of our results and

those reported in an evaluation framework [123]. Compared with the other approaches

adopted dense sampling for feature extraction, our method achieves 3.77% improvement.

As for the computational complexity, since the dense sampling for root model is
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HOG/HOF [50] HOG [50] HOF [50] HOG3D[42] Ours
86.1 % 79.0% 88.0% 85.3 % 91.77 %

Table 3.2: Comparison of average accuracy on KTH with other results of dense sampling
methods in the literature.

performed on the video with half the spatial resolution, the total number of patches is

far less than those in [123] with full spatial resolution. Although we need to extract

the part patches in the original video, the total number of features is only decided by

the root model, and the computation of HOG3D descriptor on part patches is handled

efficiently with integral video.
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3.5 Conclusions

In this chapter, we presented a novel local part model for human action recognition from

video. We used HOG3D descriptor and bag-of-features method to represent video. To

overcome the unordered events of bag-of-features approach, we proposed a multiscale

local part model to preserve temporal orderings. The method includes both a coarse

primitive level root model covering event-content statistics and higher resolution over-

lapping part models incorporating structure and temporal relations.

Our system builds upon several recent ideas including dense sampling, local spatio-

temporal (ST) features, HOG3D descriptor, bag-of-features representation and non-linear

SVMs. The preliminary results showed that our approach outperformed other dense

sampling methods on KTH action dataset.



Chapter 4

Feature Extraction by Random

Sampling

4.1 Introduction

In last chapter, we proposed a Local Part Model to address the orderless issue of bag-

of-features representation. The preliminary results showed that it outperformed the

state-of-art dense sampling methods on KTH action dataset. In this chapter, we will

focus on improving the performance of the Local Part Model.

A recent trend in vision recognition is to use dense sampling over sparse interest point

detectors for better performance. Dense sampling has been shown to produce good results

for image classification [1, 54]. For action recognition, Wang et al . demonstrated in [123]

that dense sampling at regular space-time grids outperformed state-of-the-art interest

point detectors. Similar results have also been observed in [35, 120]. Compared with

interest point detectors, dense sampling captures most information by sampling every

pixel in each spatial temporal scale. However, such approaches are often computationally

intractable for large video datasets.

49
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Uniform random sampling [76], on the other hand, can provide performance compara-

ble to dense sampling. A recent study [117] showed that action recognition performance

could be maintained with as little as 30% of the densely detected features. Mathe and

Sminchisescu also showed similar results in [63]. Given the effectiveness of the uniform

sampling strategy, one can think of using biased random samplers in order to find more

discriminative patches. Yang et al . [131] were able to identify more features on the object

of interest by using a prior distribution over patches of different locations and scales. Liu

et al . [57] selected the most discriminative subset from densely sampled features using

the AdaBoost Algorithm. [63, 117] were based on the idea that eye movement of the

human viewers is the optimal predictor of visual saliency. They measured the eye move-

ment of human observers watching videos, and used the data to produce an “empirical”

saliency map. By using such saliency maps, they pruned 20-50% of the dense features

and achieved better results. The requirement of prior eye movement data renders such

methods impractical for real applications. In addition, because of computational con-

straints, these methods didn’t explore high sampling density schemes to improve their

performance.

Inspired by the success of random sampling approach in image classification [76], we

apply random sampling for action recognition in this chapter. We will use very high

sampling density for efficient and accurate action classification.

4.2 Sampling strategies

Dense sampling grid

We perform uniform random sampling on a very dense sampling grid. We follow the

same multi-scale dense sampling method as in [100] but with denser patches. A feature
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Spatial resolution Cuboid[21] Dense[123] Ours
80 x 60 767
160 x 120 4,295
360 x 288 44 643 27,950

Table 4.1: Average number of generated features per frame for different methods. Our
numbers are based on a video length of 160 frames. The numbers of Cuboid and Dense
are based on the report in [123].

point is determined by 5 parameters [x , y , t , σ, τ ]. A 3D video patch centred at (x , y , t)

is sampled with a patch size determined by the multi-scale factor (σ, τ). The consecutive

scales are obtained by multiplying σ and τ by a factor of
√

2. In our experiments with

HOG3D, we set the minimal spatial size to 16 x 16 pixels and minimal temporal size to

10 frames. With a total of 8 spatial scales and 2 temporal scales, we sampled the video

16 times.

A key factor governing sampling density is the overlapping rate of sampling patches.

We explore very high sampling density with 80% overlap for both spatial and temporal

sampling. Table 4.1 shows the comparison of the average number of generated features

per frame for different methods. The features produced with cuboid and dense sampling

in [123] were sampled from videos with resolution of 360 x 288 pixels. At same resolution,

we generate 43 times more features than the dense sampling method in [123].

Random sampling strategies

For an image of size n×n, the number of possible sampled patches is n4 [46]. Nowak

et al . have shown in [76] that the performance was always improved as the number of

randomly sampled patches was increased with as many as 10000 points per image. For

video recognition, such an approach would be computationally prohibitive. Therefore,

we have to use some strategies to reduce number of sampled points per frame and at the
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same time maintain an adequate sampling density.

One solution is to apply sampling at lower spatial resolution. As discussed above, the

Local Part Model is well suitable for maintaining sampling density. The dense sampling

grid is determined by the root filter, which is applied at half the resolution of the processed

video. Additional approach is to perform bias random sampling which selects a small

subset of the potential feature samples.

On the purpose of efficiency, we use random sampling instead of directly applying

dense sampling. The total number of feature patches obtained from dense sampling is

determined by sampling parameters and size of the video. With sampling parameters

fixed, number of features generated from dense sampling varies largely depending on the

size of the video. For example, on HMDB51, some clips can have over 100K features,

whereas others (with 19 frames per video) have only 4K features. Therefore, we randomly

sample features for a good compromise between efficiency and a sufficient number of

features.

In order to achieve fast processing and make the comparison across different dataset

fair, we use the same spatial video resolution as [93] in our experiments. For the videos

with different spatial resolution, we down-sample them to the same height of 120 pixels

with the preserved aspect ratio. Table 4.2 shows the average number of dense points (the

third column) per video for different datasets. It also includes the average percentage

of random samples vs . the total number of densely sampled points. For example, the

average video size of HMDB51 is 182 x 120 pixels and 95 frames, and we randomly

sample 10000 patches from the dense grid of 87,249 points. The dense grid is decided by

root model, which is performed on half the video size (91 x 60 pixels and 95 frames).

We randomly select 4000, 6000, 8000 and 10000 features for each video, and report

the classification results for each of them. They are chosen uniformly from the dense



Feature Extraction by Random Sampling 53

Dataset Avg. video size Dense
samples

10,000
samples

KTH 80 x 60 x 94 72,324 13.83%
UCF50 80 x 60 x 199 129,150 7.74%
HMDB51 91 x 60 x 95 87,249 11.46 %

Table 4.2: The sampling percentage of 10,000 random samples vs . total points (the third
column) of dense sampling for different datasets.

grid, so samples at finer scales predominate. We set the maximal video length to 160

frames. If the video is longer than 160 frames, we simply divide it into several segments,

and select features at same rate for each segment. The 10k random samples represent

7.74-13.83% of the total dense points (depending on dataset). Our sampling density is

much higher than [120, 123]. Also, compared with [117] which randomly discarded up

to 60-70% of dense points, our method uses a much higher pruning rate.

4.3 Experiments

To demonstrate the performance of our sampling strategy, we evaluated our method on

three public action benchmarks, the KTH [95], the UCF50 [85] and the HMDB51 [45]

datasets. We randomly sampled 3D patches from the dense grid, and used them to

represent a video with a standard bag-of-features approach. To generate codewords, we

randomly selected 120,000 training features, and used k-means to cluster them into 4000

and 6000 visual words.

The sampled 3D patches were represented with HOG3D descriptor [42] as feature

vectors. Feature vectors were matched to their nearest visual word with Euclidean dis-

tance. The resulting histograms of visual word occurrences were fed into a non-linear

SVM with RBF kernel for classification. In order to demonstrate the effectiveness of our

method, instead of performing parameter optimization with a greedy search, we used the
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hug pullup     pour     clap    kiss  laugh 

Walking Jogging Running Boxing  Hand clapping   Hand waving 

Diving Golf swing  Horse Race Push ups      Tai chi   Skiing 

Figure 4.1: Sample of frames from KTH (first row), HMDB51 (second rom) and UCF50
(last row). The frames from KTH share same background for all categories. The cluttered
background are shown on both HMDB51 and UCF50 datasets.

fixed SVM parameters as C = 62.5, γ = 0.00225 for all our experiments. For multiclass

SVM, we used OpenCV one-versus-one approach implemented by max-wins voting.

To compensate for the random sampling, we repeated every experiment 3 times, and

reported average accuracy and standard deviation over 3 runs.

4.3.1 Datasets

The KTH dataset [95] is an older dataset. It contains six action classes: walking,

jogging, running, boxing, hand waving and hand clapping. Each action is performed by

25 subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors

with different clothes and indoors. The background is static and homogeneous. The

better performances have been obtained on the methods which focus on the foreground
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human motion. Such systems include feature point approaches [21, 95, 129] and template

based approaches [91]. Because we randomly selected the features, all parts of the scene

have equal probability. In our experiments, we followed the experimental settings as

those in [120, 123] by dividing the videos into testing set (2,3,5,6,7,8,9,10 and 22) and

training set (the remaining subjects). We trained a non-linear SVM on training set and

reported the average accuracy over six classes on testing set.

The UCF50 dataset [85] contains 50 classes and 6680 realistic videos taken from

YouTube. The videos are grouped into 25 groups, where each group consists of a mini-

mum of 4 action clips. The video clips in the same group may have similar background

or be played by the same subjects. The dataset is very large and relatively challenging

due to camera motion, cluttered background, large scale variation, etc. We followed

the experimental setup of Action Bank [91] with 10-fold video-wise cross-validation and

5-fold group-wise cross-validation.

The HMDB51 dataset [45] has 51 action categories, with at least 101 clips for each

category. It is perhaps the most realistic and challenging dataset. The dataset includes a

total of 6,766 video clips extracted from movies, the Prelinger archive, Internet, Youtube

and Google videos. Three distinct training and testing splits have been selected from

the dataset, with 70 training and 30 testing clips for each category. We used the non-

stabilized videos with the same three train-test splits as the authors [45], and reported

the mean accuracy over the three splits.

4.3.2 Parameters

There are a few parameters for our methods, which determine the feature dimensions.

Local part model. The root patches of local part model are sampled from the dense

sampling grid of the processed video with half resolution. For each root patch, we sample
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8 (2 by 2 by 2) overlapping part patches from the full resolution video. Both root and

part patches are represented with HOG3D descriptor. The histograms of 1 root patch

and 8 part patches are concatenated as one local ST feature vector. Therefore, each

feature is 9 times the feature dimension of one HOG3D descriptor.

HOG3D. We focus on computational efficiency in setting HOG3D parameters. For

each feature, we have 9 HOG3D descriptors (1 root and 8 parts) to compute. With

up to 10000 features per video, even though we use integral video for fast 3D cuboid

computation, it is still computationally challenging. Therefore, instead of optimizing the

performance with the authors’ original parameters [42], we choose the HOG3D parame-

ters for fast computation.

We test our method with three different HOG3D feature dimensions: 60, 96 and

144. For the dimension 60, the parameters are: number of histogram cells M = 1,

N = 3; number of sub-blocks 2 × 2 × 2; and polyhedron type icosahedron(20) with full

orientation. For the dimension 96, the parameters are: number of histogram cells M = 2,

N = 2; number of sub-blocks 2 × 2 × 3 for KTH, 1 × 1 × 3 for UCF50 and HMDB51;

and polyhedron type dodecahedron(12) with full orientation. For the dimension 144, the

parameters are: number of histogram cells M = 2, N = 3; number of sub-blocks 2×2×2

for KTH, 1 × 1 × 2 for UCF50 and HMDB51; and polyhedron type dodecahedron(12)

with full orientation. For all cases, the cut-off value is c = 0.25. With one HOG3D

descriptor at dimension of 60, 96 or 144, our local part model feature (with 1 root and

8 parts ) has a dimension of 540, 864 or 1296, respectively.

4.3.3 Results

Table 4.3 illustrates our experimental results for all three datasets. All the tests were run

with the parameters listed in previous subsection. For each video, we randomly sampled
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Feature
Samples

KTH UCF50 HMDB51
size 4k words 6k words 4k words 6k words 4k words 6k words

540

4000 87.6%± 0.33 87.9%± 0.42 60.5%± 0.37 61.9%± 0.13 28.1%± 0.44 29.2%± 0.29
6000 87.9%± 0.85 88.8%± 0.77 61.1%± 0.05 62.0%± 0.08 29.0%± 0.12 29.7%± 0.13
8000 88.8%± 0.61 88.1%± 0.60 61.4%± 0.18 62.7%± 0.08 28.8%± 0.05 29.6%± 0.09
10000 88.6%± 0.42 88.8%± 0.31 61.6%± 0.14 62.8%± 0.15 29.3%± 0.53 30.6%± 0.38

864

4000 91.9%± 0.37 92.8%± 0.24 63.5%± 0.11 65.1%± 0.01 29.9%± 0.28 30.5%± 0.34
6000 92.4%± 0.12 92.5%± 0.12 64.2%± 0.36 65.9%± 0.22 30.2%± 0.58 30.7%± 0.14
8000 92.7%± 0.29 92.8%± 0.13 64.8%± 0.18 66.2%± 0.38 30.6%± 0.03 31.3%± 0.58
10000 92.7%± 0.29 93.0%± 0.29 65.1%± 0.24 66.6%± 0.15 30.7%± 0.18 31.2%± 0.06

1296

4000 91.7%± 1.40 92.7%± 0.31 63.9%± 0.07 64.4%± 0.36 29.8%± 0.08 30.7%± 0.57
6000 91.9%± 0.31 92.4%± 0.27 64.7%± 0.08 65.2%± 0.50 30.0%± 0.31 31.2%± 0.13
8000 92.0%± 0.71 92.7%± 0.41 65.2%± 0.38 65.7%± 0.31 30.4%± 0.37 31.0%± 0.24
10000 92.4%± 0.24 92.7%± 0.18 65.7%± 0.37 66.1%± 0.25 30.6%± 0.53 31.7%± 0.29

Table 4.3: Average accuracy on all three datasets with 4000, 6000, 8000 and 10000
randomly sampled features per video. The table gives the mean and standard deviations
over 3 runs with 4000 codewords and 6000 codewords, respectively. 5-fold group wise
cross-validation is used for UCF50. Note: if video has more than 160 frames, more
features are sampled at the same sampling rate as the first 160 frames.

4000, 6000, 8000 and 10000 LPM features (1 root + 8 parts), and performed classification

using a standard bag-of-features approach with 4000 and 6000 codewords, respectively.

The feature dimensions of 540, 864 and 1296 were tested. To compensate the sampling

randomness, all the tests were run 3 times. The mean accuracy and standard deviation

were reported.

In general, the best performance is observed with 6000 codewords combined with

10000 features per video. The performance is almost always improved as the number

of patches sampled from the video is increased. This is consistent with the results of

random sampling for image classification [76]. Also, 6000 codewords give better results

than 4000 codewords. For feature dimension, there is no clear performance advantage

when using 1296 over 864. However, both of them show better results than the dimension

of 540. In practice, it is preferable to use the dimension of 864 for better computational

efficiency without sacrificing the performance.

On both KTH and UCF50 datasets, the best results are achieved using 6000 code-

words and 10000 sampled patches at a feature dimension of 864. For HMDB51, the best
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Method Accuracy
3D Harris [95] 71.7
HOF+Dense [123] 88.0
HOG3D [42] 91.4
Local Part Model [100] 91.8
Multi-scale 3D Harris[50] 91.8
Dense Trajectories [120] 94.2
Mined hierarchical features [27] 94.5
ActionBank [91] 98.2
Ours 93.0 ±0.3

Table 4.4: Comparison of average accuracy on KTH dataset with state-of-the-art meth-
ods.

result is obtained using 6000 codewords and 10000 samples at a feature dimension of

1296.

One very important observation from Table 4.3 is that all values of the standard

deviation are very low. Such low standard deviation demonstrates effectiveness and

consistency of our methods in spite of the random sampling. As discussed on Section

4.2, 10000 random samples represent 7.74-13.83% of the dense points. The consistency

of the results at such high rate of randomness can be explained by very high sampling

density used by our approach.

4.3.4 Comparison to state-of-the-art

KTH is a simple dataset with six classes sharing the same homogeneous, uncorrelated

backgrounds. The best results are observed on methods focusing on foreground human

motion. State-of-the-art result 98.2% was achieved with Action Bank [91], which applied

convolution with templates cropped spatially to cover the extent of the human motion

within them. The Dense Trajectories [120] used tracked dense optical flow which also

focused on the moving human objects. In our method, we applied uniform sampling



Feature Extraction by Random Sampling 59

Method HMDB51 UCF50-G UCF50-V
HMDB51 [45] 23.2 47.9 -

ActionBank [91] 26.9 57.9 76.4
Pooling [16] 27.84 - -

MIP [43] 29.17 - -
Subvolume [93] 31.53 - -

Ours 31.7±0.3 66.6±0.2 91.5 ±0.2

Table 4.5: Comparison of average accuracy on UCF50 and HMDB51 with state-of-the-
art methods in the literature(-V specifies video-wise 10-fold cross-validation, -G specifies
group-wise 5-fold cross-validation).

strategy to the entire video. Therefore the similar background of all classes from KTH

dataset may reduce the classification power. This is consistent with conclusion in [136]

that, for “easier” datasets, using foreground and background features together does not

improve the performance for image classification. Nevertheless, we obtained 93%, which

is better than the uniform dense sampling methods [50, 100, 123].

For the UCF50 dataset, we significantly outperformed the state-of-the-art method

[91] by 8.7% and 15% with group-wise 5-fold cross-validation and video-wise 10-fold

cross-validation, respectively. We achieved 31.7% on the HMDB51 dataset, which also

surpassed the state-of-the-art [93]. The detail performance comparison of our results

with others is listed in Table 4.5. Note that the results listed in the table were reported

before year 2013. For the latest performance comparison, please refer to our improved

method in next chapter (as shown in Table 5.11).

Our method demonstrates very good performance on large scale challenging datasets

with more realistic scenarios. One possible explanation for the good performances on real

life videos is because our random sampling is conducted on a very high dense sampling

grid. Compared with interest point detectors, our method has more patches sampled

from the test videos, and with uniform random sampling our method also includes corre-

lated background information. Such background information may improve discriminative
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Feature size Samples
Speed (frames per second)

Integral video HOG3D & Sampling
BoF matching Total fps

4k words 6k words 4k words 6k words

540
6000 75.15 457.40

cpu 124.09 81.92 41.82 36.49
gpu 440.49 308.78 58.26 57.05

10000 76.18 286.53
cpu 76.35 50.31 33.43 27.50
gpu 271.67 185.24 49.22 46.62

864
6000 75.98 471.38

cpu 81.01 51.77 36.87 28.34
gpu 271.80 185.49 49.17 51.65

10000 77.64 293.49
cpu 49.33 32.79 27.44 21.30
gpu 178.25 110.86 48.35 39.18

1296
6000 75.98 447.70

cpu 53.16 35.33 29.23 22.83
gpu 186.52 126.91 49.68 45.84

10000 74.27 280.50
cpu 31.62 21.15 20.42 15.60
gpu 109.99 76.91 39.37 35.50

Table 4.6: Average computation speed at different stages in frames per second for
HMDB51 dataset. Note: the classification stage is not included.

power for recognition on real-life videos.

Our parameters were optimized for real-time process at half spatial resolution. We

expect the performance to improve further with parameter tuning in the case of full

resolution videos.

4.3.5 Computational efficiency

Compared with existing methods, a major strength of our method resides in its high

computational efficiency. By using random sampling, we bypass the feature detection

stage, which often consists of a large portion of total computational cost. For example, Yu

et al . [134] extended FAST 2D corners [90] into a spatio-temporal domain, and proposed

a high efficient V-FAST detector for real-time action recognition. However, their feature

detection stage with V-FAST detector still consists of about 1/3 total processing time.

We also use integral video to improve the efficiency. With integral video, the descrip-

tor of a 3D patch can be computed very efficiently through 7 additions/subtractions,

independent of the volume’s size and location. It has the complexity of O(N) where N

is the number of local features. The naive computation (without integral video) has the
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complexity of O(N ×W ×H ×T ) where W is the width of the patch, H is the height of

the patch and T is the total frames of the patch. If using integral image as in [121, 122],

it has the complexity of O(N × T ). In addition, as discussed in Section 3.3.2, the use of

integral image results in a factor of z ≈ 5.46 more memory usage.

Table 4.6 summarizes average computational speed at different stages for HMDB51

dataset. Similar speed is observed on KTH and UCF50 datasets, on which we tested

with same spatial resolution. The computation time was estimated on an Intel i7-3770K

PC with an AMD HD7770 gpu @1050 Hz. Our prototype was implemented in C++.

The run-time estimates for “Integral video” and “HOG3D & random sampling” were

obtained on CPU parallelized with OpenMP. The speed for integral video varies little,

and it only depends on the size of videos. Because there is no feature detection for

random sampling, the introduction of integral video has greatly improved the speed for

random sampling and HOG3D, with 280 to 471 frames per second depending on number

of samples. We simply used brute-force matching to assign sampled features to their

nearest visual word. Brute-force matching was the most time-consuming stage, but very

suitable for GPU computing. We tested it with and without GPU. The results show that

our system runs at over 30 frames per second with low feature dimensions by using only

CPU and at high feature dimensions using GPU.

4.4 Discussion: dense sampling vs. random sam-

pling

The video size in the datasets varies a lot for different clips, especially for total number

of frames. For example, the shortest clip on HMDB51 dataset has a size of 560 ×

240 × 19, while the longest clip has a size of 360 × 240 × 1063. Table 4.7 shows the
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Video size Sampling 1 Sampling 2 Sampling 3
280 x 120 x 19 458 1,998 9,768
280 x 120 x 160 11,679 81,252 196,298

Table 4.7: Number of generated features per video from dense sampling with three
different sampling parameters, represented as “Sampling 1”, “Sampling 2” and “Sampling
3”.

number of generated features per video from dense sampling with three different sampling

parameters. If we use dense sampling method with the parameters of “Sampling 3” and

generate 9,768 features for the clip with 19 frames, the total number of features generated

from a video of 160 frames would be 196,298. Such large number of features for a 160-

frames video is both computationally expensive and unnecessary. For the clips with

very long duration, most actions consist of repeated motions and similar structures.

Schindler and Val Gool [94] showed that snippets of 5-7 frames were enough to achieve

a comparable performance on staged, controlled datasets. For realistic videos, it may

need more frames to classify them due to the scale changes, different viewpoints, multiple

players and various backgrounds. However, it is a reasonable practice to sample features

more densely from a clip with less frames. In practical applications using dense sampling,

it is impossible to change the parameters based on the video duration.

Random sampling, on the other hand, can control the total number of features without

any parameter changes. As shown in Table 4.7, we can use the parameters of “Sampling

2” and densely sample 1,998 features from the clip with 19 frames. At the same time,

randomly choose 10,000 features on the 160-frame video. Thus, random sampling can

generate denser features for clips with less frames given the fixed parameters. It also

improves efficiency by processing less features for videos with long duration.
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4.5 Conclusions

This chapter has introduced a random sampling method for fast action recognition. In

combined with local part model, it achieved good recognition performance on two realistic

large scale datasets, UCF50 and HMDB51. Compared with existing methods, a major

strength of our method is real-time performance. The high computational efficiency is

obtained through using integral video and fast random sampling. Our results show that

good action recognition performance can be achieved by randomly selecting as few as

10% of total patches from a high dense sampling grid.



Chapter 5

Local Feature Descriptors: A

Multi-channel Approach

5.1 Introduction

Recent studies [50, 120, 123, 121] have shown that local features and their descriptors have

significant impact on the performance of the video recognition. Dollár et al . [21] evaluated

different descriptors based on dense features extracted from normalized pixel values,

image gradients, and windowed optical flow. They reported best results on concatenated

gradients. Laptev and Lindeberg [49] compared different type of descriptors: local jets,

histograms of optical flow, and histograms of spatio-temporal gradients. Their results

showed that descriptors based on histograms of optical flow and spatio-temporal gradients

outperformed others. Later, Laptev et al . [50] combined histograms of oriented spatial

gradients (HOG) and histograms of optical flow (HOF) to include both local motion and

appearance information. In their method, each local region was subdivided into a grid

of N ×N ×M cells. For each cell, a 4-bin HOG histogram and a 5-bin HOF histogram

were computed, and then concatenated into the final HOG/HOF descriptor.

64
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To extend 2D image descriptors to 3D spatio-temporal space, Scovanner et al . [97]

proposed the 3D SIFT descriptor based on popular 2D SIFT descriptor [58]. For orienta-

tion quantization, the gradients in spherical coordinates (θ, φ) were divided into equally

sized bins, which were represented by a 8 × 4 histogram. Willems et al . [129] extended

the efficient 2D SURF descriptor [8] to 3D spatio-temporal space, called the extended

SURF (ESURF) descriptor. Kläser et al . [42] introduced the HOG3D descriptor. In

their method, the mean spatio-temporal oriented gradients were quantized using a poly-

hedron into a n-bin histogram. Yeffet and Wolf [132] presented the efficient Local Binary

Patterns descriptor by comparing pixel values of a local region to the previous and to

the next frame. Wang et al . [120] used MBH descriptor [20] in action recognition, which

outperformed other descriptors by encoding motion boundary and suppressing camera

motion.

More recently, trajectory-based methods became popular due to the good perfor-

mance. Messing et al . [67] used KLT tracker [59] to extract feature trajectories, and

quantized them in log-polar coordinates with 8 bins for direction, and 5 for magnitude.

Matikainen et al . [64, 65] employed fixed length feature trajectories, and represented

the trajectory descriptor with information containing both displacement vectors and el-

ements of the affine transformation matrix for its assigned cluster centre. Sun et al .

[107] tracked randomly sampled points within the region of the long-duration trajecto-

ries extracted through KLT tracker and SIFT descriptor matching. Wang et al . [120]

proposed dense trajectories by sampling feature points on a dense grid in each frame

and tracking them using an efficient dense optical flow algorithm. When combined with

camera motion compensated MBH descriptor, dense trajectories achieved state-of-the-

art performance on various datasets. Later, built on dense trajectories [120], both Jiang

et al . [38] and Jain et al . [34] explored the methods to improve the performance from
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better camera motion compensation.

In addition to mining the most discriminative features and their descriptors, a recent

trend is to improve the recognition performance from a combination of multiple comple-

mentary features/descriptors. Reddy and Shah [85] applied late fusion using probabilistic

fusion of motion descriptors (e.g . 3DSIFT and MBH) and scene context descriptor (e.g .

GIST). In [120, 121], dense trajectories, HOG, HOF and MBH descriptors were fused

with a RBF-χ2 kernel SVM in a multichannel approach. Jiang et al . [38] combined

amended dense trajectories, HOG, HOF and MBH descriptors. The combination was

done by simply averaging the kernels computed from different representations. Jain [35]

used the same multichannel χ2 SVM as those in [120, 121] to combine trajectories, HOG,

HOF, MBH and DCS descriptors. Oneaţă et al . [77] employed a late fusion strategy to

linearly combine classifier scores computed from dense SIFT features and MBH features.

Lan et al . [47] proposed a double fusion method to take advantage of both early fusion

and late fusion strategies in fusing multiple features, such as SIFT, CSIFT, MoSIFT,

STIP, ASR, OCR and GIST.

In this chapter, we focus on mining various discriminative features and combining

such multiple complementary features to perform an accurate recognition of videos. We

also introduce a new efficient spatio-temporal descriptor to represent local features in

video, and improve the performance of the state-of-the-art MBH descriptor using a

discontinuity-preserving optical flow algorithm.

5.2 Feature descriptors

In last chapter, we applied the random sampling method on our proposed Local Part

Model to extract local 3D patches at regular positions and scales in space and time. That

is, for each given sample point (x , y , t , σ, τ), a feature descriptor is computed for a 3D
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video patch centred at (x , y , t). The descriptors are very important for the performance

of the video recognition.

5.2.1 Local feature descriptors

The low-level local spatio-temporal features and bag-of-features(BoF) [99, 101, 120] rep-

resentation or alternative Fisher vector encoding [122, 77] can achieve good performance

for action recognition on realistic datasets. A key factor for high performance is the local

descriptors, which should include both local structure and motion information. In the

literature, a number of local descriptors are proposed to encode local motion pattern and

structure information.

HOG descriptor was introduced by Dalal and Triggs in[19] for human detection. It

is based on the popular SIFT descriptor [58]. In our implementation, image gradients

are computed by applying [-1, 0, 1] filter along x- and y-axis with no smoothing. The

orientation θ(x, y) and magnitude r(x, y) are computed from the intensity gradients for

every pixel in the image, and the orientated histograms are voted with weighting based

on gradient magnitudes. For colour images, we simply use the colour channel with the

maximal value from each pixel for gradient computation.

HOF descriptor was first used by Laptev et al . [50] to combine with HOG to in-

corporate both local motion and appearance. Instead of using image gradients ( ∂I
∂x
, ∂I
∂y

),

the horizontal and vertical components of optical flow (Ix, Iy) are employed to com-

pute orientation and magnitude, which are used as weighted votes into local orientated

histograms in the same way as for the standard HOG.

MBH descriptor was introduced by Dalal et al . in[20] and used by Wang et al . [120]

on action recognition to achieve state-of-the-art performance. The horizontal and vertical

components of the optical flow (Ix, Iy) are treated as two independent “images”, and their
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local gradients ((∂I
x

∂x
, ∂I

x

∂y
), (∂I

y

∂x
, ∂I

y

∂y
)) are calculated separately. The result derivatives are

used as weighted votes into local oriented histograms for each “image” in the same way

as for the standard HOG.

HOG3D descriptor was proposed by Kläser [42]. It is built up on spatio-temporal

oriented gradients. The ST gradients ( ∂I
∂x
, ∂I
∂y
, ∂I
∂t

) are computed for each pixel over the

video, and saved in three integral videos. Three gradient components of a ST patch can

be computed efficiently from the integral videos. A 3D patch is divided into a grid of

Mc ×Mc × Nc cells, with Mb ×Mb × Nb sub-blocks per cell. A mean 3D gradient is

computed for each sub-block, and quantized using a polyhedron into a n-bins histogram.

The 3D histogram of oriented gradients for the 3D patch is formed by concatenating

gradient histograms of all cells.

3D SIFT descriptor was extended from popular 2D SIFT descriptor [58] by Scov-

anner et al . [97] to represent spatio-temporal patches. After gradient magnitude and

orientation are computed in 3D, each pixel has two values (θ, φ) which represent the

direction of the gradients in three dimensions. A Gaussian weighted histogram for the

3D neighbourhood around a given interest point is constructed. For orientation quanti-

zation, the gradients in spherical coordinates (θ, φ) are divided into equally sized bins,

which are represented by an 8×4 histogram. Such an representation leads to singularity

problems as bins get progressively smaller at the poles.

The HOG descriptor are very efficient to compute. However, it only encodes ap-

pearance of local features and lacks of local motion information for video classification.

Therefore, it is often combined with HOF descriptor to improve the performance. For

HOG3D descriptor, although it is very efficient to compute ST gradients, the orientation

quantization with polyhedron for each sub-block is relatively expensive considering a lot

of patches sampled. Also, its descriptor has much higher dimensionality (default 960)
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than HOG/HOF (default 96), which puts more constraints on efficiency. In addition,

using regular polyhedron with congruent faces to quantize the ST gradients may not be

an optimal option because the gradients in spatial domain and those in temporal domain

should have different characters. Similar as HOG3D, 3D SIFT also has increased di-

mensionality (default/optimal 2048), and represents spatial gradients and temporal ones

with same quantities.

Both HOF and MBH need to compute dense optical flow, which is computationally

expensive. In addition, the MBH includes two descriptors, MBHx and MBHy, which add

the dimensionality and complexity for codeword quantization. The optical flow computes

the absolute motion which includes camera motion, and thus leads to suboptimal perfor-

mance for HOF. With MBH, constant camera motion is suppressed by the gradients of

the optical flow, and only information about changes in the flow field is kept. The MBH

achieved state-of-the-art performance.

5.2.2 Improved MBH descriptor

MBH descriptor with local part model

In local part model, for each clip, we compute two integral videos, one for the root model

at half resolution, and another one for the part models at full resolution. Note that we

compute the dense optical flow for HOF and MBH at full resolution for part models, and

then reuse them for root by down-sampling. In comparison to down-sampling the video

frames and recomputing the dense optical flow at half resolution, there are two benefits:

1) no extra computation cost of the dense optical flow for root model; 2) improving the

sub-pixel accuracy of optical flow. Dalal et al . [20] have observed that deep sub-pixel

accuracy is very important for the performance of MBH descriptor. This is because

the optical flow vectors can be very short, so any rounding to sub-pixel accuracy can
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have significant impact on performance. We will provide experimental evaluation on this

subject.

Depending on the spatial resolution, the dense optical flow computed from half res-

olution may lose more deep sub-pixel accuracy than computed from full resolution and

resized by down-sampling. We use Farnebäck’s approach [23] to compute dense opti-

cal flow, which adopts iterative and multi-scale displacement estimation. It starts at a

coarse spatial scale to get a rough but reasonable displacement estimate and propagates

it through finer scales to obtain increasingly more accurate estimates. However, if the

video resolution is too low, it becomes difficult to compute reliable motion estimates at

the coarser levels. In our case, the resolution for root model is 80× 60, which is too low

for accurate multi-scale displacement estimation.

Optical flow estimation on MBH descriptor

Dalal et al . [20] have shown that the accuracy of dense optical flow estimation has

significant impact on the performance of MBH descriptors. Motion analysis algorithms

have been developed for decades, but the state-of-the-art optical flow methods do not

produce the expected results for many real-world video sequences [56]. In computing

optical flow for MBH descriptor, we follow Wang et al . [121] to adopt Farnebäeck’s

algorithm [23] as a good trade-off between speed and accuracy. In this section, we will

explore the potential benefits of using different optical flow algorithms.

Wang et al . [121] compared efficient Farnebäeck optical flow algorithm with a state-

of-the-art method, large displacement optical flow (LDOF) from Brox and Malik [14].

They found that the overall performance of the two optical flow algorithms is similar. To

estimate very fast moving small human body parts, LDOF combines descriptor matching

and the continuation method to calculate arbitrarily large displacements. A continuous
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optimization is desirable for optical flow as sub-pixel precision is required, but descriptor

matching with discrete optimization can only achieve pixel level accuracy. Thus, adopting

descriptor matching in optical flow estimation may lead to difficulty in distinguishing

small/slow motions, which has equal importance to human action as fast moving small

body parts. Also, the use of descriptor based on spatial histograms may cause the

inaccuracies at motion discontinuities. Discontinuities in the flow field often appear in the

area with high image gradients, which is critical to motion boundary encoding for MBH

descriptor. When using LDOF on MBH, Wang et al . [121] observed a 3% improvement

over YouTube dataset and 0.8% drop in performance over Hollywood2 dataset. This

could attest our aforementioned hypothesis because YouTube dataset contains sports

video with fast moving body parts, whereas Hollywood2 dataset has many slow motions,

such as Kiss and AnswerPhone.

To this end, we would like to explore more accurate optical flow algorithm for

“discontinuity-preserving”. We evaluate duality-based TV L1 (Dual TV L1) method

from Zach et al . [135]. It is based on classical homogeneous regularization method of

Horn and Schunck [32] approach. The original work of Horn and Schunck uses quadratic

L2-regularity, which does not allow for discontinuities in the optical flow field. Neither

does Farnebäeck’s algorithm. The Dual TV L1 employs L1-regularity to better preserve

discontinuities.

5.2.3 GBH descriptor

In this section, we propose a new local spatio-temporal descriptor. Our objective is to

avoid the expensive dense optical flow computation, but adopt high efficient gradient-

based method. We also intend to encode both local static appearance and motion in-

formation. However, we want to avoid using three gradient components as 3D SIFT
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Figure 5.1: Illustration of 3D SIFT and HOG3D descriptors (reprinted from [97] and
[42]). Compared to HOG/HOF with a dimension of 96, the 3D SIFT and HOG3D have
a default dimension of 2048 and 960, respectively, due to the third temporal gradient
component.

and HOG3D descriptors do, which leads to high dimensionality and relatively expen-

sive quantization cost (as shown in Figure 5.1). Instead, we will use compact HOG-like

descriptor with two gradient components.

For each frame in a video, we first compute image gradients using simple 1-D [-1,0,1]

Sobel masks on both x and y directions. Then, we apply a [-1, 1] temporal filter over

two consecutive gradient images. Thus, for each pixel, we have:

It,x =
∂

∂t
(
∂I

∂x
), It,y =

∂

∂t
(
∂I

∂y
) (5.1)

Now the gradient magnitude and orientation for each pixel are defined as follows:

r(x, y) =
√
I2t,x + I2t,y, θ(x, y) = arctan(

It,y
It,x

) (5.2)

Our new descriptor uses a similar histogram of orientation based method voting with

θ and r as in SIFT and HOG descriptors. However, instead of using image gradients, we

use time-derivatives of image gradients, which show moving edge boundaries. We call

this descriptor gradient boundary histogram (GBH).

Figure 5.2 illustrates the comparison of image gradients and gradient boundaries.
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Figure 5.2: Illustration of gradients and gradient boundaries for a “fall floor” action.
Compared to image gradients, gradient boundaries have less background noise. More
important, gradient boundaries encode motion information. The areas inside red bound-
ing boxes show the double edges with various distances decided by the speed of the
moving body parts.

We have two important observations. First, the subtraction of two consecutive image

gradients results in the removal of the backgrounds of the video sequences. Two gradient

images in the centre show a lot of background noise, while the gradient boundary images

on the right show clear human shapes with far less background noise. More important,

gradient boundaries encode moving human shapes. As demonstrated with red bounding

boxes in the Figure, the double edges with various distances are proportional to the

moving speed of the human body parts. For example, the distance between double leg

edges is larger than the double head edges, which represents that the leg moves faster

than the head of another person in the upper right image.

It seems like that the simple gradient subtraction works well only when the cam-

era and background are largely static. However, our in-depth experimental evaluations
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showed that it achieved good performance on realistic datasets. One possible explanation

may reside in that the changes of the human gradient boundaries (as shown in Figure 5.2)

reflect the speed of the moving body parts.

5.3 Improved local part model

We have proposed a local part model for action recognition. Our model consists of a

coarse root patch and a group of finer part patches. Both the coarse root patch and

the higher resolution part patches can be represented by any of the local descriptors (

HOG/HOF [50], HOG3D [42], MBH [120], ESURF [129] etc.). In addition, our local part

model also incorporates the local structure relations and temporal ordering information

by including local overlapping “events”. It thus provides discriminative power for action

recognition

In our previous chapters (Chapter 2, Chapter 3), each of these patches was represented

by a histogram of a local descriptor, and histograms from all patches were concatenated

into one vector that was 9 (1 root + 8 parts) times the original feature dimension of

the used descriptor. Such an approach, however, results in large codeword quantiza-

tion errors, and it also occludes the individual discriminative power of independent root

model and part models. Therefore, we propose a new multi-channel approach, in which

we substantially improve the method by treating the root and 8 parts as two separate

channels. For each channel, a standard bag-of-features approach is applied. The result-

ing histograms of visual word occurrences from root and parts are concatenated into one

histogram for SVM classification. We will discuss this in details in our experimental

section.
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5.4 Experimental setup

We evaluated our method on three public large scale action benchmarks, the UCF50 [85],

the HMDB51 [45] and the UCF101 [105] datasets. We focused our evaluation on using

a standard bag-of-features approach. However, we also tested our system with Fisher

Vector (FV) [36] encoding. Unless stated otherwise, all the results were reported with

bag-of-features approach.

Notation: we define the sampling grid based on root video, which is half the spatial

resolution of the processed video. The root patches are randomly chosen from this

half size video, and we will refer to it as “root video”. The part patches are sampled

from the processed video at full spatial resolution, which is referred to as “part video” or

“processed video”, interchangeably. We also use “original video” to represent the original

spatial resolution of the clips from the datasets.

5.4.1 Bag-of-features approach

For each clip, we randomly sample 3D patches from the dense grid, and use them to

represent a video with a standard bag-of-features approach. To generate codewords, we

randomly select 120,000 training features, and use k-means to cluster them into 2000

and 4000 visual words.

The sampled 3D patches are represented by descriptors, and the descriptors are

matched to their nearest visual words with Euclidean distance. The resulting histograms

of visual word occurrences are fed into a non-linear SVM implemented by LIBSVM [18]

with histogram intersection kernel [109]. For multi-class SVM, we use one-versus-all ap-

proach, which is observed in [35] to have better results than one-against-one multi-class

SVM. However, we will also evaluate the performance of our system with one-against-one

multi-class SVM and provide a comparison of both approaches.
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Different visual features can be extracted from a single video and represented with

various descriptors to provide complementary information. These features need to be

fused to improve the classification performance. In general, based on when the informa-

tion is combined, there are two types of fusion strategies: early fusion and late fusion

[103].

Early fusion: the features are combined before performing a classification training.

Early fusion can better learn the correlation among features. However, it may have the

over-fitting problem due to limited amount of training data. Also, it often suffers from

high feature dimensionality.

Late fusion: classifiers are trained for different descriptors, then the classification

results are combined. Various features from different feature spaces can be fused more

easily, but their relationships are often not learnt. Also, some late fusion strategies have

the pre-requirement of conditional independence for different descriptors [85].

In our approach, we use early fusion method by concatenating different feature de-

scriptors and then training a classifier. To combine multiple channels of different de-

scriptors, most early fusion methods use RBF-χ2 kernel [121, 136]:

K(xi, xj) = exp(−
∑
c

1

Ac
D(xci , x

c
j)), (5.3)

where D(xci , x
c
j)) is the χ2 distances between the samples for the c-th channel, and Ac

is the mean value of the χ2 distance between the training samples for the c-th channel.

Using mean χ2 distance Ac has an advantage of parameter free for each channel. While

this approach produced “comparable results” [136], we argue that the mean value of the

χ2 distance is not representative to the discriminative power of each individual channel.

For instance, in our experiments, the MBH outperforms HOG on HMDB51 dataset by

a large margin (56.4% vs . 28.3%). Therefore, it is intuitive to add more weight to



Local Feature Descriptors: A Multi-channel Approach 77

descriptors with higher classification power. We thus propose a histogram intersection

kernel for multi-channel classification:

KIH(xi, xj) =
C∑
c=1

wc

max(wc)

Nc∑
nc=1

min(xci , x
c
j) =

C×Nc∑
n=1

wc

max(wc)
min(xci , x

c
j), (5.4)

where wc is classification accuracy for the c-th channel, which can be learnt from the

training data. max(wc) is the maximal value from wc of all channels, and Nc is the

feature dimension for the c-th channel. The histogram intersect kernel is a positive semi-

definite kernel [29]. Thus, the proposed kernel is Mercer kernel because each learnt wc

is positive and Mercer kernels are closed under both addition and scaling by a positive

constant[98].

One advantage of this approach is its computational efficiency. Our histogram inter-

sect kernel is similar as the approach in Spatial Pyramid Matching [52]. It is simply a

weighted sum of histogram intersections. Given wimin(a, b) = min(wia, wib) for positive

numbers, we can concatenate the weighted histograms of all channels, and use a single

efficient intersection kernel SVM [60].

5.4.2 Fisher vector

To encode features, in addition to using bag-of-features, we will also evaluate Fisher

vector (FV) [36]. In recent studies [106, 77, 121], Fisher vector has showed the improved

performance over standard bag-of-features method on action recognition. FV extends the

BoF by encoding high-order statistics (first and, optionally, second order) between the

descriptors and a Gaussian Mixture Model (GMM). Therefore, in addition to including

codewords’ occurrences, it also encodes additional information about the distribution of

the descriptors.
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Due to the fact that decorrelated data can be fitted more accurately by a GMM with

diagonal covariance matrices, it is favourable to apply PCA dimensionality reduction on

Fisher vector. In addition, for a D dimension descriptor, the FV signature with K words

has an increased dimension of 2KD (VLAD has a dimension of KD). Therefore we

apply PCA on the computed LPM features. The dimensions of root descriptor and part

descriptor are reduced into their 1/2 and 1/8, respectively. The detail implementation

can be found in Chapter 6.2.

We use the parameters as in Section 5.4.4 to compute LPM features for GBH and

MBH descriptors. The 4000 codewords are used for bag-of-features encoding. For Fisher

vector, we first apply PCA to reduce root vector from 64 to 32 and part vector from 512

to 64. We set the number of quantization cells to K = 256 and K = 128 for FV, which

speeds up the codewords matching process in comparison with BoF (K = 4000).

We use VLFeat library [114] for Fisher vector encoding. We adopt improved fisher

vector [79] by applying the signed square-rooting and followed with L2 normalization,

which significantly improves the performance when combined with linear classifiers. For

classification with FV, we use linear SVM with fixed parameter C = 32.5. To combine

multiple descriptors, we simply concatenate the vectors from different channels.

5.4.3 Datasets

We perform the evaluate on three large scale action datasets, the UCF50 [85], the

HMDB51 [45] and the UCF101 [105]. We provide a short review over these datasets.

The details for all these datasets can be found in Section 2.3.

The UCF50 dataset [85] contains 50 classes and 6680 realistic videos taken from

YouTube. The videos are grouped into 25 groups, where each group consists of a mini-

mum of 4 action clips. The dataset is very large and relatively challenging. We report
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Playing Cello Table Tennis Shot Hair cut Rock Climbing Indoor Baby Crawling Apply Eye Makeup 

Diving Golf swing Horse Race Push ups Skiing Tai chi 

Laugh Kiss Hug Pullup Pour Clap 

Figure 5.3: Sample of frames from HMDB51 (first row), UCF50 (second row) and
UCF101 (last row).

our results with Leave-One-Group-Out (25-fold group-wise) Cross-Validation.

The UCF101 dataset [105] is by far the largest human action dataset with 101 classes

and 13320 realistic video clips taken from YouTube. As an extension of UCF50 dataset,

it includes all clips of 25 groups from UCF50 and adds 51 categories. The dataset is

relatively challenging due to camera motion, cluttered background, large scale variations,

etc. We follow the original experimental setup of the authors by reporting mean accuracy

over three distinct training and testing splits. For split 1, split 2 and split 3, clips from

groups 1-7, groups 8-14 and groups 15-21 are selected respectively as test samples, and

the rest for training.

The HMDB51 dataset [45] is perhaps the most realistic and challenging action

dataset. It has 51 action categories, with at least 101 clips for each category. The

dataset includes a total of 6,766 video clips extracted from Movies, the Prelinger archive,
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Internet, Youtube and Google videos. We use the original non-stabilized videos with the

same three train-test splits as the authors [45], and report the mean accuracy over the

three splits in all experiments.

For efficiency, unless stated otherwise, we down-sample the UCF50, UCF101 and

HMDB51 videos to half the spatial resolution for all our experiments except for HOG

descriptor, which is fast to compute. Since UCF101 is an extension of UCF50 and

includes all clips of 25 groups from UCF50 with additional 51 categories, we will focus

our experiments on UCF101 and HMDB51. However, we will compare our performance

on UCF50 with state-of-the-art. Fig. 5.3 shows samples of the frames from the datasets.

5.4.4 Parameters

There are few parameters for our method, which determine the feature dimensions. Our

parameters are optimized for fast process at half the spatial resolution of the tested

datasets. In addition, we use the simplified HOG3D, HOG, HOF and MBH descriptors,

mainly by reducing the dimensionality through controlling the total number of patch

cells.

Local part model. The root patches are randomly sampled from the dense sampling

grid of the processed video at half the resolution. For each root patch, we sampled 8

(2× 2× 2) overlapping part patches from the full resolution video. Both root and part

patches are represented as histograms with a local descriptor. However, the histograms of

1 root patch and 8 part patches are treated as two separate channels. The root channel

has the same dimension as that of the used descriptor, but the histograms of 8 part

patches are concatenated to create a part channel with 8 times the dimension of the root

channel.

HOG3D. We evaluate our method with a descriptor dimension of 64 instead of the
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default 960 in [42]. The parameters are: number of histogram cellsM = 2, N = 2 (default

M = 4, N = 3); number of sub-blocks 1× 1× 3; and polyhedron type dodecahedron(12)

with full orientation. The minimal patch size is 16×16×10. With one HOG3D descriptor

at dimension of 96 (2× 2× 2× 12), our local part model feature has a dimension of 96

and 768 for root channel and part channel, respectively.

MBH, HOF and GBH. The minimal patch size is 20 × 20 × 14. Each patch

is subdivided into a grid of 2 × 2 × 2 cells, with no sub-block division. With 8-bins

quantization, one descriptor of GBH, HOF , MBHx or MBHy has a dimension of 64.

Therefore, for any one of these descriptors, the local part model feature has a dimension

of 64 for root channel and 512 for part channel.

HOG. HOG is fast to compute. Unlike all other descriptors, instead of down-

sampling the video clips into half size, we use full size videos. The minimal patch size is

24× 24× 14. Each patch is subdivided into a grid of 2× 2× 2 cells, with no sub-block

division. With 8-bins quantization, one descriptor of HOG has a dimension of 64. The

local part model feature has a dimension of 64 for root channel and 512 for part channel.

For all gradient-based descriptors (HOG3D, HOG and GBH), unless stated otherwise,

we simply define r and θ at each pixel using grayscale frames.

5.4.5 Normalization

Normalization is very important to the performance. For all descriptors used, we apply

the L2-norm over the feature vectors. For part channel, we apply L2-norm over each

patch vector (with dimension of 64), and then renormalize the whole concatenated vector.

For bag-of-features normalization, we simply apply L1-norm to convert the feature

into unit-length vector to eliminate the difference between short and long documents.

We do not use the tf-idf scheme. Our experiments show no significant improvement
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Dataset GBH HOG HOG3D HOF MBH HOG+HOF HOG+GBH HOF+GBH

HMDB51 38.8% 28.4% 36.2% 35.5% 51.5% 43.6% 43.0% 46.6%
UCF101 68.5% 54.1% 61.4% 61.8% 77.1% 71.8% 73.0% 73.7%

Table 5.1: Performance comparison of the proposed GBH descriptor and other local
descriptors.

Spatial resolution
Speed (frames per second)

GBH HOG HOG3D HOF MBH
160× 120 192.2 206.7 113.2 68.3 47.3
320× 240 92.5 94.1 90.2 17.5 14.3

Table 5.2: Efficiency comparison of the proposed GBH descriptor and other local de-
scriptors. Feature sampling and extraction stages are included in the run time as frames
per second.

when using tf-idf scheme.

5.5 Results

This section evaluates our proposed methods on three datasets, HMDB51, UCF101 and

UCF50. To compensate for the random sampling, we repeated every experiment 3 times,

and reported average accuracy and standard deviation over 3 runs. For all descriptors, we

simply concatenated bag-of-features vector from root channel and part channel without

weight. Same strategy was applied to combine MBHx and MBHy channels. However, to

combine multiple descriptors, we used the weighted multichannel approach (c.f . Eq. 5.4).

Unless stated otherwise, the optical flow was computed with Farnebäeck’s algorithm [23]

for a good trade-off between speed and accuracy.

5.5.1 Evaluation of GBH descriptor

We performed a number of experiments with both BoF and FV to evaluate the proposed

GBH descriptor.



Local Feature Descriptors: A Multi-channel Approach 83

GBH descriptor with bag-of-features

Table 5.1 shows the performance comparison of the GBH descriptor and other local

descriptors. The evaluation was performed in a common experimental setup. We used

the default parameters as in Section 5.4.4, and randomly chose 10K features (10K root

patches + 80K part patches) from each clip with up to 160 frames.

The GBH descriptor gives surprisingly good results by itself, with 38.7% on HMDB51

and 68.5% on UCF101. It outperforms HOG, HOG3D and HOF descriptors on both

datasets. However, the MBH descriptor outperforms all other descriptors by a large

margin. We also evaluated the combination of GBH with HOG or HOF descriptor (the

combination was applied without weight). The results consistently show improvement

when combining two descriptors.

We further analyzed the computational complexity of the feature extraction stage for

all descriptors. The experiments were performed on UCF101 dataset. The computation

time was estimated on an Intel i7-3770K PC with prototype implemented in C++. In

order to avoid built-in multi-core processing of OpenCV library, we set only one core

active @ 3.5Ghz in Bios, and disabled both Hyper-threading and Turbo-boost. For all

experiments, 10K features were randomly sampled from each clip. The detail results are

shown in Table 5.2. As expected, the GBH is fast to compute, with similar complexity

as that of HOG. Even with simplified version, the extraction of HOG3D is relatively

expensive given the fact that it involves quantization cost with polyhedron. The flow

based descriptors, HOF and MBH, are more expensive due to the dense optical flow

estimation. As resolution increases, there is more increased cost on HOF and MBH

descriptors.
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Smoothing
HMDB51 UCF101

HOG HOG3D GBH HOG HOG3D GBH
Yes 29.4%±0.6 37.8%±0.6 44.4%±0.3 60.6%±0.2 64.5%±0.9 74.6%±0.3
No 30.0%±0.3 38.2%±0.3 40.2%±0.7 61.2%±0.5 64.7%±0.4 73.0%±0.6

Table 5.3: The performance impact of Gaussian smooth on different descriptors. The
experiments are performed on the video with original resolution.

Resolution
HMDB51 UCF101

HOG HOG3D GBH HOG HOG3D GBH
364 x 240 30.0%±0.3 38.2%±0.3 44.4%±0.3 61.2%±0.5 64.7%±0.4 74.6%±0.3
182 x 120 27.5%±0.5 36.5%±0.2 44.7%±0.3 55.4%±0.4 63.6%±0.2 74.2%±0.4

91 x 60 23.7%±0.4 33.0%±0.7 45.3%±2.4 50.5%±0.4 56.6%±0.7 73.6%±0.9

Table 5.4: The performance comparison of three gradient-based descriptors in different
spatial resolutions.

GBH descriptor with Fisher vector

We first evaluated the impact of the Gaussian smoothing. The detail results are shown

in Table 5.3. If smoothing is “Yes”, a Gaussian filter was applied on all frames before

computing the gradients. All the experiments were performed on original video at full

resolution. Note that for color images (in this and next experiments), we simply chose

the color channel with the largest value.

For HOG and HOG3D descriptors, we observed slight performance drops on all cases

when applying Gaussian filter before computing gradients. The similar performance

drop was reported on HOG [19] on human detection with smoothing. The performance

of GBH, on the other hand, increased significantly by pre-smoothing, with 4.2% on

HMDB51 and 1.6% on UCF101. Such a performance increase may be explained by the

fact that the second order derivatives are more sensitive to noise. Nevertheless, this

could be a good property given that the sub-sampling with reduced spatial resolution

works similar as Gaussian smoothing in a sense of losing high frequencies. Thus, the
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Sampling # Resolution
Speed (frames per second)

Accuracy
Integral video Sampling FV encoding Total fps

4K 182 x 120 52.7 267.6 89.3 29.0 43.3%

10K 182 x 120 52.9 108.4 37.5 18.3 44.7%

Table 5.5: Average computation speed on a Toshiba Netbook with an AMD-E350 cpu
and 2GB memory. The experiments are performed on HMDB51 dataset. K = 128
codewords per channel is used for FV encoding. 4K and 10K features are sampled in two
different experiments. The dimensionality reduction process is included in FV encoding.

performance could be preserved even if the spatial resolution is reduced.

Table 5.4 shows the performance comparison of three gradient-based descriptors in

different spatial resolutions. For HOG and HOG3D descriptors, the performance is con-

sistently and significantly decreased for both HMDB51 and UCF101 when the spatial

resolution is reduced. Such results are consistent with observations in [123] on Holly-

wood2 dataset. As resolution is reduced, the background noise gradients could confuse

and blur the human gradients.

For GBH descriptor, one very important observation is that the accuracy is preserved

on HMDB51 and with little (1%) loss on UCF101 when the spatial resolution is reduced

by a factor λ = 4. This leads to huge benefits in efficiency considering that the sub-

sampling in resolution by λ results in a reduction by a factor of λ2 on both number of

processed pixels and memory usage. Kläser et al . analyzed in HOG3D [42] that using

integral video can result in a factor of z ≈ 21 saving in memory usage than spatio-

temporal “pyramids”. Our method could have far less memory usage when processing

video at low resolution.

When processing video at a very low resolution, we observed a relatively high standard

deviation on performance for both HMDB51 (2.4) and UCF101 (0.9). This is probably

due to the fact that the random sampling was performed on the very low resolution. At

such low resolution, a sampled ST patch could have large differences even with a one pixel
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Dataset Descriptor Root Parts Root + Parts

HMDB51

MBH 48.8% 49.9% 51.5%
HOF 33.3% 33.5% 35.5%
HOG 25.0% 26.4% 28.8%
GBH 34.5% 36.2 % 38.8%

UCF101

MBH 74.6% 75.7% 77.1%
HOF 57.8% 59.0% 61.8%
HOG 50.1% 52.4% 54.1%
GBH 63.2% 65.6% 68.5%

Table 5.6: Evaluation of our system on the HMDB51 and UCF101 datasets. Root uses
only a root model with 10K patches at half spatial size of the processed video. Parts is a
part-based system with 80K patches at full spatial size, but no root model. Root+Parts
includes both root and part models, which are combined as two channels.

displacement in its location. At this point, it is unclear why the GBH descriptor performs

better in very low spatial resolution (91 x 60) on HMDB51 than on UCF101. Our

hypothesis is sampling with high density on clips with fewer frames may include denser

information, which could provide bias benefits for short clips on HMDB51. Moreover,

the HMDB51 has a quality standard of a minimum of 60 pixels in height for the main

actor, which may improve the robustness when the spatial resolution is greatly reduced.

Since FV uses fewer quantization cells than BoF (K = 128 vs . K = 4000), it is

much faster to perform feature encoding. To further demonstrate the efficiency of GBH

descriptor, we tested its runtime on a Toshiba Netbook with an AMD-E350 CPU and

2GB memory. We processed the video at half the original video resolution. Table 5.5

lists average computation speed on an AMD-E350 CPU, which shows a high processing

frame rate. This proves the high efficiency of GBH descriptor, and demonstrates its

potential for real-time applications as well as mobile recognition.



Local Feature Descriptors: A Multi-channel Approach 87

5.5.2 Evaluating the effectiveness of LPM

We also investigated the effectiveness of the local part model by evaluating its different

components on MHDB51 and UCF101 datasets with four descriptors. We computed the

part models at the half spatial resolution of the original videos, and the root model at

1/4 resolution. The 10K patches were randomly sampled for root model and 80K patches

for part models. Table 5.6 summarizes results of different models. For all descriptors, it

shows that the use of both root and parts can improve the recognition accuracy, which

demonstrates the effectiveness of our local part model. In addition, the part models show

better performance than root model in all experiments. This is expected as there are 8

times as many part patches as root ones, and the root patches are sampled at half the

resolution of the video on which we compute the part patches.

With only root model and MBH descriptor, we obtain 48.8% on HMDB51 and 74.6%

on UCF101, which outperform many sophisticated methods in the literature (c.f . Ta-

ble 5.11). Such high performance is achieved on 1/4 of the spatial resolution of the video.

When computing the root model, we reused the optical flow computed from part model

by down-sampling it into half. As analysed before, such an approach may reduce the

loss of the deep sub-pixel accuracy, and therefore preserve the performance. Also, the

very high sampling density may provide more information for classification, especially

for clips with few frames (some clips from HMDB51 only have 19-25 frames).

5.5.3 Resolution influence of root model

For root model, recall that we reused the dense optical flow computed with full resolution

from part models. Such an approach has the benefit in reducing the loss of the deep sub-

pixel accuracy than computing the optical flow from low resolution frames directly.

To investigate the performance influence of such an approach, we performed two



Local Feature Descriptors: A Multi-channel Approach 88

Dataset
MBH HOF

Before After Before After
HMDB51 48.8% 46.8% 33.3% 32.3%
UCF101 74.6% 70.3% 57.8% 55.0%

Table 5.7: Comparison of performance on the optical flow computation for root model
“Before” and “After” sub-sampling. “Before” stands for computing optical flow at full
resolution and then down-sampling it for root model, while “After” computes the optical
flow on the down-sampled frames.

Optical flow methods HMDB51 UCF50 UCF101
Farnebäeck [23] 51.5%±0.3 87.7%±0.2 77.1%±0.4
Dual TV L1 [135] 56.4%±0.2 90.1%±0.3 81.5%±0.1

Table 5.8: Comparison of average accuracy with MBH descriptor built on two different
optical flow algorithms, Farnebäck and Dual TV L1.

groups of experiments. In the first one, we computed optical flow from the full resolution

video. Then, we down-sampled the optical flow images into half size, and used them

to compute MBH and HOF descriptors. We refer to this approach as “Before”. In the

second “After” experiments, we computed the optical flow on the down-sampled frames.

We set all other parameters same, and computed the performance with only root model.

In comparison to “After”, when computing optical flow from the full spatial resolu-

tion, we achieved 2% and 4.3% improvements in mean accuracy on HMDB51 and UCF101

datasets for MBH descriptor, respectively. For HOF descriptor, the performance also im-

proved on both cases. The detail comparison is shown in Table 5.7. Such results are

consistent with observation on optical flow influence in [20], which has reported that even

1/10 of a pixel of flow values’ rounding causes the performance to drop significantly.
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5.5.4 Influence of different optical flow algorithms

Motion analysis algorithms have been developed for decades, but the state-of-the-art

optical flow methods do not produce the expected results for many real-world video

sequences [56]. In last section, we have shown that the accuracy of optical flow has

large impact on the recognition performance. As discussed on Section 5.2.2, there may

be potential benefits of using state-of-the-art optical flow algorithms. In this section,

we will evaluate performance impact when using an efficient Farnebäeck optical flow

algorithm and using a discontinuity-preserving optical flow method, Dual TV L1 from

Zach et al . [135].

Table 5.8 shows the performance comparison on MBH descriptor built on two dif-

ferent optical flow methods, Farnebäeck and Dual TV L1. For both methods, we use

the OpenCV implementation with default parameters for Dual TV L1 and optimized

parameter for Farnebäeck. On all three datasets, the results of the MBH descriptor from

Dual TV L1 achieve significantly better performance. One possible explanation for such

improvement is that the Dual TV L1 estimates more accurate flow field with both over

human motions and at motion discontinuities.

For HOF descriptor, one very interesting observation is that the performance drops

by around 1-2% when using Dual TV L1 method. Brkić et al . [13] also observed slight

performance penalty with Dual TV L1 than with Farnebäeck method when using HOF-

like descriptor. One possible reason is that Farnebäeck estimates more smooth flow

field, whereas Dual TV L1 and LDOF produce more sub-pixel accuracy with noisy global

motions. Another possible explanation is that Dual TV L1 and LDOF may also estimate

more accurate camera motion, which offsets the benefit of the more accurate human

motions. Compared with MBH, the HOF has no mechanism to reduce the camera

motion. The results in dense trajectories [121] show higher (around 4%) performance
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penalty for HOF when using LDOF. One possible explanation is that the trajectory

tracking in dense optical flow field may also be affected by noisy global motions. The

MBH descriptor in their case is also impacted by trajectory tracking from noisy global

motions. Unlike dense trajectories, we don’t track points over dense optical flow field,

and the optical flow estimation can only affect the MBH and HOF descriptors alone.

Therefore, the MBH descriptor in our system can benefit the improvement over dense

optical flow estimation more directly.

Note that the Dual TV L1 is computationally expensive. However, Zach et al . re-

ported a real-time GPU implementation in [135].

5.5.5 Evaluation of the improved LPM

As discussed in Chapter 5.3, our previous approach in concatenating the histograms

of root and parts into a single vector may result in suboptimal performance due to

the large codeword quantization errors. Therefore, we proposed an improved LPM by

treating the root and 8 parts as two separate channels. To validate this hypothesis,

we performed experiments with 4 descriptors on three datasets. For all experiments,

we fixed all parameters except to treat root and parts as single channel or separate

channels. In addition, for single channel approach, we used 4K codewords for HOG,

HOF, GBH descriptors, and 8K codewords for MBH descriptor. For the improved LPM

with separated channels, we used 4K codewords for HOG, HOF, GBH, MBHx and MBHy

descriptors.

Figure 5.4 illustrates the performance comparison of our previous single channel LPM

and the improved LPM with separated channels. In the figure, “1C” stands for single

channel approach, while “2C” represents the separate channel approach. On all three

datasets, we observe consistent recognition performance improvement over all descriptors
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Figure 5.4: Performance comparison of single channel LPM and separated channel LPM
on different datasets. The average accuracy in percentage (with the standard deviation
denoted by error bar) is plotted against different descriptors.

with separate channel LPM. The most significant gains are obtained with MBH descrip-

tor, namely, 3.3% on UCF50, 5.9% on UCF101 and 4.2% on HMDB51. The similar

improvement is also observed on GBH descriptor, with an increase of 3.8% on UCF50,

2.9% on UCF101 and 5.8% on HMDB51.
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Dataset Method
Descriptor

HOG HOF HOG3D MBH Combined

HMDB51
OVO 24.8% 33.5% 34.7% 43.0% 47.8%
OVA 25.7% 34.4% 36.3% 47.2% 54.8%

UCF101
OVO 51.1% 58.7% 59.1% 66.9% 73.8%
OVA 52.2% 60.0% 62.9% 71.2% 77.1%

UCF50
OVO 58.6% 69.7% 72.4% 80.1% 83.3%
OVA 62.6% 74.7% 76.1% 84.4% 88.5%

Table 5.9: Comparison of different multi-class SVM approaches, one-versus-one(OVO)
vs . one-versus-all(OVA).

5.5.6 Multi-class SVM: one-versus-one vs. one-versus-all

Support Vector Machines (SVM) is originally designed for binary classification. It can

be extended to multi-class classification by decomposing the multi-class problem into a

number of two-class problems, and applying a standard SVM for each of them. There are

two popular decomposition methods: one-versus-one(OVO) and one-versus-all(OVA).

The one-versus-one. For n classes, OVO constructs n(n − 1)/2 SVM classifiers.

The SVM models are learnt with data from any two of the all classes. After all models

are trained, the prediction is implemented by max-wins voting, with class label assigned

to the class with the largest vote from the models.

The one-versus-all. For n classes, OVA constructs n SVM models. The ith SVM

is trained with all of the examples from the ith class as positive labels, and remaining

examples from other classes as negative labels.

The one-versus-one strategy is often substantially faster than one-versus-all method.

In the literature, there are disagreements on which multi-class SVM performs better.

[5, 18, 33] reported better recognition performance with OVO, while others have shown

different results [69, 86]. For action recognition on large scale datasets, Jain et al . [35]

reported significantly better performance with OVA.
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Dataset Descriptor Bag-of-features
Fisher vector

K = 128 K = 256

HMDB51
MBH 56.4% 59.4% 60.7%
GBH 38.8% 43.9% 44.5%

UCF101
MBH 81.5% 84.7% 85.4%
GBH 68.5% 74.8% 75.7%

Table 5.10: Comparison of performance on feature encoding with bag-of-features and
Fisher vector.

A number of experiments have been performed to evaluate the OVA and OVO. We

used same parameters for OVA and OVO on all experiments. The single channel SVM

approach was used, with 4K codewords for HOG, HOF, HOG3D descriptors, and 8K

codewords for MBH descriptor.

The detail performance comparison of one-versus-one strategy and one-versus-all

strategy is shown in Table 5.9. For all three datasets, our experiments show signifi-

cantly better recognition accuracies when using OVA on all descriptors. Such results are

consistent with the recent report [35] on action recognition with large scale datasets.

5.5.7 BoF vs. FV

Table 5.10 presents the performance comparison of feature encoding with BoF and FV.

The Fisher vector consistently shows better performance than bag-of-features approach

on both MBH and GBH descriptors with either of the tested datasets. For FV with

K = 256, we observed around 4% performance improvement for MBH descriptor and

6− 7% for GBH descriptor. Such results are consistent with recent reports [106, 77, 121]

on action recognition. In all their respective results, they have shown better results by

applying feature encoding (e.g . Wang and Schmid [122] achieved improvement of 4% on

UCF50 and 5.1% on HMDB51 with FV over BoF). For FV, using more quantization cells

also results in better performance in all tests.
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Discussion: the main challenge in using FV is the resulting high dimensionality, which is

expensive in classification stage even by using linear SVM. For a D dimension descriptor

(D = 32 + 64 for GBH after applying PCA), the FV signature with K codewords (K =

256 and K = 128 in our experiments) has an increased dimension of 2KD. In comparison

with BoF (often with K = 4000 codewords), the FV representation is not much as

a “Compact Feature Set” as the claim made in [77]. The original FV approach [36],

however, reduced the high dimensional FV into a compact low dimensional vector and

observed improved performance on image search. We did use PCA to reduce the FV

from d = 24576 (GBH) or d = 49152 (MBH) to d = 3570, and observed identical

classification results on HMDB51, with a classification speed-up of approximately an

order of magnitude. Note that there are only 3570 training samples from HMDB51, and

the largest dimension after applying PCA (with retained Variance = 1) is 3570. For a

comprehensive study on the effect of PCA on action recognition, more training data are

desirable.

5.5.8 Comparison to state-of-the-art

Table 5.11 shows the comparison of our method with the state-of-the-art. Most state-

of-the-art methods use multiple descriptors and apply some feature encoding algorithms

to improve the performance. For example, Jain et al . [35] combined five compensated

descriptors and applied VLAD representation. Wang and Schmid [122] used four de-

scriptors and Fisher Vector encoding. They also improved the performance with human

detection and extensive camera motion compensation.

We used the parameters listed in Section 5.4.4. For all descriptors, we used 4000 code-

words (BoF) and K = 128 (FV) for both root and part channels. For MBH descriptor,

we used Dual TV L1 [135] method to compute optical flow. For efficiency, we used the



Local Feature Descriptors: A Multi-channel Approach 95

Method HMDB51 UCF101 UCF50
HMDB51 [45] 23.2% – 47.9%
ActionBank [91] 26.9% – 57.9%
MIP [43] 29.17% – 72.68%
Subvolume [93] 31.53% – –
GIST3D [104] 29.2%∗ – 73.7%∗

UCF50 [85] 27.02%∗ – 76.90%∗

UCF101 [105] – 43.9% –
MRP [38] 40.7%∗ – –
DCS [35] 52.1%∗ – –
Actons [137] 54.0%∗ – –
FV coding[77] 54.8%∗ – 90.0%∗

Trajectories [122] 57.2%∗ 85.9%∗ 91.2%∗

O
u
rs

BoF

HOG 28.4%±0.6 54.1%±0.8 67.8%±0.5
HOF 35.5%±0.2 61.8%±0.2 75.9%±0.1
GBH 38.8%±0.3 68.5%±0.2 79.2%±0.4
MBH 56.4%±0.2 81.5%±0.1 90.1%±0.3
Combined 60.6%±0.1∗ 84.5%±0.1∗ 91.5%±0.2∗

FV
GBH 43.9%±0.3 74.8%±0.4 83.4±0.3
MBH 59.4%±0.1 84.7%±0.1 90.7±0.2
GBH+MBH 62.2%±0.1∗ 86.6%±0.2∗ 92.1±0.1∗

Table 5.11: Comparison of average accuracy on HMDB51, UCF101 and UCF50 with
state-of-the-art methods in the literature. Those marked with ∗ are results with combined
descriptors. Leave One Group Out Cross-validation is used for UCF50.
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original datasets’ video resolution to compute the HOG descriptor, and down-sampled

them into half the resolution to compute other descriptors. For bag-of-feature approach,

we combined all 4 descriptors (as shown in Table 4.5) with the weighted histogram in-

tersection kernel (c.f . Eq. 5.4), which showed about 0.5% improvement in performance

than with no weights. For Fisher vector, we simply concatenated MBH and GBH feature

vectors and use a linear SVM for classification with the fixed parameter of C = 32.5.

The one-versus-all strategy was used for multi-class SVM.

On HMDB51, our method achieves 59.4% on single MBH descriptor (FV) and 62.2%

on two combined descriptors, which outperforms the state-of-the-art result (57.2% [122])

by 5%. With MBH computed from efficient Farnebäeck optical flow method, we obtain

57.4% (BoF) on 4 descriptors, which also exceeds state-of-the-art results. Note that our

results are obtained from two descriptors with Fisher vector. The K = 128 is used in

the experiments. If using K = 256, we achieve 63.2%.

On UCF50, we achieve 91.5% with four descriptors when using bag-of-features ap-

proach. By using Fisher vector, we obtain 92.1% with only two descriptors. Both of

these results surpass the state-of-the-art (91.2% [122]). On UCF101, an extension of

the UCF50, we report 84.7% with MBH descriptor and 86.6% with two descriptors (FV

encoding). It is slightly outperformed the state-of-the-art result [122] (85.9%), which

is obtained with four descriptors and Fisher Vector encoding as well as extensive cam-

era motion estimation. Our method is based on pure random sampling with no extra

cost on feature detection and motion compensation. We expect better performance with

advanced motion compensation.

The confusion matrices for three tested datasets are illustrated in Figure 5.5, Fig-

ure 5.6 and Figure 5.7.
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Figure 5.5: Confusion matrix for HMDB51 dataset obtained with 4 descriptors. The
confusion matrix is based on the results reported in Table 4.5.
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Figure 5.6: Confusion matrix for UCF101 dataset obtained with 4 descriptors. The
confusion matrix is based on the results reported in Table 4.5.
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Figure 5.7: Confusion matrix for UCF50 dataset obtained with 4 descriptors. The con-
fusion matrix is based on the results reported in Table 4.5.
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5.6 Discussion

In comparison to other methods, the LPM works better on more challenging HMDB51

than UCF101 and UCF50. One possible factor is the use of high sampling density with

random sampling. The HMDB51 has an average of 94.8 frames per clip with many clips

at the range of 19-30 frames, whereas the UCF101 has 186.5 frames per clip on average.

Thus, the other methods may have difficulty in generating sufficient number of features

for short clips on HMDB51. As discussed in Chapter 4.4, this could be an advantage

of using random sampling instead of dense sampling. Nevertheless, processing videos at

low resolution may provide bias benefits for short clips on HMDB51 as sampling with

high density on clips with fewer frames could generate more information.

Our method demonstrates very good performance on large scale challenging datasets

with more realistic scenarios. One possible explanation for such good performance may

reside in our random sampling conducted on an extremely dense sampling grid. For 90K

(10K root + 80K parts) patches per video on HMDB51, we have around 900 patches per

frame, which are more than those in [121]. However, our sampling density is much higher

because the sampling is performed on one quarter size of that in [121]. Compared with

interest point detectors, we have more patches sampled from the test videos, and with

uniform random sampling our method also includes correlated background information.

Such background information may improve discriminative power for recognition on real-

life videos.
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5.7 Conclusions

A new local 3D descriptor based on spatial-temporal gradient was proposed on the pur-

pose of capturing both local static appearance and motion information. It significantly

outperformed popular HOG descriptor with similar high computational efficiency. We

also explored the potential benefits on using state-of-the-art optical flow algorithms to

improve the performance with MBH descriptor.

We further improved the performance of Local Part Model through the use of multi-

ple channels. For multi-class SVM, we experimentally showed that one-verse-all strategy

outperformed one-verse-one strategy on human action recognition with large scale real-

istic datasets. A new method based on histogram intersection kernel was proposed to

combine multiple channels of different descriptors. Our system outperformed state-of-

the-art results on three large challenging realistic datasets, namely, HMDB51, UCF50

and UCF101.



Chapter 6

Fast Action Recognition

6.1 Introduction

We have proposed a Local Part Model, and our method achieved state-of-the-art perfor-

mance on realistic large scale datasets when combined with random sampling method

applied on a very dense sampling grid. Under the local part model, a feature consists

of a coarse global root patch and several finer overlapped part patches. To improve the

efficiency of LPM computation, two integral videos are computed, one for the root model

at half resolution, and another one for the part models at full resolution. The descriptor

of a 3D patch can then be computed very efficiently through 7 additions/subtractions

multiplied by the total number of root and parts. Apart from descriptor quantization,

most cost associated with feature extraction is spent on accessing memory through the

integral videos.

Because it uses random sampling, the method does not require feature detection,

which greatly improves processing speed. One LPM feature includes a root patch and a

group of part patches. The histograms from all patches are concatenated into one vector

that is 9 (1 root + 8 parts) times the original feature dimension. In last chapter, we

102
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substantially improved this approach by treating the root and 8 parts as two separate

channels. Nevertheless, the concatenated vector from part channel is 8 times the original

feature dimension. Such high feature dimensionality results in a high computational cost

for bag-of-features matching, which is the most computationally expensive component

in our method.

In this chapter, we aim to improve the efficiency of our human action recognition

system, mainly by reducing the computational cost in bag-of-features matching. To this

end, we want to investigate two strategies:

• Reducing the high feature dimensionality with Principal Component Analysis (PCA).

The description vectors are compared using the Euclidean distance. Considering

we need to match 10K features with 4K/8K codewords for each clip, the reduction

in each feature’s dimensionality could result in substantial benefits in computation

efficiency.

• Applying fast approximate nearest neighbour search (FLANN). Compared with

linear, brute-force search, FLANN can provide large speed-ups at the cost of the

method not always returning the exact match.

6.2 PCA-based LPM

Principal Component Analysis (PCA) is a standard tool for dimensionality reduction

and has been used to solve various computer vision problems, such as feature descriptor

[41], object classification [55], face recognition [17], image representation [36], and human

detection [19, 96]. Our PCA dimensionality reduction is similar to PCA-SIFT [41]. In

their work, Ke and Sukthankar applied PCA on keypoint image patches, and found

that it improved the feature matching speed and outperformed SIFT for keypoint based
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matching. Note, however, that a different observation on performance was reported in

[68].

For Local Part Model, we randomly sample 90K 3D patches ( 10K “root” patches

and 80K “part” patches) from every clip with up to 160 frames. The root and parts are

either concatenated into one vector or treated as two separate channels, and each patch

is represented by a local descriptor. However, the concatenated feature vector from a

group of 8 part patches has 8 times the dimension of the used descriptor. Using more

feature points generally leads to better recognition performance [120, 123]. LPM controls

the complexity of a very high sampling density by representing a group of sampled part

patches with a single high dimension vector. Because the root patch and its 8 part

patches are sampled from overlapping volumes, they tend to produce a certain amount

of redundant information. LPM is therefore a good candidate for feature reduction.

Let d = D0 be the feature dimension of the descriptor we use. For the approach with

separate channels, one LPM feature has two channels, with 1 root patch at dimension of

dr = d = D0 and 8 part patches at dimension of dp = 8 × d = 8 × D0. We empirically

found that, without noticeable performance penalty, the root dimension can be reduced

by half and the part dimension can be reduced to 1/8 at the same time. After applying

PCA, the root channel dimension is d′r = 1
2
D0, and part channel dimension is d′p = D0,

which is equal to the dimension of an original descriptor. In comparison with other

methods [41, 36, 121], which reduce the feature dimension by half, our approach uses a

much higher reduction rate (1/8) for the part model.

There are some advantages of using PCA. On the efficiency side, reducing the dimen-

sionality of the feature has obvious benefit. In a bag-of-features approach, the description

vectors are compared using the L2 distance. Considering we need to match 10K features

with 4K words for each clip, the reduction in dimensionality to 1/8 results in significant
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benefits in computational efficiency. On the performance side, there may be positive

impact and practical meaning when applying robust feature encoding strategies, such

as Fisher vector(FV) encoding [36] or VLAD encoding [36], a simplified version of the

Fisher vector. In recent evaluations, both FV [106, 77, 121] and VLAD [106, 35] showed

improved performance over standard bag-of-features methods. Fisher vector extends the

BoF by encoding high-order statistics (first and, optionally, second order) between the

descriptors and a Gaussian Mixture Model (GMM). Due to the fact that decorrelated

data can be fitted more accurately by a GMM with diagonal covariance matrices, it is

favourable to apply PCA dimensionality reduction on Fisher vector. In addition, for a

D dimension descriptor, the FV signature with K words has an increased dimension of

2DK (VLAD has a dimension of KD). Therefore, reducing the feature dimension makes

it more appealing to apply Fisher vector or VLAD on local part model.

6.3 Bag-of-features matching

For bag-of-features approach, a standard step is vector quantization which matches ex-

tracted features to their nearest visual words, often by Euclidean distance. It can be

defined as follow: given a set of codewords W = {w1, w2, ..., wn} in a feature space X, for

a new query feature q ∈ X, find the codeword in W that has minimal Euclidean distance

to q. Thus, the most computationally expensive component of our approach consists of

searching for the closest codeword given a high-dimension query feature.

Brute-force matching produces least quantization error with linear complexity. Given

the high feature dimension and large databases, the brute-force search is too costly. In

our case, the concatenated feature vector contributes to increased dimensionality of 8

times the original descriptors. The BF matching with such high dimension features is

the most time consuming part in our system, and the real-time performance is only
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achieved through the recourse to multi-core CPU and GPU processing (as shown in

Chapter 4).

PCA feature reduction can reduce computational cost of brute-force matching by

reducing the feature dimensionality. As analysed in Section 6.2, the dimensions of root

descriptor and part descriptor are reduced into 1/2 and 1/8, respectively. Such strategies

could result in 2 and 8 times speed-ups in feature matching process for the respective

root and part models, plus extra costs in PCA projection.

To apply PCA projections, we compute the covariance matrix based on all 4000/2000

visual words computed from k-means. Then, the eigenvectors associated with the most

energetic eigenvalues from the covariance matrix are stored on memory and used as

the projection matrix M for dimensionality reduction. To use PCA for bag-of-features

approach, we first apply PCA with the projection matrix M on 4000/2000 visual words

(performed on each channel separately) to reduce root vector from 64 to 32 and part

vector from 512 to 64. The vectors of both root and part channels from sampled ST

patches are also reduced to 32 and 64, respectively, and then matched (brute-force) to

the codewords with reduced dimensionality.

Fast approximate nearest neighbour search is a very important technique to han-

dle large databases in computer vision applications. Such approximate algorithms can

be orders of magnitude faster than linear, brute-force matching search. However, as

an efficient approximate search method, it often compromises performance due to the

approximation error.

The classical kd-tree algorithm [25] is the most widely used algorithm for nearest

neighbour search. It divides the data in half at each level of the tree on the dimension

for which the data shows the largest variance. It is efficient in low dimensions. Silpa-

Anan and Hartley [102] improved the kd-tree with randomized kd-trees by choosing
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Dataset # of words
Descriptor

HOG HOF GBH MBH Combined

HMDB51
2K words 26.4% 35.3% 37.0% 50.0% 56.0%
4K words 28.4% 35.5% 38.8% 51.5% 57.4%

UCF101
2K words 53.9% 59.6% 67.4% 76.3% 78.9%
4K words 54.1% 61.8% 68.5% 77.1% 81.2%

UCF50
2K words 67.9% 74.1% 77.8% 85.9% 88.8%
4K words 67.8% 75.9% 79.2% 87.7% 90.0%

Table 6.1: Performance comparison of 2K and 4K visual words with different descriptors.

the divided dimension randomly from the first d dimensions with the greatest variance.

Nister and Stewenius [74] used hierarchical k-means tree by splitting the points at each

level into K distinct areas with k-means clustering.

6.4 Experimental results

To demonstrate the performance and efficiency improvement of various BoF matching

methods, we evaluated our method on the same three large-scale action benchmarks as

last chapter. To ensure that our results are comparable, we used the same experimental

settings as those in Section 5.4 of last chapter, and restricted our changes to the bag-of-

features matching step.

For approximate nearest neighbour search, we used OpenCV implementation of Muja

and Lowe’s FLANN [71]. For all experiments, the runtime was estimated on an Intel

i7-3770K PC with prototype implemented in C++. In order to avoid built-in multi-core

processing of OpenCV library, we set only one core active @ 3.5Ghz in Bios, and disabled

both Hyper-threading and Turbo-boost. Thus, we only used a single core of the CPU.
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6.4.1 Influence of the codewords

We first evaluated the impacts on performance and efficiency when using different number

of codewords. Table 6.1 illustrates performance comparison of 2K and 4K visual words

with different descriptors. For all three datasets, we observed performance gains on all

descriptors when using 4K codewords instead of 2K codewords. Such results are expected

because more codewords yield less error from bag-of-words vector quantization.

Table 6.2 shows average computation speed for different BoF matching methods in

frames per second. The MBH descriptor is used with 2K and 4K words per channel,

and 10K features are sampled in all experiments. For PCA32-64, the computation cost

for PCA feature reduction is included. The results show that brute-force matching with

4K words takes more than twice as much time as that with 2K words. Applying feature

reduction with PCA (noted as PCA32-64 in the table) on brute force matching results

in over 2× speed-ups for 2K words and 3× speed-ups for 4K words. The FLANN can

speed up matching process with up to 18×, with most efficiency gains on 4K words.

One important observation for FLANN is that using more words has little additional

cost. Thus, it is favourable to have more codewords when using FLANN due to the

performance advantages of more codewords. Note that there is performance penalty for

FLANN method (c.f . Section 6.4.2).

Using more codewords normally improves the recognition accuracy at a cost of in-

creasing computational complexity for bag-of-words matching. Therefore, depending on

the applications, it is advisable to choose appropriate number of codewords for a good

compromise between speed and accuracy.
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Dataset # of words
BoF matching speed (fps)

Brute-force PCA32-64 FLANN

HMDB51
2K words 15.3 34.5 130.1
4K words 7.1 21.6 123.0

UCF101
2K words 22.1 59.3 192.8
4K words 10.7 34.2 185.5

Table 6.2: Average computation speed with single core for different BoF matching meth-
ods in frames per second. The MBH descriptor is used with 2K and 4K words per channel,
and 10K features are sampled in all experiments. For PCA32-64, the computation for
PCA feature reduction is included.

6.4.2 Evaluation of BoF matching methods

Fig. 6.1 and Fig. 6.2 illustrate the performance comparison of different BoF matching

methods on HMDB51 and UCF101 dataset with 2K and 4K visual words. First, in all

cases, there is a clear performance benefit in using 4000 visual words than 2000 visual

words. Also, in comparison to 4K words, there is more performance penalty for 2K

words in using FLANN or PCA instead of brute-force. One possible reason is vector

quantization with fewer words is more prone to quantization errors from approximation,

which may result in the similar ST patch being assigned to different visual words in

different clips. Such penalty is more evidential on HMDB51 dataset, which is more

challenge and therefore more sensitive to quantization errors.

For 4000 visual words, applying PCA to reduce dimensionality shows no performance

penalty except for 0.5 − 1.5% for HOF. As discussed in Section 6.2, this is a clear

advantage considering we reduce the high dimension part channel into its 1/8. We will

evaluate the computational efficiency of different BoF matching methods in Section 6.4.3.
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Figure 6.1: Performance comparison of different BoF matching methods on HMDB51
dataset with 2K and 4K visual words. The average accuracy in percentage (with the
standard deviation denoted by error bars) is plotted against different descriptors.

6.4.3 Computational efficiency

We also evaluated the computational complexity on all four descriptors. Brute-force,

FLANN and PCA methods were evaluated and compared. Except for codewords match-

ing, all other stages were same. For all experiments, 4K words were used. We used

the default parameters as in Section 5.4.4, and randomly chose 10K features (10K root

patches + 80K part patches) from each clip with up to 160 frames. The optical flow for

MBH and HOF was computed with Farnebäeck algorithm. The runtime for HOG was
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Figure 6.2: Performance comparison of different BoF matching methods on UCF101
dataset with 2K and 4K visual words. The average accuracy in percentage (with the
standard deviation denoted by error bars) is plotted against different descriptors.

estimated with the original datasets’ video resolution, and for other descriptors with half

resolution.

Table 6.3 summarizes the efficiency comparison at different stages for HMDB51 and

UCF101 datasets when using different descriptors. Applying feature reduction with PCA

on Brute Force matching results in over 3× speed-ups in “BoF matching” and 2× speed-

ups in total system process. The FLANN can speed up matching process by 18×. The

detail results are listed in Table 4.6. There are small speed differences between HMDB51



Fast Action Recognition 112

and UCF101. One explanation is that HMDB51 videos have variable resolution. Also,

it has fewer frames per video, and we sampled more features per frames on HMDB51 at

10K features per video.

In general, considering random sampling variation, there is no significant performance

difference among three matching methods. The PCA matching performs similar as Brute-

force. This is a very good result due to the fact that we reduced the dimension of part

channel to its 1/8. The largest penalty for FLANN is 0.8% on HMDB51 for MBH

descriptor. Our previous work [101] has shown larger performance drop for FLANN.

The possible explanation is that using separate root and part channel makes it more

robust to approximation errors.

Compared with existing methods, a major strength of our method resides in its very

high computational efficiency. We achieve state-of-the-art classification results by ana-

lyzing the videos at half the resolution (except for HOG descriptor). Also, by randomly

sampling ST patches, we are able to use integral video to accelerate the processing. In

case of [122], the use of curve trajectories limits it to use integral image only. It also em-

ploys very expensive camera motion compensation method and state-of-the-art human

detection algorithm to improve the performance.
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6.5 Summary

In this chapter, we focused on reducing the computational cost of the most computation-

ally expensive component of our system, namely bag-of-words matching. More specif-

ically, we applied fast approximate nearest neighbour search method and PCA feature

reduction technique to improve the efficiency of our approaches on action recognition.

The brute-force matching gives least quantization error with increased computational

cost given the high feature dimension and large databases. To improve the computational

efficiency of brute-force matching, the high feature dimension can be reduced by applying

PCA dimensionality reduction. Fast approximate nearest neighbour search (FLANN)

method is a very important technique to handle large databases in computer vision

applications. However, as an efficient approximate search method, it often compromises

performance due to the approximation error.

The evaluation shows that the feature dimensions can be reduced by 7/8 through

PCA while preserving high accuracy and speeding up matching process with up to 3×.

Applying fast approximate nearest neighbour search can result in as much as 18× speed-

ups at the cost of less than 1% performance loss for large codewords.



Chapter 7

Conclusions and Future Work

This thesis describes a fast action recognition system based on multiscale local part

model. The high performance is obtained by including both coarse global local root

model and high resolution part model with overlapping patches. Our system remains

high performance even after a significant dimensionality reduction of the feature vec-

tor to 96 (root 32 + part 64) dimension, i.e., of the same size as a single original

HOF/HOG/MBHx/MBHy vector. A random sampling strategy based on local part

model is also proposed for efficient action recognition. In addition, we introduce the

idea of using very high sampling density for efficient and accurate classification. Our

system is both efficient and accurate, yielding state-of-the-art results on realistic large

scale datasets, namely, 62.2% on HMDB51, 92.1% on UCF50 and 86.6% on UCF101.

7.1 Conclusions

The most notable conclusion is that, without losing efficiency, random sampling with

very high density can generate a large number of patches, and therefore achieves good

performance. With local part model, the high feature density can be obtained by per-
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forming sampling with root model at low resolution. Also, random sampling can generate

enough patches for clips with less frames, and at the same time improve efficiency by

processing less features for videos with long duration.

Another very important fact for the performance resides in the local motion descrip-

tors, which ideally should accurately encode both local structure and motion information.

As one of such descriptors, MBH has been shown to outperform other descriptors by en-

coding motion boundary and suppressing camera motion. Yet, a more accurate optical

flow estimation can significantly improve the MBH performance. In addition, better

performance can be achieved by combining multiple descriptors with complementary

information.

Finally, Low resolution does not necessarily lead to low performance. We are not

dealing with gait recognition and face recognition, which focus on differentiating dif-

ferent persons. For action classification the high performance resides in better gener-

alization (intra-class variation) and preventing overfitting. Similarly, a recent approach

[44] (ILSVRC-2012 competition winner) showed the best image classification results by

processing the images with lower resolution (256x256 by cropping and down-sampling).

The action recognition system normally includes three steps: how to extract spatio-

temporal features, how to represent them, and how to classify the video based on the

feature representations. For all the three steps, we have proposed solutions to address

the recognition challenges with follow key contributions:

Feature extraction. We have presented a novel multiscale local part model on the

purpose of maintaining both structure information and ordering of local events for action

recognition. The method includes both a coarse primitive level root model covering event-

content statistics and higher resolution overlapping part models incorporating structure

and temporal relations. Such an approach is robust to “out-of-ordering” problem of bag-
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of-features method, and thus shows good performance. Unlike Structured Models [26]

and Spatio-temporal Pyramids [50] which include global information, lPM adds weak

local low-level relationships to address unordered BoF method. Compared with existing

methods, a major strength of our method is fast processing. The high computational

efficiency is obtained by using integral video and fast random sampling. Since no feature

detection is required for random sampling, most cost associated with feature extraction

is spent on accessing memory through the integral videos. Experiments show very high

efficiency even by using very high sampling density, which leads to accurate classification.

Feature representation. We have proposed a new local 3D descriptor based on his-

tograms of oriented spatial-temporal gradients to encode both local static appearance and

motion information. It significantly outperformed popular HOG descriptor with similar

high computational efficiency. By using a discontinuity-preserving optical flow method,

we improved the performance of the state-of-the-art MBH descriptor significantly. We

further applied fast approximate nearest neighbour search method and PCA feature re-

duction technique to improve the efficiency of our approaches on action recognition. Our

experiments have shown that the feature dimension can be reduced by 7/8 through PCA

while preserving high accuracy and speeding up matching processing with low dimension

features. We also showed that applying fast approximate nearest neighbour search could

speed up the bag-of-words matching processing substantially at the cost of less than 1%

performance loss for large codewords.

Classification. A new method based on histogram intersection kernel was proposed to

combine multiple channels of different descriptors. In addition to the performance bene-

fit, this approach has the advantage of high efficiency by using the fast SVM method [60].

We further improved the classification performance of Local Part Model through the use
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of multiple channels. For multi-class SVM, we experimentally showed that one-verse-

all strategy outperforms over-verse-one strategy on human action recognition with large

scale realistic datasets. In comparison with current state-of-the-art methods, our sys-

tem achieved the best performance on three large challenging realistic datasets, namely,

HMDB51, UCF50, and UCF101.

We have shown that processing videos at low resolution can achieve good performance

with high efficiency. However, it may be more advisable to use full resolution for certain

applications. One example is recognizing group activities in the video with multiple

subjects, which normally include collective behaviours of individuals in the group. In

this case, there may be subtle inter-person interaction and very small human subjects.

Another example is fine-grained activity recognition [89], which tries to differentiate more

subtle activities with high inter-class similarity and high intra-class variation.

7.2 Future work

Our method is capable of recognizing realistic human action on large scale video. It

could also be applied in the context of action localization, abnormal detection and video

retrieval, etc. In the future, we would like to include the following improvements:

Extensions of local part model. We have shown the efficiency and effectiveness

of local part model for action recognition. In the future, we would like to evaluate the

benefits in using different combinations of parts, or parts with learnt weights. Additional

approach includes a compact representation of LPM model in computing root and parts

with same spatial resolution. We also want to explore the deeper part hierarchies (i.e.

parts with parts). Considering that the parts are built on the half resolution, we expect

the performance improves further when adding another layer of parts on full resolution
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videos. Our preliminary experiments on GBH descriptors with FV show that adding

another level of parts improves the performance from 44.7% to 46.0% on HMDB51.

Bias sampling with salient feature selection. Our random sampling strategy

achieved state-of-the-art performance with high efficiency. This could be improved by

using biased random samplers in order to find more discriminant patches. One aspect

is to reduce the computational complexity by selecting the minimal subset of the most

discriminative patches from our high density sampling grid, while at the same time

preserving performance. A second aspect is to improve the performance with salient

features. Some recent approaches have shown promises in using visual saliency on action

recognition. Such methods include selection by AdaBoost [57], viewer’s eye movement

[63, 117] and human detection [122] etc.

Improvement on descriptors. Our results show the importance of the features and

their descriptors on performance. The MBH descriptor shows excellent results for action

recognition. The possible improvements include camera motion compensation and the

evaluation of using more state-of-the-art optical flow methods. The gradient boundary

histogram (GBH) could be improved by removing the background information. One such

improvement is to only encode moving human gradients through using human detection

and human tracking. A robust background and foreground subtraction algorithm and

camera motion removal technique also could benefit the GBH.

Additional future works could include performing action recognition with explicit

context information, and evaluating different feature encoding methods (e.g . Fisher Vec-

tor and VLAD) for better performance. We also want to extend our local part model in

other applications, such as action localization and gesture recognition etc.



Appendix A

Glossary of Terms

weakly labelled video The video is only labelled as a positive or negative action class

without using any training ground truth information, such as humans, body-parts

or joint locations bounding box.

GBH A local descriptor based on pure spatio-temporal gradients. The gradients are

computed by applying simple 1-D [-1,0,1] Sobel masks on both x and y directions,

followed by a [-1, 1] temporal filter over two consecutive gradient images.

bag-of-features (BoF) Also called bag-of-words, which is originally applied to docu-

ment analysis. It can be applied to image/video classification, by treating visual

features as words. In computer vision, a bag of visual features is a vector of occur-

rence counts of a vocabulary of local image/video features.

Fisher vector (FV) A FV is a statistics encoding the distribution of a set of local

image/video descriptors. FV extends the BoF by encoding high-order statistics

(first and, optionally, second order) between the descriptors and a Gaussian Mixture

Model (GMM). Therefore, in addition to including codewords’ occurrences, it also

encodes additional information about the distribution of the descriptors.
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one-verse-one (OVO) Also called one-against-one (OAO), a method to perform multi-

class classification by decomposing the multi-class problem into a number of two-

class problems, and applying binary classification for each of them. For n classes,

OVO constructs n(n − 1)/2 SVM classifiers. The SVM models are learnt with

data from any two of the all classes. After all models are trained, the prediction

is implemented by max-wins voting, with class label assigned to the class with the

largest vote from the models.

one-verse-all (OVA) Also called one-against-all (OAA), a method to perform multi-

class classification by decomposing the multi-class problem into a number of two-

class problems, and applying binary classification for each of them. For n classes,

OVA constructs n SVM models. The ith SVM is trained with all of the examples

from the ith class as positive labels, and remaining examples from other classes as

negative labels.

support vector machines (SVMs) According to Wikipedia, “SVMs are supervised

learning models with associated learning algorithms that analyze data and recog-

nize patterns, used for classification and regression analysis. Given a set of training

examples, each marked as belonging to one of two categories, an SVM training al-

gorithm builds a model that assigns new examples into one category or the other,

making it a non-probabilistic binary linear classifier”.
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Cordelia Schmid. Aggregating local image descriptors into compact codes. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 34(9):1704–1716, 2012.

[37] Odest Chadwicke Jenkins and Maja J Mataric. Automated modularization of

human motion into actions and behaviors. Technical Report CRES-02-002, Center

for Robotics and Embedded Systems, University of S. California, 2002.

[38] Yu-Gang Jiang, Qi Dai, Xiangyang Xue, Wei Liu, and Chong-Wah Ngo. Trajectory-

based modeling of human actions with motion reference points. In ECCV, pages

425–438, 2012.

[39] Gunnar Johansson. Visual perception of biological motion and a model for its

analysis. Perception & psychophysics, 14(2):201–211, 1973.



Glossary of Terms 127

[40] Yan Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using

volumetric features. In ICCV, volume 1, pages 166–173, 2005.

[41] Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation for

local image descriptors. In CVPR, volume 2, pages II–506. IEEE, 2004.
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