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Abstract

Recently, automatic demographic classification has found its way into embedded ap-

plications such as targeted advertising in mobile devices, and in-car warning systems for

elderly drivers. In this thesis, we present a complete framework for video-based gender

classification and age estimation which can perform accurately on embedded systems in

real-time and under unconstrained conditions. We propose a segmental dimensionality re-

duction technique utilizing Enhanced Discriminant Analysis (EDA) to minimize the mem-

ory and computational requirements, and enable the implementation of these classifiers

for resource-limited embedded systems which otherwise is not achievable using existing

resource-intensive approaches. On a multi-resolution feature vector we have achieved up

to 99.5% compression ratio for training data storage, and a maximum performance of 20

frames per second on an embedded Android platform.

Also, we introduce several novel improvements such as face alignment using the nose,

and an illumination normalization method for unconstrained environments using bilateral

filtering. These improvements could help to suppress the textural noise, normalize the skin

color, and rectify the face localization errors. A non-linear Support Vector Machine (SVM)

classifier along with a discriminative demography-based classification strategy is exploited

to improve both accuracy and performance of classification. We have performed several

cross-database evaluations on different controlled and uncontrolled databases to assess the

generalization capability of the classifiers. Our experiments demonstrated competitive ac-

curacies compared to the resource-demanding state-of-the-art approaches.
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Chapter 1

Introduction

The human face is a rich source of information about the attributes of a person such as

identity, ethnicity, age, gender, attractiveness, and behavior. Thanks to their strong visual

capabilities and intelligence, human beings are able to accurately categorize these traits

from the facial appearance at a glance. In spite of the apparent simplicity of recognition

tasks in human beings, a great deal of effort has been put into developing computerized

systems which are capable of doing the same task with similar degree of simplicity and

accuracy. Essentially, the majority of these automatic facial trait classification systems are

based on computer vision, and can be employed in industrial applications such as surveil-

lance monitoring, security control, and targeted marketing systems.

However, despite the advent of novel classification methodologies, such vision-based

systems are still far from ideal compared to human abilities. Because, the recognition

rates of these classifiers are significantly compromised by the geometrical misalignment of

the face image, or the variations in environmental illumination. Notably, the illumination

problem in human beings is rectified by the sophisticated visual sensory receptor cells of

our eyes (i.e., Retina), and the powerful visual processor of our brain (i.e., Visual Cortex)

which under varying illumination conditions ensure a constant perception of true colors

(i.e., Reflectance). On the other hand, another problem with existing computer vision based

approaches for facial trait classification is the requirement for high performance computer

systems which prohibits the implementation of these classifiers on resource-constrained

and mobile platforms.
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In this thesis, we aim to investigate these outstanding challenges and present practical

solutions for implementing a video-based age and gender classifier on embedded systems

that is able to perform accurately in unconstrained environments. We introduce several

novel improvements for face alignment and illumination normalization, and propose an ef-

fective segmental dimensionality reduction technique for face image representation. Also,

robust discriminative classifiers for gender classification and age estimation are presented

which have very low computational and memory requirements. We have conducted a series

of evaluations on an embedded system, and obtained promising results that acknowledge

the accurate and real-time performance of our classifiers.

1.1 Motivation

The first academic articles on age and gender classification were published in the late 1990s,

and until the early 2000s the research was merely limited to academia. However, in recent

years there is a growing demand for automatic gender classification, and age estimation

systems in emerging industrial applications. For instance, following the increasing security

threats, the airports are considering security measures at the security checkpoints to collect

the ethnicity and gender information of the passengers, automatically. Another example is

the utilization of an automatic age estimation system to deny under-aged internet users to

access the web pages with inappropriate contents.

The targeted advertisement is another fast-growing technology that facilitates the ad-

vertising of consumer products to specific group of age or gender. In Section 2.1, we

provide a detailed list of potential applications for automatic demographics classification.

It should be noted that, these systems shall not be intrusive or require any cooperation from

the user. For example, using the voice or the fingerprint for recognizing the age and gender

is feasible, but these approaches are subject to security issues. This fact emphasizes the

importance of vision-based approaches for demographics recognition.

Recently, the emerging applications of automatic age and gender classification for mo-

bile devices have attracted the interest of researchers to develop robust classifiers that can

work under unconstrained illumination conditions in real-time with minimal resource re-

quirements. These mobile applications can range from the extra safety of cars for the

2



elderly people to human-robot interaction (see Section 2.1). However, the existing ap-

proaches for age and gender classification not only are sensitive to varying illumination

and misalignment, but also are memory and computation intensive such that the mobile

and other resource-limited platforms cannot afford their resource requirements.

These outstanding difficulties motivated us to conduct extensive research, and propose

viable improvements for normalizing the geometric and photometric characteristics of the

face images in unconstrained environments, and also enable the design and implementa-

tion of an accurate real-time age and gender classifier for embedded systems utilizing an

enhanced dimensionality reduction technique.

1.2 Objectives

In a nutshell, our main objective is to design and implement a video-based an accurate gen-

der classification and age estimation framework which can perform on embedded systems

in real-time and under unconstrained conditions. To put it differently, we break down this

main objective and list the resulting sub-objectives as follows:

1. Face Acquisition: The objective is to employ a fast face detector that is specifically

designed for video sequences, and is able to track the face without re-performing the

face detection for each input frame of the video, until the tracked face is lost. A facial

landmark detector shall be used to facilitate the face alignment using the position of

the key features of the face.

2. Face Image Normalization: In unconstrained environments the face is prone to vari-

ations in illumination which can result in incorrect classification. The same problem

occurs for different skin colors. Hence, the system shall normalize and standardize

the photometric characteristics without distorting the aging sings and wrinkles on

the face image. In fact, unlike the ethnicity recognition systems, the age and gender

classifiers would not need face skin color information for classification. Therefore,

the face image can be represented by a single-channel gray-scale format in order to

save memory and computational costs on embedded system.
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3. Face Representation: The changes in head pose and facial expression can lead to

displacement of the key features of the face (i.e., eyes, nose, and mouth) which we

refer to it as “localization errors”. These small errors disrupt the comparability of

the query images against the template face images in the training set. To counter

this problem, our objective is to exploit a multi-scale face representation strategy for

normalizing the geometric characteristics as well as extracting the most descriptive

features from the face image.

4. Dimensionality Reduction: The foremost goal of our work is to enable the imple-

mentation of an age and gender classifier on the resource-limited embedded systems.

This goal cannot be achieved using a large input training set and a high-dimensional

face representation. Therefore, a dimensionality reduction strategy shall be utilized

to reduce the redundancy in face representation without discarding the useful texture

information.

5. Age and Gender Classification: A supervised and discriminative classification ap-

proach shall be employed to identify the category of a new query image based on a

previously categorized training set of labeled face images. The age classifier shall be

able to classify four age groups: 0-19, 20-36, 37-65, and 66+.

6. Video-based classification: Unlike the regular still-image-based classification, the

still-to-still classification in video sequences is an ill-posed problem (see Section

4.5.2). Even a small and transient change in head pose, facial expression, or illumi-

nation can cause misclassification in each frame of the video. Therefore, the objec-

tive in here is to stabilize the results across multiple frames of the video by keeping

the best results until the tracked face is lost. In general, a real-time demographics

classifier shall be able to process 15 to 25 frames per second (fps).

7. Embedded System Considerations: In addition to dimensionality reduction for

compressing the data, a portable and self-contained binary file format shall be de-

signed to store the compressed training set information and all parameters of the

classifiers. No parameters shall be hard-coded in the system (Section 4.5.3).
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In Chapter 5, the evaluation results of these objectives and a detailed analysis of improve-

ments in terms of accuracy, computation, and memory requirements are presented.

1.3 Contributions

Essentially, the main contributions of this thesis to the methodology of age and gender

classification are based on minimizing the memory and computational requirements to en-

able a real-time performance on the resource limited embedded systems while achieving a

comparable recognition rate to the existing state-of-the-art but resource-intensive systems.

Figure 1.3.1 illustrates the general flow of the classification process in our system, and Fig-

ure 4.0.1 shows the full pipeline of our age and gender classification approach. Herein, we

list a summary of the contributions of this thesis as follows:

1. Correcting face alignment errors using the nose: Using the distance between the

eyes is a common approach to determine the cropping area of the face image. How-

ever, this approach is sensitive to the head’s yaw angle, causing localization errors

and degradation of recognition rate. We correct the misalignment using two landmark

positions on the nose to compensate for over-scaling problem (see Section 4.1).

Figure 1.3.1: A general block diagram to illustrate the flow of the classification process

5



2. Improving illumination normalization utilizing a sequence of filters: A common

gender misclassification problem is the false perception of gender from the androg-

ynous faces illuminated by a light source at certain positions (Figure 4.2.1). This

problem can misclassify a male as a female or vice versa. We propose to use the Pre-

processing Sequence (PS) approach [119] to fix this problem as well as the variations

of illumination in unconstrained environments. However, this method introduces tex-

tural noise in the face representation, and we present a practical solution to counter

this problem using bilateral filtering (Section 4.3.1).

3. Rectifying the localization errors in face representation: The small and transient

changes in facial expression or head pose can cause the displacement of key fea-

tures of the face image. We propose to employ a multi-scale face representation to

compensate for the localization errors (Section 4.3.1).

4. Minimizing the resource requirements using segmental dimensionality reduc-
tion: The redundancy and noise in feature vector can degrade the recognition rate.

Also, classification based on a large input feature vector is deemed impractical on the

resource-limited platforms. To conquer this limitation, we propose to utilize a seg-

mental Enhanced Discriminant Analysis (EDA) technique which not only reduces

the dimensionality, but also is able to retain only the most descriptive and discrim-

inative features of the face. The segmental nature of this technique prevents the

common problems of regular discriminant analysis methods such as overfitting and

singularity (Section 4.4).

5. Demography-based gender and age classification: The Support Vector Machine

(SVM) classifiers with non-linear RBF kernels are accurate, but are memory and

computation-intensive. In contrast, the linear SVM classifiers are fast, but not ac-

curate. However, our segmental dimensionality reduction technique allows the im-

plementation of SVM with RBF kernel on the resource-constrained systems which

otherwise is not possible using other approaches. Moreover, we introduce a general-

ization of demography-based gender and age classification which not only increases

the accuracy, but also speeds up the classification process (Section 4.3.1).
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It is worth noting that the contributions of our approach for age and gender classification

have been accepted to be presented in the 11th IEEE Embedded Vision Workshop of Com-

puter Vision and Pattern Recognition Conference (Boston, USA, 2015) [8].

1.4 Outline of the Thesis

We begin this thesis by reviewing the real-world applications, and the related works in

the field of age and gender classification in Chapter 2. Due to differences in the core

and evaluation methodologies, the age estimation and gender classification are reviewed

separately. In Chapter 3, we introduce the theoretical perquisites of our approach which

includes a general description of the common components of every facial trait classification

system. This chapter provides the necessary information in order to prepare for Chapter 4

that presents the details of our contributions to the methodology of video-based age and

gender classification for embedded systems.

In detail, Chapter 4 presents our improvements for the alignment and illumination nor-

malization of the face image, and also our novel strategies for segmental dimensionality re-

duction and demography-based gender and age classification. In Chapter 5, we explain our

embedded benchmarking setup used to evaluate our age and gender classifiers, and present

a thorough analysis of the accuracy in comparison to the state-of-the-art approaches. Fur-

thermore, we analyze the computational and memory requirements for the embedded sys-

tems. Finally, we conclude this thesis with a summary of presented material, and discuss

the limitations as well as the future work and potential strategies to improve our age and

gender classification system.
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Chapter 2

Literature Review

Up to the present time, the outstanding challenges of automatic demographics classification

are still attracting the interest of researchers. Particularly, the age and gender classification

using computer vision has been given increased attention in recent years. Many researches

have addressed the potential applications, and investigated the challenges that are associ-

ated with age and gender classification in real-world environments and videos. However,

there are very few studies that have investigated the demographics classification problem

for resource-constrained and embedded platforms. Regardless of the accuracy, most of the

existing solutions have prohibitively large time and space complexities. Therefore, they are

not able to perform in real-time on an embedded platform.

On the other hand, although age and gender classifiers have many components in com-

mon, they may be different in the core methodology of classification. In fact, there are

certain methodologies that are suitable only for either age or gender recognition such as

gait analysis for gender, or wrinkle analysis for age estimation. For this reason, we intend

to survey the age and gender recognition methods in two separate sections in order to ad-

dress the specific issues of each classifier in detail. In this chapter, we start by presenting an

overview of the potential applications of automatic age and gender recognition in Section

2.1. Next, various robust approaches for gender classification and age estimation are sur-

veyed in the Sections 2.2 and 2.3, respectively. Finally, we conclude this chapter in Section

2.4.
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2.1 Real-world Applications

In recent years, automatic demographic classification has found its way into industrial ap-

plications such as surveillance monitoring, security control, video indexing, and targeted

marketing systems. Many of such applications are based on computer vision and pat-

tern recognition algorithms. However, in addition to vision-based systems, there are var-

ious other approaches such as gender and age recognition using iris [10, 110], fingerprint

[125, 20], or audio [39]. But, the applications of these methods are limited since they re-

quire cooperation from the human. Also, they are intrusive and subject to privacy issues

or security concerns [44]. Therefore, we mainly consider vision-based applications in this

section.

As a matter of fact, implementing a demographic classifier on embedded platforms

can extend its usefulness to even a wider variety of applications in mobile services. For

instance, Feld et al.[39] applied automatic age recognition as a driver assistance system

for elderly people. This system could provide additional safety features such as sustained

in-car display of road traffic signs to compensate for decreased vision or reduced cognitive

capacity. In another study [11], a priori gender categorization of a face during face recogni-

tion is used to speed up the comparison process between the perceptual input and the facial

representation. This face recognition technique is convenient for computation-constrained

embedded platforms.

Recently, the importance of demographics classification in surveillance monitoring and

security control has become increasingly apparent. For instance, an age classifier can con-

trol the internet contents visited by under-aged user, and deny access to internet pages with

unsuitable material [76]. Another example is the collection of demographic information

such as ethnicity, gender, or age from the passengers at the security checkpoint to provide

the security personnel with the statistics of passengers [115].

Electronic Customer Relationship Management (ECRM) [102, 44] is another fast-growing

technology that facilitates marketing customized products and services based on customer’s

age or gender in an automatic and non-intrusive way. For example, an advertisement appli-

cation on a mobile phone can recognize the gender and age via the embedded camera and

display targeted ads for females (e.g., lipstick), males (e.g., wallet), or children (e.g., toys).

9



Another common application for demographics classification is the content-based in-

dexing which can be used for the retrieval of the face images from large databases [76].

Such automatic systems can index or annotate the demographic information of people in

images or videos [90]. Therefore, based on gender or age categories, they can carry out

content-based searching in the large image datasets, efficiently. The surveys in [90, 44]

provide a detailed list of other potential applications for gender and age recognition such

as human-robot interaction and biometrics.

2.2 Gender Classification

In here, we present a chronological survey of different gender classifiers. The majority of

these classifiers require high performance computer systems; nonetheless, we will investi-

gate the suitability of some classifiers for embedded systems. Generally, the vision-based

gender classification can be grouped in two categories: (1) faced-based, (2) gait-based. In

essence, several underlying components of these groups are different. For instance, the

face-based approaches need a face detection stage to extract facial features, but gait-based

methods require human detection algorithms to extract a binary silhouette of body for gen-

der recognition. Different approaches based on these categories are surveyed in [85, 90].

However, we are mainly concerned with the face-based methods.

Generally speaking, the face-based approaches can be divided into feature-based and

appearance-based methods [12]. Both of these categories can perform at global (holistic)

or local (regional) level. Many of early face-based methods used an appearance-based

model along with a multi-layer neural network method for classification. Perhaps, one of

the pioneer studies in this field was conducted by Cottrell and Metcalfe [29] in 1990. They

utilized a holistic representation of face called holons, as an input to a back propagation

neural network to automatically classify the human face, emotion, and gender.

At the same time, Golomb et al. [52] introduced the “SEXNET” framework which was

trained by a fully-connected back-propagation neural network. They evaluated this system

on 90 exemplars, and reported an average error rate of 8.1%. In both of these studies, the

faces were manually aligned. Later, a feature-based method in 1995 [99] proposed to ex-

tract a set of geometric features to feed a Hyper Basis Function (HyperBF) network. By
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excluding the hair from the faces they achieved 79% success rate from the HyperBF clas-

sifier. In the same year, Abdi et al. [2] experimented with a Radial Basis Function (RBF)

network that was preceded by an eigen-decomposition preprocessing step. They concluded

that the recognition results using a pixel-based input can be comparable to measurement-

based methods when the data are preprocessed.

Tamura et al. [118] employed neural networks to experiment on very low resolution

face images of size 8× 8 and achieved 93% classification rate. In [131], Gabor wavelets

were placed on the nodes of a elastic bunch graph model that was manually aligned on the

faces. The gender classification rate was 91.3% in this method. Lyons et al. [83] extended

this method by automatically aligning the graph, and exploited Principal Component Anal-

ysis (PCA) and Linear Discriminant Analysis (LDA) to classify gender. With 92% success

rate, their classifier was slightly better than the previous work in [131].

In a groundbreaking study in 2001, Viola and Jones [127] proposed a robust cascaded

face detector, which is by far an integral part of many face-based classifiers. The advent

of Support Vector Machines (SVMs) [17] and Adaboost [43] classifiers were also a major

break-through in pattern recognition research. In 2002, Shakhnarovich et al. [111] trained

two classifiers for gender and ethnicity recognition by combining the threshold Adaboost

and the cascaded face detector. Wu et al. [133] created a set of weak classifiers based

on Look-Up Tables (LUT) and Adaboost. They claimed that LUT Adaboost can model

the features that have multi-peak value distributions, unlike the threshold Adaboost in the

previous method [111]. Later, Makinen and Raisamo [85] acknowledged this claim in their

experiments.

One of the widely-cited approaches for gender recognition is proposed by Moghaddam

and Yang [88], and it was considered state-of-the-art for several years. Evaluating on a

public face image database and utilizing automatic face detection, face alignment, and

image normalization method were the important differences of their method compared to

others. They performed the evaluation using a Support Vector Machine (SVM) classifier

with Radial Basis Function (RBF) kernel on 1755 face images from the public FERET

database [96] and reported 96.6% gender classification rate.

Notably, their face detector was based on a maximum-likelihood estimation system

which is 1000 times slower than the cascaded face detector of Viola and Jones [127]. Also,
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Shakhnarovich et al. [111] pointed out that the same SVM classifier achieved 75.5% suc-

cess rate on the collected images from internet. On the other hand, in terms of computation

and memory requirements, the SVM+RBF classifier is known to be resource intensive and,

therefore, not appropriate for embedded applications.

Another important factor to increase the recognition rate is feature selection. In a com-

parison study [117], a genetic algorithm (GA) was exploited to select a subset from a feature

vector that was created using PCA. The subset was used to feed four different classifiers:

Bayesian, neural network, SVM, and LDA. The results of comparisons demonstrated the

superiority of SVM classifier with 95.3% gender recognition rate. Jian and Huang (2004)

[67] employed independent component analysis (ICA) to extract facial features and used

LDA to classify the gender. On manually cropped and normalized face images of FERET

database [96], they claimed 99.3% recognition rate.

In the same year, Costen et al. [28] evaluated a sparse SVM classifier on Japanese

face images, and achieved 94.42% classification rate. Sun et al. [116] proposed a novel

feature-based representation of the face image using the Local Binary Patterns (LBPs) [91]

for gender recognition. They experimented with both Self Organizing Map (SOM) and

threshold Adaboost classifiers and reported 95.75% classification rate. Soon after, Lian and

Lu [79] applied the SVM classifier on the same LBP feature vector and claimed 96.75%

success rate.

The active appearance model (AAM) is another feature-selection strategy that was em-

ployed along with the SVM classifier by Saatci and Town [106]. Considering that facial

expressions may affect the gender recognition results, they suggested to classify the facial

expression first, and based on the detected expression perform the gender classification.

However, this experiment decreased the success rate due to inadequate number of training

images for different facial expressions.

Baluja and Rowly (2007) [9] defined a set of pixel comparison operators to create weak

classifiers, and combined them into a single strong classifier using the Adaboost algorithm.

They claimed that the classification accuracy was even better than the SVM classifiers that

use the raw pixels for the input. The proposed pixel operators were fast to compute, and

this method could outperform SVM classifiers with 50x faster classification. Therefore,

it can be a good choice for real-time classification in resource-constrained and embedded
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systems. Also, they concluded that the impressive results from Moghaddam and Yang [88]

are biased due to evaluation on noise-free face images, and the existence of subjects with

the same identity in different folds of FERET database.

To investigate the effects of face alignment on gender classification, Makinen and

Raisamo (2008) [85] performed several experiments on 411 images from FERET database.

They compared the results of classification using the aligned and unaligned faces, and the

appearance-based and feature-based face representation models. They exploited different

classifiers and achieved the best results using the SVM classifier followed by threshold Ad-

aboost and Neural Network. In a novel research, Scalzo et al. [107] created a large feature

vector by fusing the Gabor and Laplace filters in a hierarchy, and used a genetic algorithm

for feature selection. They evaluate this classifier on 400 images and reported 3.8% error

rate.

Inspired from the optimization of Fisher’s discriminant ratio, Zafeiriou et al. [137] in-

troduced a variant of SVM classifier with RBF kernel, and compared it to regular SVM

classifiers. They achieved 2.8% overall error rate by evaluating the gender classifier on the

XM2VTSDB [86] commercial database. Another variant of SVM classifier with automatic

confidence (SVMAC) was proposed by Zheng and Lu [138], and was applied on a fea-

ture vector created from Local Gabor Binary Pattern (LGBP) [134]. They claimed that the

SVMAC variant is 3% more accurate than the regular SVM classifiers.

Aghajanian et al. (2009) [3] proposed a Bayesian framework for gender and pedestrian

pose classification by building a grid of non-overlapping patches of images. They evaluated

the classifier on a custom face database of 500 females and 500 males, and achieved 89%

correct recognition rate. In a fusion-based method [82], the classification results of three

facial regions were combined to improve the robustness to facial expressions. To reduce the

dimensionality of the feature vector, a two dimensional PCA (2DPCA) was used. Utilizing

the SVM+RBF classifier, the recognition accuracy of this method was reported 95.33% on

FERET database.

The scale invariant feature transform (SIFT) algorithm [81] is another widely-used fea-

ture extraction method in pattern recognition research. These features are invariant to ro-

tation, translation, and scale of image. Demirkus et al. (2010) [34] applied a Bayesian

classifier on a SIFT feature vector, and achieved 90% accuracy on an unconstrained video
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sequence of 15 male and 15 female subjects. Soon after, Wang et al. [128] adopted Ad-

aboost on a SIFT feature descriptor that was extracted at regular grid points, and fused it

with the global shape contexts of the face image. They performed the evaluation using a

10-fold cross-validation on a mixture of images from different databases, and reported 97%

accuracy. Alexandre et al. [5] extracted and combined the shape and LBP features of mul-

tiple image resolutions, and used linear SVM for gender classification. On a small subset

of FERET database with 60 males and 47 females, they claimed up to 99% accuracy.

Bekios-Calfa et al. (2011) [12] experimented with SVM and Adaboost classifiers on

LDA, ICA and PCA+LDA transformed features, and concluded that the accuracy of PCA+LDA

transformation is better. Shan [113] employed an LBP feature selection strategy using the

Adaboost algorithm and applied the SVM classifier with an RBF kernel on the boosted LBP

features. The outcome of this method was 94.81% classification accuracy on the LFW [64]

public database. Ullah et al. [123] tried LBP and Dyadic Wavelet Transform (DyWT)

which is a multi-scale image transformation technique for gender recognition. They di-

vided the image into non-overlapping blocks, extracted the DyWT+LBP face descriptor,

and classified using SVM with 99% success rate on FERET.

Tapia et al. (2013) [120] used mutual information (MI) for feature selection with four

different measures: (1) minimum redundancy and maximal relevance (mRMR) [35], (2)

normalized mutual information feature selection (NMIFS) [37], (3) conditional mutual in-

formation feature selection (CMIFS), and (4) conditional mutual information maximization

(CMIM) [25]. As a result, they achieved a real-time performance by reducing the dimen-

sion of feature vector. Fazl-Ersi et al. (2014) [38] integrated different feature descriptors

such as LBP, SIFT and color histogram (CH), and employed a feature selection method

[126] to extract the most informative features. The combination of these methods could

achieve 91.59% classification rate on Ghallager [48] database.

Recently, deep learning algorithms have become popular in pattern recognition. Based

on deep neural networks [63, 74], Eidinger et al. (2014) [36] proposed to combine a

“dropout” technique with SVM classifier (dropout-SVM) in an effort to prevent overfit-

ting due to scarcity of the available data. Also, they created the “Adience” face database,

a very challenging database labeled for age and gender, by collecting 26,580 face images

from 2,284 subjects in unconstrained environments. By training with Ghallager database
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[48] and evaluating on the Adience database, they reported 77.8% success rate.

One of the few papers that have investigated the gender recognition on embedded sys-

tems is published by Irick et al. [66]. Training with 200,000 images, they implemented

an appearance-based gender classifier on FPGA using Artificial Neural Networks (ANN).

On a Xilinx Virtex-4 FPGA platform, they achieved a real-time performance with 83% ac-

curacy by evaluating the classifier on a database of 3,826 images. Moreover, the SHORE

object recognition engine from Fraunhofer[42] is a proprietary and embedded-friendly ar-

chitecture that could achieve 94% gender recognition accuracy on BioID database [68].

The performance was 10 frames per second for gender recognition on Google Glass[129].

2.3 Age Estimation

In this section, we provide an overview of different age estimation approaches. For the

sake of coherency, we comply with the same chronological format as presented in Section

2.2. To the best of our knowledge, there are no or very few studies for age estimation

on embedded platforms. However, for some approaches we will investigate the resource

requirements on embedded systems.

In general, the existing automatic age estimation methods are divided into two different

groups: (1) age group classification (range of years), (2) actual age estimation (cumulative

years lived). The age group classification has many similarities with gender classification,

with the exception that it is a multi-class problem (i.e., no. classes > 2). In contrast, the

actual age estimation is usually based on regression methods, or a hybrid of classification

and regression to provide an estimated number for age.

Usually, the error measurement for the actual age estimation is reported using the Mean

of Absolute Errors (MAE) between the estimated and the ground truth age labels [76]. That

is to say MAE =
∑N

k=1|ek − gk|/N , where ek is the estimated age for the kth sample, gk is

the ground truth age, and N is the total number of images [44]. The surveys in [101, 44]

have discussed different age estimation and error measurement approaches in detail.

Typically, the age estimation systems are consisted of two parts: (1) age image repre-

sentation, (2) age estimation algorithm. Generally, there are five age image representation

techniques which are briefly explained in below:
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• Anthropometric Models (AM): It is based on the cranio-facial theory [6] which

describes the growth of the head from infancy to adulthood. In other words, this is a

mathematical model for the morphological changes in the human cranium as a result

of growth [101]. Therefore, the age image can be represented by measuring the sizes

and the relative proportions of the key features on the face (anthropometric features).

Notably, in this method the estimation rates for young faces are higher.

• Active Appearance Models (AAM): A statistical method for coding the face model

[26]. It utilizes the Principal Component Analysis (PCA) to learn a statistical shape

and intensity model from a training set. In contrast to AM, the AAMs can repre-

sent all the ages, since they consider facial texture as well as the shape of the facial

features.

• Aging Pattern Subspace (AGES): Geng et al. [50] proposed to build an aging pat-

tern using a sequence of aging face images collected from each individual that is

sorted in a temporal order. In the training stage, these sequences are projected into

PCA subspace. Inevitably, there would be missing age images in each sequence for

each person. Therefore, an EM-like iterative method is exploited to synthesize the

missing images in the aging pattern subspace [49]. For age estimation, the aging

pattern subspace is searched for the best match to the query face image that has the

minimum reconstruction error. Then, the position of the matched image in the pattern

is then reported as a number for the actual age [50].

• Age Manifold (AMF): The AGES method can be improved into a more flexible

representation by building an aging pattern from many individuals at different ages

[47]. Therefore, unlike the AGES method, the missing images at different ages can

be obtained from other individuals. To learn a common aging pattern the manifold

embedding technique [109] is used to learn a low-dimensional aging sequence from

many images at each age.

• Appearance Models (APM): To represent a face image, the APM extracts facial fea-

tures at global (holistic) or local (regional) level [59]. These features can be based on

the shape of facial features (geometry), or the facial texture (wrinkles) [60]. The face
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representation in this method is similar to the appearance-based gender classification

method that described in Section 2.2.

Essentially, the early approaches for age estimation were based on age group classification.

Perhaps, the earliest study in this area was published by Kwon and Lobo (1994) [75], and

investigated the age group classification using anthropometric models (AM). They used six

ratios computed from the distances of different facial features to classify the infants and

adults (e.g., eye to eye/eye to nose, eye to eye/eye to mouth). In addition to AM, they also

incorporated an appearance model (APM) to characterize the density of facial wrinkles

using the snakelets [72]. This APM method was utilized to distinguish the young adults

from the senior adults. Kanno et al. (2001) [70] employed Artificial Neural Networks

(ANN) along with an APM representation of the face. They achieved 80% accuracy for

classifying the four age groups of 110 male face images that were selected from FG-NET

[1] public database.

A Support Vector Machine (SVM) classifier was exploited by Iga et al. (2003) [65], and

applied on a feature vector consisted of geometric features, texture, and luminosity patterns.

The reported accuracy was 67.4% for a five age groups classification that was evaluated on

300 subjects of 15 to 64 years old. In a novel approach, Lanitis et al. (2004) [76] adopted

the Active Appearance Model (AAM) to estimate the actual age. They combined the shape

and the intensity models, and extracted the principal components from the corresponding

eigenspace to represent the face image. For age estimation, they utilized regression func-

tions, age-based distribution functions, and neural networks. The Mean of Absolute Errors

(MAE) was reported 3.82 to 5.58 years for estimating the age of 400 subjects from 0 to 35

years old.

Ueki et al. (2006) [122] formulated an age group classifier with 11 Gaussian models

for each age group in a 2D-LDA+LDA feature subspace using an expectation-maximization

(EM) algorithm. Basically, the classifier fits the query image to each Gaussian model and

compares the likelihoods. They considered the age range of 3 to 85 years old, and achieved

50% age classification accuracy for males and 43% for females. The interesting idea of

Aging Pattern Subspace (AGES) method was first published by Geng et al. [50]. Unlike

the age estimator of Lanitis et al. [76] that used 50 AAMs, Geng et al. used 200 AAMs

to encode the face images. Evaluating on FG-NET database, they reported a MAE of 6.77
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years. However, in AGES method the problem is that, it assumes a face image exits in the

pattern’s subspace of the training database that is similar to the face of the query image

at different ages. As a result, it is difficult to collect a large database containing the face

images of the same subject at many different ages [44].

Later, Fu et al. (2007) [47] rectified the problems of AGES method using the Age Mani-

fold (AMF) technique. The age manifold learning projects the images into low-dimensional

manifold embedding space [109] by capturing the geometric structure and intrinsic data

distribution. Instead of PCA, it employs the Orthogonal Locality Preserving Projections

(OLPP) to project the image data and preserve the essential manifold structures. Using a

quadratic regression approach they achieved a MAE of 8 years on 4000 test images. Fu and

Huang [46], used Conformal Embedding Analysis (CAE) along with quadratic regression

to improve the MAE down to 6 years. In a similar research, Guo et al. [54] proposed the

Locally Adjusted Robust Regression (LARR) and applied it on OLPP subspace, achieving

5.07 years for the MAE on the FG-NET database.

Also, the Biologically Inspired Feature (BIF) [104] was demonstrated by Guo et al.

(2009) [57] to be a successful age image representation strategy to further improve the

accuracy of age estimation. This method is based on a feed-forward model of the primate

visual object recognition pathway, namely, the “HMAX” model [44]. It is consisted of

alternating layers of cell units called Simple (S) and Complex (C). The complexity of these

layers increases from the primary Visual cortex (V1) to the Inferior Temporal (IT) cortex

[57]. The first layer S1 is created by Gabor filtering and the second layer C1 from a “MAX”

operation on S1. The BIF feature can effectively capture the aging patterns, and is invariant

to small rotations, translations, and scale changes [44]. Adopting SVM classifier, Guo et al.

[56] proposed a framework for age and gender estimation using the BIF and Age Manifold

(AMF) features. They reported MAE of 2.61 years for females and 2.58 years for males

on YGA database [46], and demonstrated the superior performance of BIF for age image

representation.

The introduction of Gallagher [48] real-life face database in 2009 was a turning point

for the age estimation researchers. The challenging face images of this large database were

collected from Flickr, and labeled with 7 age groups: 0-2, 3-7, 8-12, 13-19, 20-36, 37-

65, and 66+. The majority of recent age estimation methods have adopted normalization
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strategies to deal with the severe distortion, head pose, and illumination problems of this

database. For instance, Shan (2010) [112] used illumination-invariant appearance features

such as Local Binary Patterns (LBP) [91] and Gabor to represent the real-life faces. In

addition, Adaboost was adopted as a feature selection approach to learn the discriminative

local features. By applying the SVM classifier with an RBF kernel on the boosted features,

he reported 55.9% exact classification accuracy and 87.7% classification accuracy when

the error of one age category is allowed. In a similar effort, Ylioinas et al. [136] improved

the accuracy by creating regional histograms from the LBP features, and achieved 88.7%

age classification accuracy.

Chang et al. (2011) [23, 22] proposed a ranker for ordinal hyperplanes that could sepa-

rate all the facial images into two groups according to their relative order. In other words,

they used a conventional binary classifier (e.g., SVM) to carry out piece-wise classification

among k classes to find the rank (i.e., age) of the query face image. In order for this to

work, a cost-sensitive strategy was employed to find better hyperplanes based on the clas-

sification costs. They achieved a MAE of 4.48 years on FG-NET database, and 6.07 years

on MORPH database [103]. Alnajar et al. (2012) [7] proposed a soft assignment approach

for encoding the face images by extracting and learning multiple codebooks [19] for indi-

vidual face patches (i.e., local regions). They formulated a weighting scheme that softly

assigns each pixel to multiple candidate codes. To build the feature vector, they computed

the orientation histogram of the local gradients in each neighborhood. Compared to the

results of Shan [112], the accuracy of this method was 3.6% better on Ghallager database

[48].

One of the major problems in age estimation is the imbalanced training data due to lack

of sufficient samples in some age groups (e.g., senior adults) compared to other classes

(e.g., young adults). Chen et al. (2013) [24] solved this problem by extracting low-level

visual features from sparse and imbalanced image samples, and projecting them into a cu-

mulative attribute space [45] to learn a regression model. For k age groups, they considered

k − 1 binary attributes that each of them separates facial images above a certain age from

all those below. Also, each attribute conditions all the other attributes, cumulatively. The

MAEs for this regression model was reported 4.67 years for FG-NET database, and 5.88

years for MORPH database [103].
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Inspired by deep neural networks [63, 74], Eidinger et al. (2014) [36] devised the

dropout-SVM classifier and applied it on a feature vector built from Four Patch LBP codes

(FPLBP) [132]. They claimed that this classifier is robust to overfitting and the prob-

lems with imbalanced training data. The classifier was evaluated on the Adience [36] and

Gallagher [48] databases, and achieved 45% and 66% age group classification rates, re-

spectively. Soon after, Fazl-Ersi et al. [38] proposed to build an appearance-based model

by fusing the features from Local Binary Patterns (LBP) [91], SIFT [81] and a color his-

togram (CH). In addition, they employed the feature selection method in [126] to extract

the most informative features. Performing a 5-fold evaluation on Ghallager [48] dataset,

they reported a maximum age recognition rate of 63.01% on Gallagher database.

To the best of our knowledge, the only existing embedded approach for age estimation

is the commercial object recognition engine (SHORE) from Fraunhofer[42]. On a Google

Glass[129] device it processes 10 frames per second, and its age estimation accuracy is

6.85 years of MAE on FG-NET database.

2.4 Conclusion

This chapter has provided a chronological overview of the robust and state-of-the-art ap-

proaches in the realm of gender classification and age estimation, and their potential appli-

cations. Also, the strengths and weaknesses of some well-known methods for face image

representation and classification have been discussed. Although in this dissertation our

main concerns are the resource-constrained systems and embedded platforms, there exist

no or very few correlated publications in this area. This fact highlights the importance of

our efforts to investigate the requirements and viable solutions for age and gender recog-

nition on embedded systems. In the next chapters, we present a thorough analysis of the

required components and methodologies to address the classification issues for embedded

platforms.
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Chapter 3

Generic Facial Trait Classification

Generally speaking, many of the face-based trait classification approaches have a number

of common components as the integral part of their classification pipeline. Figure 3.0.1

shows a block diagram of an automatic facial trait classification pipeline. Needless to

say, all of the major components of this pipeline have been integrated into our embedded

age estimation and gender classification system. Hence, before proceeding to describe the

contributions and methodologies in our work, it is necessary to expound the prerequisites

and fundamental theories behind each of these modules. As a matter of fact, there exist a

plethora of algorithms and methods for each module, but their time and space complexities

may be the key obstacles for adopting them. Therefore, in here we attempt to focus on the

complications of implementing a real-time age and gender recognition system for resource

constrained and embedded platforms.

As shown in Figure 3.0.1, three major parts of this pipeline are: (1) face image acqui-

sition, (2) face image representation, (3) face-based classification. To acquire the input im-

ages, usually a 2D image sensor device is used that performs in the visible light spectrum,

Figure 3.0.1: Block diagram of a generic facial trait classification system
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and is highly affected by the illumination conditions in environment. In fact, there exist

several image acquisition techniques that are invariant to illumination such as near-infrared

and thermal sensors [77], or 3D face acquisition using RGB-D sensors [78]. However, due

to limitations with the availability of such devices on embedded platforms, we use a regular

visible light spectrum image sensor along with a robust image normalization approach to

overcome the illumination problems.

Generally, the facial appearance representation methods can be categorized as global

(holistic) and local (component-based) [61]. The holistic approaches are easier to imple-

ment, because the whole face is represented by a single feature vector. Normally, this single

large feature vector is meant to feed the classifier’s input, but there are several prohibitive

problems associated with the size of such structures, known as the curse of dimensionality.

Firstly, the bulky nature of such vector is at odds with the limited capabilities of embed-

ded platforms. Secondly, the high degree of redundancy and presence of textural noise can

drastically degrade the accuracy of classification.

In here, we refer to redundancy as the features that add no useful information to the

feature vector. A common strategy to deal with redundancy in image data is to reduce

the dimensionality of data by compressing the feature vector, and only extract the most

discriminative features. In addition, the holistic methods are highly sensitive to changes in

illumination, scaling, rotation, and translation of the face image.

In contrast, the component-based approaches aim to collect local facial features in order

to compensate for the face localization errors and misalignment. This technique is proven

[4] to amplify the robustness of classification against the changes in face pose and illumina-

tion by allowing a flexible geometric arrangement among the features of the face image. A

widely-used scheme in component-based systems is to partition the face into overlapping or

non-overlapping regions [4] and extract the regional information as the components. Typi-

cally, the fusion of these components constitutes a feature vector that feeds the classifier.

In this chapter, we present a generic description of the fundamental theories that we

have used for each module of our age and gender recognition system. Also, we investigate

the problems associated with the complexities of some approaches on resource-constrained

systems, and will propose viable solutions for them in the next chapter. We start this chapter

by describing the face detection module in Section 3.1, and image normalization techniques
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in Section 3.2. Various image transformation and representation methods are explored in

Section 3.3, and two dimensionality reduction approaches are presented in Section 3.4.

Next, we review some classifiers and their suitability for embedded systems in Section 3.5.

Finally, conclude this chapter in Section 3.6.

3.1 Face Detection

Face detection is the first step in face-based classification systems, and its accuracy affects

the performance of classification, significantly. This task is far from trivial in a compli-

cated scene that contains a variety of objects with different shapes. Nowadays, there exist

various techniques for face detection that are surveyed in [135]. In general, face detec-

tion approaches can be categorized as feature-based and appearance-based methods. The

feature-based methods extract certain features such as skin-color, edges, and geometric in-

formation from the face image while in appearance-based methods the whole face is used

as an input to the face detector [85].

Up to the present time, perhaps the most commonly used face detector is the cascaded

face detector proposed by Viola and Jones (2001) [127]. This technique utilizes a sweeping

window to scan the image from top-left corner to bottom-right corner to find a face (Figure

3.1.1). This iterative process is repeated several times with different dimensions for the

sweeping window to locate a face. In each iteration the content of the window is passed

Figure 3.1.1: Sweeping window scans the image [68] from the top-left corner to the bottom-right

corner to find a face
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to a series of cascaded layers, each of which can reject the non-faces by comparing the

extracted features of the face with a predefined face pattern. If the extracted features of the

window are not rejected in a layer then they are passed to the next layer.

In case that the window is passed through all the layers successfully, then the win-

dow contains a face. Typically, the cascaded face detector is a fast algorithm, and is able

to reject most of the non-faces in the early stages of detection. Also, there exist several

memory-efficient implementations of this algorithm that can perform in real-time on em-

bedded platforms [16].

3.2 Face Normalization

Essentially, the face-based classification systems are sensitive to geometrical misalignment,

uneven illumination, and textural noise on the face image. Therefore, the face image should

be normalized by aligning the face followed by photometric corrections and filtering op-

erations. In fact, the photometric correction methods can standardize the representation of

the face images that are acquired from the environments with different illumination condi-

tions. For aligning a face image, a common strategy is to locate the position of key facial

features (landmarks) and use them as references for geometrical normalization of the face

image. In this section, first we describe the process of facial landmark detection which is a

necessary module for the face alignment technique that is described in Section 4.1. Next,

we introduce different techniques of photometric correction.

3.2.1 Facial Landmark Detection

In order to obtain the landmark positions from the face image, Uricar et al. (2012) [124]

developed a memory-efficient and real-time facial landmark detector library called “fland-

mark”. Figure 3.2.1 shows 8 landmark positions
�

ε0, . . . ,ε7

	

detected by flandmark. This

method exploits the concept of Deformable Part Models (DPM) [30] to create a structured

output SVM classifier, and train the classifier using the annotated examples on the face.

Given an input face image I and a set of quality scores for M facial landmark positions
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Figure 3.2.1: The position of eight facial landmarks detected by flandmark library [124]

s = (s0, . . . , sM−1), they defined an optimization problem that maximizes the scoring func-

tion f , which is the sum of the appearance fit q, and the deformation costs Γ (see Equation

3.2.3):

f (I , s) =
M−1
∑

i=0

qi(I , si) +
M−3
∑

i=1

Γi(s0, si) + Γ5(s1, s5) + Γ6(s2, s6) + Γ7(s0, s7) (3.2.1)

qi (I , si) =
�

wq
i ,Ψ

q
i (I , si)

�

(3.2.2)

Γi j

�

si, s j

�

=
�

wΓi j,Ψ
q
i j

�

si, s j

�

�

(3.2.3)

where Ψq
i and ΨΓi j are predefined maps, and wq

i and wΓi j are parameter vectors that will be

learned from examples. To put it differently, this method models the landmark scores as a

directed graph and localizes the nodes si of this graph on the facial features by fitting the

graph on the appearance of the face. This fitting problem is solved by Dynamic Program-

ming (DP) and a set of graph constraints. Section 4.1 provides a detailed procedure for face

alignment using these detected facial landmarks.

3.2.2 Photometric Correction

As a matter of fact, the uneven illumination conditions in unconstrained environments can

degrade the accuracy of classification, regardless of the robustness of the classifier. There

are a variety of photometric normalization techniques that can neutralize the effect of shad-

ows or over-illumination on certain regions of the face image. In this section, we present
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and compare four commonly-used photometric normalization techniques. In Section 4.2,

we present our approach for illumination normalization. Also, we compare the effective-

ness of these methods on our classifier’s accuracy in Chapter 5. The reader can refer to the

survey in [62] to obtain detailed information of illumination normalization techniques.

• Histogram Equalization (HE): A fast method to enhance the global contrast of the

image. Considering G gray levels per pixel, it transforms the distribution of N pixels

with intensity values vk∈[0,G−1], into a uniform distribution using the transformation

function T [62] (see Equation 3.2.4). On the negative side, in addition to global

contrast, this method enhances the noise as well. Also, it is greatly influenced by

the background noise. As shown in Figure 3.2.2(b), it is not effective to remove the

shadows caused by a directed light source.

T (vk) = (G − 1)
k
∑

i=0

ni

N
(3.2.4)

• Contrast Limited Adaptive Histogram Equalization (CLAHE): Proposed by Pizer

et al. [98] to improve the performance of regular histogram equalization by creat-

ing several locally equalized histograms using the transformation functions that are

adapted for each local neighborhood. Moreover, it limits the contrast enhancement

in each local neighborhood by clipping the upper parts of the local histograms that

exceed a predefined threshold. As a result, the over-amplification of noise can be

prevented by limiting the contrast enhancement. It should be noted that the clipped

part of each histogram is not discarded and, instead, it is redistributed among the

bins that their values do not exceed the clipping threshold. Figure 3.2.2(c) shows the

effect of CLAHE method on the face images.

• Retinex: Inspired from the Human Visual System (HVS); particularly, the retina that

is a preprocessing step to condition the visual data for facilitated high level analysis,

and V1 cortex area which is a low-level visual information describer [15]. The two

well-known channels of the retina’s output are Parvocellular channel (Parvo) that is

dedicated to detail extraction and Magnocellular (Magno) for motion information

extraction. Nowadays, the bio-inspired models of the retina are widely-used in mod-

ern image processing applications to enhance the dynamic range compression and
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color independence from the spectral distribution of the scene illumination [100]. In

here, we are interested in Retinex (from the words retina and cortex) models, and the

characteristics of Parvo channel for illumination normalization. Generally speaking,

Retinex aims to estimation the reflectance component R from the luminance compo-

nent L and the input image I , as follows:

R(x , y) =
I(x , y)
L(x , y)

The advantage is that the reflectance, unlike luminance, is invariant to illumination

and is resulted by the attenuation of the reflection from the surface of an object.

Therefore, reflectance can serve as a means to derive an illumination invariant chan-

nel from the input image. Given the input image I , the luminance L can be estimated

using a reflectance perception grid model proposed by Gross et al. [53] that mini-

mizes the cost function:

J(L) =

∫∫

ρ(x , y)(L − I)2d xd y
︸ ︷︷ ︸

perception gain model

+λ

∫∫

(Lx
2 + L y

2)d xd y
︸ ︷︷ ︸

smoothness constraint

(3.2.5)

where λ is a parameter to control the relative importance of the two terms (see Equa-

tion 3.2.5), and ρ(x , y) controls the anisotropic nature of the smoothness constraint.

This calculus can be modeled by an Euler-Lagrange equation that is discretized on a

rectangular lattice [53]:

Ii, j =
λ

hρi, j− 1
2

�

Li, j − Li, j−1

�

+
λ

hρi, j+ 1
2

�

Li, j − Li, j+1

�

+ (3.2.6)

λ

hρi− 1
2 , j

�

Li, j − Li−1, j

�

+
λ

hρi+ 1
2 , j

�

Li, j − Li+1, j

�

+ Li, j

where h is the pixel grid size, and Ii, j is the intensity of a pixel at position (i, j). The

weight ρ penalizes the smoothness at every edge of the lattice, and is formulated as:

ρ a+b
2
=
|Ia − Ib|

min (Ia, Ib)

where ρ a+b
2

is a weight between two neighboring pixels with intensity values Ia and

Ib [53]. Figure 3.2.2(d) shows the effect of this method on three face images with

different illumination conditions.
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• Preprocessing Sequence (PS): Introduced by Tan and Triggs [119] to counter the

effects of illumination variations, local shadows and highlights without losing es-

sential textural information for facial classification. This method starts by applying

a gamma correction which is able to enhance the local dynamic range of the pixel

intensity values in shadowed regions of the face, and at the same time, suppresses

the bright regions. In order for this to work, it performs a non-linear transformation

to replace the gray level pixel intensity values I of the input image with Iγ, where

constant γ ∈ [0, 1]. Next, it removes the intensity gradient and shading effects of the

gamma corrected image I by convolving it with a band-pass filter like the Difference

of Gaussians (DoG) filter Ψ in the following equation:

Ψσ1,σ2
(x , y) = I ∗









1
2πσ1

2
e
−(x2+y2)

2σ12

︸ ︷︷ ︸

Gaussian #1

−
1

2πσ2
2
e
−(x2+y2)

2σ22

︸ ︷︷ ︸

Gaussian #2









where σ1 and σ2 are two constants that determine the width of the two Gaussian

kernels. This band-pass filter can effectively suppress the high frequencies caused by

noise and aliasing artifacts, as well as the low frequencies caused by the illumination

gradients. The novelty of this approach is a two stage contrast equalization strategy

that re-normalizes the pixel value intensities and standardizes the global contrast.

These two stages are formulated in the Equations 3.2.7 and 3.2.8.

Γ (x , y) =
Ψ(x , y)

(mean(|Ψ (x , y)|a))
1
a

(3.2.7)

φ(x , y) =
Γ (x , y)

(mean(min(τ, |Γ (x , y)|)a))
1
a

(3.2.8)

In these equations, a is used to reduce the influence of large values, and τ is a thresh-

old that truncates the large values after the first stage of the normalization. Finally, a

hyperbolic tangent is applied as a squashing function to normalize the extreme values

within the range of (−τ,τ).

bI(x , y) = τ tanh
�

φ(x , y)
τ

�
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The output of the Preprocessing Sequence approach is shown in Figure 3.2.2(e). No-

tably, the default values of the constants used in this method are: γ = 0.2, σ1 = 1,

σ2 = 2, a = 0.1, and τ= 10.

(a) Original (b) H.E (c) CLAHE (d) Retinex (e) P.S (f) F.P.S

Figure 3.2.2: Effects of the different illumination normalization methods on three images [51]. The

Filtered PS (F.P.S) is our normalization approach that is described in Section 4.3.

3.3 Face Representation

As demonstrated in Section 3.2, the illumination normalization methods help to enhance

the contrast and improve the photometric characteristics of the face image. However, the

remaining major problem is the negative effects of the geometrical displacements on the

face image which are caused by the variations in facial expression or facial pose. By merely

using the pixel intensity values for face representation, the classifier becomes highly sensi-

tive to these variations, especially in unconstrained environments and video sequences. For

this reason, a great deal of effort has been put into improving the robustness and stability
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of face representation. In this section, we discuss the theories and the effectiveness of the

variants of two well-known approaches, namely the Gabor features, and the Local Binary

Patterns (LBP).

3.3.1 Gabor Wavelets

One of the earliest studies that considered the Gabor wavelet for computer vision appli-

cations was conducted by Daugman (1985)[33]. Later, Wiskott et al. [130] tailored the

Gabor filters for face recognition. Similar to the Retinex method that we discussed in Sec-

tion 3.2.2, the concept of Gabor wavelets are inspired from the human Retina. Utilizing

Gabor wavelets, the face image can be represented by selective frequency and orientation

features to enhance the key facial features like eyes, nose, mouth, and facial details like

wrinkles and scars.

(a) Original (b) 0◦ (c) 45◦

Figure 3.3.1: Examples of two Gabor kernels (orientations: 0◦, 45◦) applied on two images [96]

30



Essentially, the Gabor wavelet is a complex-valued function defined as a sinusoidal

plane wave that is restricted by a Gaussian envelop with scale w and orientation v [83]:

ϕ
�

kv,w, z
�

=
‖kv,w‖

2

σ2
exp

�

−‖kv,w‖
2‖~z‖2

2σ2

�

�

exp
�

ikv,w.x
�

− exp
�

−
σ2

2

��

where w ∈ [0, 4] and v ∈ [0, 7]. The subtraction of the term exp
�

−σ
2

2

�

makes the filter

slightly invariant to global illumination in the face image. In the definition of the wave

vector kv,w in below, the parameter φu =
πu
8 controls the orientation, and kw =

π
2w+1 controls

the spaces between the kernels in the frequency domain:

kv,w = kw exp (iφu)

In order to compensate for the localization errors in the face image, normally 5 scales for

w and 8 orientations for v is used to build 40 Gabor filters. Finally, the Gabor image can be

compute by the convolution of the Gabor filter and the face image I(z):

Gv,w(z)= I(z) ∗ϕ
�

kv,w, z
�

Figure 3.3.1 shows the effects of two different Gabor filters on two face images. These

terms can be convolved in Fourier domain to improve the computation time. In addition,

PCA can be used to reduce the dimensionality of the Gabor images, and improve the mem-

ory requirements.

3.3.2 Local Binary Patterns

The advent of Local Binary Pattern (LBP) operator represented a major breakthrough in

the field of object recognition. First time introduced by Pietikaeinen et al. [97] in 1994, the

LBP operator has consistently demonstrated an excellent performance as a texture descrip-

tor in various empirical studies for motion detection, remote sensing, visual analysis, and

image retrieval. This operator is capable of capturing block-wise information with minimal

computation and memory requirements while being invariant to the monotonic variations

of illumination. Hence, the resource-constrained embedded systems can benefit from ex-

ploiting this efficient texture descriptor. This section provides a detailed explanation for

several robust and popular variants of the LBP operator.
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Figure 3.3.2: Illustration of the basic LBP operator on a 30 × 30 face image [51] (deliberately

down-sampled to show the details).

• Basic Local Binary Pattern: For each pixel at a center position (x , y) of a circular

neighborhood, the LBPP,r operator builds a binary sequence by applying the value

of the center pixel as a threshold to P pixels in a circular neighborhood of radius r.

Denoting the gray values of the center pixel as gc and the surrounding pixels as gp,

the LBP can be defined as [91]:

LBPP,r(x , y) =
P−1
∑

p=0

2p × s(gp − gc) (3.3.1)

where s(u) is 1 if u ≥ 0 and 0 otherwise. Figure 3.3.2 illustrates the basic LBP op-

erating on a face image that is deliberately down-sampled to show the details of the

operation. The basic LBP generates 8-bits from a 3× 3 block (P = 8). However, the

circular neighborhood can be expanded to a wider radius including a higher number

of pixels (e.g., P = 16). A well-known strategy for LBP representation is to adopt

the aggregate statistics such as LBP histograms (LBPH) [92]. As a result, the size

of the texture descriptor can be further reduced from the image size to the number

of histogram bins. Also, it can mitigate the effects of misalignment and affine trans-

formations in the face image. Equation 3.3.2 shows the process of LBP histogram
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creation.

Hi =
∑

x ,y

S(LBPP,r(x , y) = i) (3.3.2)

where i ∈
�

0, 2P − 1
�

, and S(w) is 1 if w is true and 0 otherwise.

• Uniform Local Binary Pattern: The LBP features contain certain patterns, known

as the uniform patterns, which occur frequently to represent the specific local struc-

tures such as the corners, line ends, edges, spots and flat areas. Conducting statistical

analysis on different textures, Ojala et al. [92] concluded that the binary pattern of

these structures contain at most two bit-wise transitions from 1 to 0, or 0 to 1. There-

fore, they defined a uniformity measure to count the number of spatial transitions:

U
�

LBPP,r

�

= |s
�

gp−1 − gc

�

− s (g0 − gc)|+
P−1
∑

p=1

|s
�

gp − gc

�

− s
�

gp−1 − gc

�

| (3.3.3)

In Equation 3.3.3, if U
�

LBPP,r

�

≤ 2 then the pattern LBPP,r is uniform. Considering

this constraint, the total number of uniform patterns is L = P(P − 1) + 2, and the

number of histogram bins is L + 1, including an extra bin to accumulate the non-

uniform patterns. Based on the uniformity measure U
�

LBPP,r

�

, the uniform LBP

operator is defined as:

LBPu2
P,r (x , y) =







∑P−1
p=0 2p × s(gp − gc) if U(LBPP.r)≤ 2 (uniform)

P(P − 1) + 2 otherwise (non-uniform)
(3.3.4)

Figure 3.3.3 shows the 58 possible uniform patterns for a circular neighborhood of

8 pixels (i.e., P = 8) which are categorized by the representation of local structures,

i.e., lined ends, corners, edges, spot, and flat.

• Rotation-Invariant Binary Local Pattern: The in-plane rotation of the face image

results in a different binary pattern, because the P pixels of each circular neighbor-

hood are rotated around the center pixel as well. To rectify this problem, the bit-

wise rotational right shift operator ROR(w, i) is applied i times on a binary pattern

w = LBPP,r until a minimal decimal value is found for w. The following equation

illustrates this technique:

LBP ri
P,r(x , y) =min {ROR (w, i) | i ∈ [0, P − 1]} (3.3.5)
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Figure 3.3.3: Example of all 58 uniform patterns for a circular neighborhood of 8 pixels categorized

by the representation of line ends, corners, edges, spot, and flat structures (black circles represent

the 1’s of the binary sequence)
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• Local Ternary Patterns: Essentially, the LBP operator performs robustly in the

presence of monotonic intensity transformations. However, as can be seen in Fig-

ure 3.3.2, the thresholding process in LBP is highly sensitive to noise and non-

monotonic transformations. To suppress the noise in LBP, Tan et al. [119] intro-

duced the Local Ternary Patterns (LTP) operator that employs hysteresis threshold-

ing. The dual threshold action in LTP creates a dead zone within a tolerance interval

of [gc − t, gc + t], around the gray value gc of the center pixel, generating a ternary

pattern in s. For LTP operator, we rewrite the s(u) of Equation 3.3.1 as follows:

s(gp, gc, t) =















1 gp ≥ gc + t (above positive threshold)

0 |gp − gc|< t (within tolerance interval)

−1 gp ≤ gc − t (below negative threshold)

(3.3.6)

where t is a user-defined threshold that determines the width of the tolerance interval.

In Equation 3.3.6, if the difference of the gray values for surrounding pixels gp, and

center pixel gc exceed the upper threshold gc + t, then s(u) is 1, and if falls below

the lower threshold gc − t, it is -1, and 0 otherwise. To represent the LTP as a

Figure 3.3.4: Illustration of the LTP operator
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binary sequence, they suggested splitting the ternary pattern into upper and lower

patterns, as illustrated in Figure 3.3.4. Therefore, it requires double the size of the

LBP operator for storing the patterns.

3.4 Feature Extraction

Regardless of the use of image-based or feature-based representation of the vector data,

there are several prohibitive problems associated with the dimension of these data struc-

tures, known as the curse of dimensionality. Specifically, most of the systems with lim-

ited resources cannot afford the large memory requirements of such texture representa-

tions. Therefore, we need a strategy to reduce the dimensionality of texture data, and

extract its discriminative features. To this end, the generic approach is to transform a high-

dimensional input data vector into a low-dimensional subspace in order to obtain the data

vector. For this purpose, a generic subspace transformation can be defined as follows:

Y = XW (3.4.1)

where the input data vector X = [x1, . . . , xn]
T , the transformed vector Y = [y1, . . . , ym]

T ,

and the generic transformation matrix W:

W=













w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m
...

... . . . ...

wn,1 wn,2 · · · wn,m













(3.4.2)

In this section, we discuss two classical approaches for dimensionality reduction, namely

the Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). In sec-

tion 4.4, we will make use of these methods in our embedded classification system to find

efficient transformation matrices that can reduce the dimensionality while preserving the

discriminative features of the facial texture data.
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3.4.1 Principal Component Analysis

First time proposed by Karl Pearson [95], the Principal Component Analysis (PCA) is a

widely-used dimensionality reduction technique that projects a set of correlated variables

into a set of linearly uncorrelated values called principal components. Karhunen [71] and

Leove [80] further developed this method for signal processing, and modeled the PCA as an

orthogonal linear transformation of a signal into eigenspace that yields a set of orthonormal

basis vectors, namely the principal components. These vectors can optimally describe the

underlying variance and internal structure of a dataset (i.e., signal). The scatter-plot in

Figure 3.4.1 shows two principal components of a two-dimensional dataset.

Notably, PCA transforms the data such that the first vector has the highest possible vari-

ance followed by the second largest vector which is orthogonal to the preceding vector, and

so on for the rest of the succeeding vectors. In general, PCA can be computed using the

eigen-decomposition of the data covariance matrix to derive its eigenvalues and eigenvec-

tors. The eigenvectors represent the principal components and their associated eigenvalues

represent the magnitude of the variance (i.e., length of the corresponding eigenvector).

Considering a training set X that contains the representation of K face images, we define

the k-th face image of this set as [121]:

xk =
�

x1
k , . . . , xN

k

�

where N denotes the dimension of each face image that can be either the number of pixels

for image-based representation, or the number of features for the feature-base approaches.

The first step to compute the PCA is to normalize the samples of the training set by center-

ing them using the mean of all samples µ:

x̂k = xk −µ, where µ=
1
K

K
∑

k=1

xk (3.4.3)

Accordingly, the mean-centered training set bX ∈ RN×K is created from all normalized sam-

ples:

bX=













x1,1 x1,2 · · · x1,K

x2,1 x2,2 · · · x2,K
...

... . . . ...

xN ,1 xN ,2 · · · xN ,K













(3.4.4)
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Figure 3.4.1: Two principal components of

a 2D dataset. The red line represents the

largest eigenvector (87% of the total vari-

ance)

Figure 3.4.2: PCA projection on the first

and largest principal component (red line)

of a 2D dataset. The projected samples of

the blue and red classes are one-dimensional

(not linearly separable).

Now, the covariance matrix Γ is given as:

Γ =
1
K

K
∑

k=1

x̂k x̂ T
k =

1
K
bXbX

T

where covariance matrix Γ can have a maximum of K eigenvectors associated with non-

zero eigenvalues. Next, we feed the covariance matrix Γ to the eigen-decomposition stage

in order to obtain the eigenvectors vk and the corresponding eigenvalues λk:

Γ vk = bXbX
T
vk = λkvk

Considering that bXbX
T

is a huge matrix, we multiply both sides by bX and use bX
T
bX to

compute its eigenvalue decomposition as follows:

bX
T
bXuk = λkuk⇒ bXbX

T
(bXuk) = λk(bXuk)

where uk is the eigenvector for bX
T
bX, and vk = bXuk is the eigenvector for Γ . Finally, the

eigenvectors are sorted in a descending order based on the magnitude of the associated

eigenvalues. As a result, the principal components with the largest variations are concen-

trated in the lower-order portion of the eigenvectors.
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As a matter of fact, we only preserve a portion of eigenvectors that represents the max-

imum amount of variation in data, and discard the eigenvectors with smaller eigenvalues

that do not contribute to texture description. Thereby, the first advantage is that the dimen-

sionality of input data is reduced, considerably. Consequently, the memory requirements

and computation time is decreased. The second advantage is that the noise can be roughly

eliminated from the texture representation thanks to the very small variations associated

with the irregularly distributed noise data.

However, we need a proper strategy to preserve an optimal number of principal compo-

nents without disposing useful information from the texture. There are various approaches

for eigenvector selection, and we discuss some of them in here.

• Standard eigenspace projection: Retains all eigenvectors that are associated with

the non-zero eigenvalues [73].

• Preserve 60% of the eigenvectors: As mentioned above, the eigenvectors are sorted

in a descending order based on the magnitude of their eigenvalues. This method

suggests to only keep 60% of the eigenvectors that have the largest eigenvalues [89].

• Energy dimension: This approach provides the flexibility to define a threshold for

retaining a minimum number of eigenvectors that their cumulative energy function

ek exceeds the threshold [73]. Typically, the value for the user-defined threshold is

greater than 0.9. This energy function is defined using the summation of the first k

eigenvalues and the summation of all n eigenvalues:

ek =

∑k
j=1λ j

∑n
j=1λ j

(3.4.5)

• Stretching dimension: A common strategy to select eigenvectors is to compute the

stretch sk of the k-th eigenvector such that the ratio of the k-th eigenvalue λk over the

maximum eigenvalue λm is greater than a threshold [73]:

sk =
λk

λm
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• Removing the three largest eigenvectors: Unlike the methods mentioned in above,

this approach discards the three eigenvectors with largest eigenvalues [89]. This

is based on the assumption that the illumination variations contribute to the largest

eigenvectors which can degrade the classification accuracy.

After eigenvector selection, similar to Equation 3.4.1 and 3.4.2, a mean-centered face rep-

resentation X can be projected into eigenspace using the following transformation:

Y= (WPCA)T X, where WPCA = uk (3.4.6)

The scatter-plot in Figure 3.4.2, shows the projection of the samples of Figure 3.4.1 on

the first principal component, reducing the dimension of the 2D dataset to one dimension.

As can be seen in Figure 3.4.2, although there are two classes with different set of samples

(blue and red circles), the PCA projection could not yield a linearly separable representa-

tion in the eigenspace. This is a major problem for PCA-based classification methods. PCA

can extract the most descriptive information, but is not able to discriminate the samples of

different classes. In the next section, a practical solution is provided for this problem.

3.4.2 Linear Discriminant Analysis

With this fact in mind that PCA is an unsupervised approach which renders the classes of a

projected dataset linearly inseparable, another strategy is required to provide the subspace

projection process with the information of classes. To this end, Fisher [40] developed a

supervised dimensionality reduction technique called Linear Discriminant Analysis (LDA)

that aims to find a projection that linearly separates the distributions of two or more classes

in the subspace.

The scatter-plot in Figure 3.4.3 shows the LDA component computed from a two-

dimensional dataset. Also known as Fisher’s Discriminant Analysis (FLD), Belhumeur

et al. (1997) [13] employed FLD in face recognition for the first time (i.e., Fisher ). In

general, LDA attempts to maximize the ratio of between-class scatter over the within-class

scatter. Similar to Equation 3.4.1 and 3.4.2, the objective is to find a transformation matrix

W that projects the N -dimensional input data X with C classes onto LDA subspace data Y

with C − 1 dimensions such that:

Y=WT X
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Figure 3.4.3: The component found by LDA

on a 2D dataset. The red line represents the

1D LDA space.

Figure 3.4.4: LDA projection of a 2D

dataset on the 1D LDA subspace (red line).

The projected samples of the blue and red

classes are linearly separable.

The scatter-plot in Figure 3.4.4, shows the projection of the samples of Figure 3.4.3 on the

LDA component, reducing the dimension of 2D dataset to one dimension. Clearly, it can

be seen in Figure 3.4.4 that the two classes (red and blue circles) are separated and the

within-class scatter is minimized.

Considering the same notations used in Section 3.4.1, we assume that the K samples of

the N -dimensional input training set X is divided into C subsets Xi ∈ {X1, . . . , XC} each of

which represents a class that contains ni samples. The scatter or the population variance

σ2 of the samples x i
j ∈ Xi within each class is defined as:

σ2
i =

ni
∑

j=1

�

x i
j −µi

�2
,where µi =

1
ni

ni
∑

j=1

x i
j | i ∈ [1, C], j ∈ [1, ni] (3.4.7)

µ=
1
K

K
∑

j=1

x i
j | i ∈ [1, C], j ∈ [1, K] (3.4.8)

where µi is the mean of samples within each class Xi, and µ is the mean of all K samples

in the input dataset X. Now, considering two classes X1 and X2, in order to maximize

the ratio of between-class scatter SB to that of within-class scatter SW , Fisher proposed the
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following criterion for maximization:

J(ω) =

between-class scatter
︷ ︸︸ ︷

|WTµ1 −WTµ2|
2

σ1
2 +σ2

2

︸ ︷︷ ︸

within-class scatter

(3.4.9)

where the between-class scatter can be rewritten as:

|WTµ1 −WTµ2|
2 =

�

WTµ1 −WTµ2

� �

WTµ1 −WTµ2

�T

=WT (µ1 −µ2) (µ1 −µ2)
T W

=WT SBW

And the within-class scatter can be rewritten as:

σ1
2 +σ2

2 =
n1
∑

j=1

�

WT x1
j −WTµ1

�2
+

n2
∑

j=1

�

WT x2
j −WTµ2

�2

=
n1
∑

j=1

WT
�

x1
j −µ1

��

x1
j −µ1

�T
W+

n2
∑

j=1

WT
�

x2
j −µ2

��

x2
j −µ2

�T
W

=WT S1W+WT S2W=WT (S1 + S2)W

=WT SW W

In Section 4.4, we will define the generalization of the scatter matrices SB and SW for

all C classes, and will present a common approach to solve the Fisher’s maximization

problem. However, there are three important assumptions for LDA that should be taken

into consideration:

1. The samples of all classes must be normally distributed which is not always possible.

2. The dimensionality of the input data must be less than N − C , otherwise the within-

class scatter matrix SW will be singular and the inverse of it cannot be computed.

3. The number of samples K in in the training set must be much higher than the dimen-

sion N of each sample (i.e., K � N ). Otherwise LDA computation will be subject to

the same singularity problem for within-class scatter matrix SW .
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3.5 Classifier

In the field of vision-based pattern recognition, classification is considered as a supervised

learning technique that identifies the category of a new query sample based on a previously

categorized training set of well-defined and labeled samples. For the sake of comparison,

a similarity measurement strategy is required to measure the degree of similarity between

the query and each template image.

Some commonly-used classifiers in pattern recognition are: Fisher’s Discriminant Anal-

ysis (FLD) (Section 3.4.2), boosting ensemble classifier, and the Support Vector Machine

(SVM) classifier. In essence, these discriminative methods are binary classifiers (except

FLD), but there are two common approaches to apply them on multi-class problems. The

following strategies model a multi-class problem as multiple binary problems:

• One-versus-one: Classification is performed between every pair of classes and a

max-wins voting scheme determines a category that gained the most votes.

• One-versus-all: The degree of similarity is reported from the classifiers and a winner-

takes-all strategy is employed to determine the category that gained the highest de-

gree of similarity.

In this section, we discuss the SVM and the boosting classifiers, in detail. The discussion is

relevant to the description of our implementation in the next chapter. Because, the boosting

classifier is used in our face detection module, and the SVM classifier is adopted by our

embedded age and gender recognition system. Therefore, we present a detailed description

for the classification algorithms.

3.5.1 Boosting Ensemble

Boosting refers to an effective and accurate prediction algorithm that combines a set of

weak classifiers to form a single strong classifier. To put it differently, boosting learns from

the ensemble of rough and moderately inaccurate prediction rules which their accuracies

are only slightly better than random guessing. Adding each of these weak classifiers to the

combination can boost the accuracy of the final classifier [108].
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Algorithm 3.1 The Adaboost algorithm [43]
Initialize w1(i) =

1
m .

For t = 1, . . . , T :

1. Train weak learner by finding a weak hypothesis ht : X→ {−1,+1} that minimizes

the error εt :

ht = argmin
ht∈H

εt , where εt =
∑m

i=1 wt(i) [hk(x i) 6= yi]

2. Terminate the loop if εt ≥
1
2 .

3. Let αt =
1
2 ln
�

1−εt
εt

�

.

4. Update the weights:

wt+1(i) =
wt(i)

Zt
×







e−αt if ht(x i) = yi

e+αt if ht(x i) 6= yi

=
wt(i)e−αt yt ht (x i)

Zt

where Zt is a normalization factor in order to
∑m

i=1 wt+1(i) = 1.

The final strong hypothesis is define as:

H(x) = sign

�

T
∑

t=1

αtht(x)

�

44



Based on this hypothesis, Freund and Schapire [43] developed a robust boosting algo-

rithm called Adaboost, which could solve the practical difficulties of the earlier boosting

algorithms. Notably, the well-known cascade classifiers (Section 3.1) are based on such

boosting algorithms [127].

Given an input training set X = {x1, . . . , xm} consisted of samples x i∈[1,m] which are

labeled by the corresponding labels yi ∈ Y= {y1, . . . , ym}, the Adaboost algorithm repeats

T iterations to produce a strong classifier H . It is assumed that Y= {−1,+1}, and for each

iteration t ∈ {1, ..., T} there are a set of weights wt(i) where i ∈ [1, m]. The algorithm 3.1

illustrates the Adaboost algorithm. Typically, the boosting ensemble classifiers are fast al-

gorithms that are able to reject most of the false patterns in the early stages of classification.

Additionally, they require low amount of memory which makes them a good candidate for

embedded systems with limited resources.

3.5.2 Support Vector Machine (SVM)

First time proposed and developed by Vapnik and Boser [17], the Support Vector Machine

(SVM) and its variants are the most commonly-used supervised approaches for classifica-

tion. In general, SVM is a discriminative binary classifier that attempts to find a separating

hyperplane that has the widest margin to the closest training data sample of any class. This

hyperplane acts as a decision function to predict the category to which a new query sample

belongs.

Generally speaking, the wider the margin, the lower generalization error of the SVM

classifier. Hence, SVM can be modeled as a maximization problem that finds a maximum-

margin hyperplane with the largest possible distance to the nearest data points, or the so-

called support vectors of each class. Figure 3.5.1 illustrates a linear SVM training process

with two classes that produced a maximum-margin hyperplane and two marginal hyper-

planes.

Given an input training set X= {x1, . . . , xm}with two classes consisted of N-dimensional

samples x i∈[1,m] which are labeled by the corresponding set of labels Y = {y1, . . . , ym} |
yi ∈ [−1,1], the goal of SVM is to find a maximum-margin hyperplane that separates the

samples labeled as yi = −1 from those of yi = 1. This hyperplane can be defined using
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Figure 3.5.1: Illustration of the linear SVM training on the samples of two classes (blue and red

circles). The starred samples on the marginal hyperplanes (dotted gray line) are support vectors,

and the thick black line is the maximum-margin hyperplane

its normal vector w such that it satisfies w.x− b = 0; where b
‖w‖ denoted as DF in Figure

3.5.1, is the perpendicular distance between the hyperplane and the origin, and “.” denotes

the dot product operation.

Also, the maximum-margin distance DM =
2
‖w‖ is the sum of D1 =

1
‖w‖ and D2 =

1
‖w‖ which are the distances from the two marginal hyperplanes to the maximum-margin

hyperplane. The marginal hyperplanes are defined by the equations w.x − b = −1 and

w.x− b = 1. Needless to say, there are no samples within the range of maximum-margin

imposing the following constraints [31]:






w.xi − b ≥ 1 for yi=+1

w.xi − b ≤ 1 for yi=−1

(3.5.1)

These constraints can be combined to formulate an optimization problem to maximize the

margin that satisfies:

argmin
(w,b)

‖w‖ such that yi (w.xi − b)≥ 1, where i ∈ [1, m] (3.5.2)

By substituting the term ‖w‖ with 1
2‖w‖

2 and utilizing Lagrange multipliers α, we rewrite
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the problem in primal form:

arg min
(w,b)

max
αi≥0

1
2
‖w‖2 −α (yi (w.xi − b)− 1)

⇒ arg min
(w,b)

max
αi≥0

1
2
‖w‖2 −

m
∑

i=1

αi yi (w.xi − b) +
m
∑

i=1

αi (3.5.3)

Solving the optimization problem using quadratic programming techniques, we get the

normal vector w as:

w=
m
∑

i=1

αi yixi (3.5.4)

Considering that a few number of αi will be greater than zero, the corresponding xi samples

will exactly represent Ns number of support vectors xs∈[1,Ns] with labels ys lying on the

marginal hyperplanes. Hence, we can obtain the offset b from the support vectors:

b =
1
Ns

Ns
∑

s=1

(w.xs − ys) (3.5.5)

A major problem with classification methods is the misclassification of samples due to in-

separability of the distributions between the classes. As a result, the SVM trainer is not able

to find a maximum-margin hyperplane that can clearly separate the classes. Particularly,

this problem is very common in facial trait classification applications due to similarity of

the subjects in the face images of different classes (see Section 4.5).

To counter this problem, Cortes and Vapnik [27] modified the SVM and adopted a

soft margin technique that allows the misclassified samples with an associated penalty cost

proportional to their misclassification error. Thus, they suggested to relax the constraints

in Equation 3.5.1 by introducing a positive slack variable ξi∈[1,m] into the optimization

problem of Equation 3.5.3, and reformulate the Lagrangian as follows [27]:

arg min
(w,ξ,b)

max
αi ,βi≥0

1
2
‖w‖2 + C

m
∑

i=1

ξi −
m
∑

i=1

αi (yi (w.xi − b)− 1+ ξi)−
m
∑

i=1

β iξi (3.5.6)

where the constant parameter C controls the balance between the maximum-margin size

and the penalty of slack variable.

On the other hand, in some classification problems the training samples of different

classes are not linearly separable. An example could be the training samples of a class that
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Figure 3.5.2: Example of SVM training for three classes with RBF kernel (C = 1,γ = 10). The

maximum-margins are wide enough to minimize the generalization error. The red samples in the

territory of the green class are penalized to compensate for misclassification.

are encircled by the training samples of another class. To solve this problem, Boser et al.

[17] suggested applying the kernel trick to find the maximum-margin for non-linear prob-

lems. For this purpose, the kernel trick approach replaces every dot product by a non-linear

kernel function k that transforms the data into a high dimensional feature space Φ, where

a linear maximum-margin hyperplane can be found to separate the classes. Therefore, we

can rewrite the Equation 3.5.4 as:

w=
m
∑

i=1

αi yik(xi, x), where k(xi, x) = Φ(xi).Φ(x) (3.5.7)

The three common kernel types are:

• Polynomial kernel: k(xi, x j) = (xi.x j + a)d , where d is the polynomial degree and

ais a constant.

• Sigmoidal kernel: k(xi, x j) = tanh(axi.x j − b), where a and b are the sigmoidal

constants.

• Radial Basis Function (RBF) kernel: k(xi, x j) = e−γ(‖xi−x j‖
2)

In fact, the Gaussian-like RBF kernel is the most popular and reliable kernel for non-linear

classification. Figure 3.5.2 shows an example of a RBF kernel applied on a problem with

three classes. As can be seen in this example, the maximum-margin Gaussians are found
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Figure 3.5.3: Example of underfitting in SVM

training of three classes with RBF kernel (C =

1,γ= 1).

Figure 3.5.4: Example of overfitting in SVM

training of three classes with RBF kernel (C =

1,γ= 100).

for the blue and green classes, and a query sample that does not lay into the territory of

these Gaussians is categorized as the red class. Although this kernel is very accurate, there

are two problems associated with it:

1. Large training data size: The decision boundaries that encircle each class are con-

sisted of numerous Gaussians each of which is close to a support vector. Considering

that the size of training data is proportional to the number of support vectors, in

a large and high-dimensional training input the training data size may become so

large that the host platform could not be able to afford the memory and computation

requirements for classification. Specifically, this is a major problem for embedded

systems with limited resources. In Section 4.5, we investigate and provide viable

solutions for this problem.

2. Optimal values for RBF parameters: Another challenging problem is to find op-

timal value for the RBF parameters C and γ such that the generalization error of

the classifier is minimized. As a matter of fact, assigning inappropriate values to

these parameters can cause underfitting or overfitting phenomena both of which can

increase the generalization error and compromise the classification accuracy, signif-

icantly. Figures 3.5.3 and 3.5.4 show the examples of underfitting and overfitting

phenomena, respectively. The maximum-margins are widened in Figure 3.5.3 and

shrunk in Figure 3.5.4, unreasonably. A typical solution to this problem is to exploit
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grid search and cross-validation to examine different combinations of C and γ, and

finally select an optimal combination that achieves the best results.

3.6 Conclusion

In fact, the described classification problem in this thesis, namely age and gender recog-

nition, is a specific type of the facial trait classification systems which share many major

components. With this in mind, it deems necessary to expound the prerequisites and funda-

mental theories behind each of these components to prepare for describing our embedded

implementation in the next chapter. We have grouped the modules of the facial trait classi-

fication pipeline into face image acquisition, representation and classification.

In this chapter, we started with a brief description of cascade classifiers used for face

detection, and presented a robust facial landmark detector to be used for geometrical face

image alignment. Also, we described and compared different photometric and illumination

normalization techniques such as Retinex and Preprocessing Sequence (PS). Next, two

image representation methods, namely the Gabor Wavelets and the Local Binary Patterns

(LBP) were explored.

In order to reduce the dimensionality of image representation, the Principal Compo-

nent Analysis (PCA) and Linear Discriminant Analysis (LDA) approaches were discussed.

Finally, we reviewed the concepts of some robust classifiers such as Boosting Ensemble

and Support Vector Machines (SVM), and investigated the problems associated with the

non-linear SVM classifiers. In the next chapter, we will describe how these modules are

tailored to our real-time and embedded age and gender recognition system.
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Chapter 4

Video-based Age and Gender
Classification on Embedded Systems

Referring to Chapter 2, the majority of the existing state-of-the-art approaches for age and

gender recognition are resource-intensive and require high-performance computer systems.

However, the emerging applications of video-based demographics classification in mobile

services (see Section 2.1) demand a real-time system which is appropriate for resource-

limited embedded platforms and mobile devices.

Notably, the few embedded approaches that focused on this problem either are not

accurate enough [66], or they are unable to reproduce their performance in outdoor envi-

ronments with difficult illumination conditions [42]. These facts emphasize the importance

of our objectives to propose practical solutions for implementing a video-based age and

gender classifier on embedded systems that is able to perform accurately in unconstrained

environments.

With this intention, in this chapter we present our novel contributions to the methodol-

ogy of age and gender recognition for resource-limited systems. As mentioned in Chapter

3, the age and gender recognition is a sub-problem of the facial trait classification problem,

and they share several modules as the integral part of the classification pipeline.

However, there are several other modules that should be added to the generic pipeline

of Figure 3.0.1 in order to meet the specific requirements of our goal to design an accu-

rate and real-time demographics classifier for unconstrained video that demand minimal
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resources to perform. To this end, we have designed the novel architecture of Figure 4.0.1,

which integrates various robust mechanisms for face image normalization, dimensionality

reduction, and discriminative age recognition based on gender. In general, this architecture

is consisted of three parts:

• Training modules that require a high-performance computer system to perform.

• Classification modules that are optimized to perform in real-time on resource-limited

embedded systems.

• The modules which are common for both training and testing stages.

This chapter describes the implementation details of the architecture shown in Figure 4.0.1,

and explains the advantages associated with this embedded design. Each major component

of this block diagram may contain several sub-components that we will address them in

relevant sections of this chapter.

First, we start by proposing an improvement in face alignment using the nose in Sec-

tion 4.1, and a robust illumination normalization strategy in Section 4.2. A review of local

patterns and our further optimizations are presented in Section 4.3. Next, a segmental di-

mensionality reduction method for multi-resolution feature vectors is introduced in Section

4.4 which reduces the computation and memory requirements, remarkably.

We generalize a discriminative demographics classification approach in Section 4.5 to

further improve the performance on embedded systems. Finally, the conclusion is presented

in Section 4.6. It should be noted that the values of the constants used in our experimental

setup are provided in Section 5.2.
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Figure 4.0.1: The block diagram showing the architecture of our video-based age and gender clas-

sification system. The training parts are shown in red boxes (dashed-frame), the classification parts

in green (solid-frame), and the common modules for training and classification in brown (dotted-

frame).
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4.1 Face Image Acquisition

Essentially, the face image acquisition stage in Figure 4.0.1 is consisted of four parts: (1)

Face Detection, (2) Face Tracking, (3) Facial Landmark Detection, and (4) Face Alignment.

In this work, the standard cascaded face detector by Viola and Jones [127] is employed to

locate the rectangular regions that contain faces (Figure 4.1.2). As discussed in Section

3.1.1, this method is roughly fast, however, for the large input images of a video-sequence

the computation time is increased, proportionally.

To counter this problem, in our real-time system we utilize the “detection-based face

tracker” from OpenCV [18]. This tracker detects the faces once, and for subsequent frames

it limits the searching area within a neighborhood of the previously detected faces. It offers

a timer that searches for the new faces in whole image after a predefined interval. As a

result, it avoids searching the whole image for faces in each frame of the video sequence.

On the other hand, the changes in head pose and facial expression can lead to displacement

of the key features of the face (i.e., eyes, nose, and mouth) which we refer to it as “localiza-

tion error”. Generally, the facial trait classification approaches are sensitive to geometrical

misalignment, and the face image should be normalized by aligning the face in order to

reduce the localization errors.

A common strategy is to locate the position of the key facial features (landmarks) and

regard them as geometric references for performing affine transformations. In other words,

the face is transformed into an upright canonical pose by rotating, translating, and scaling

the face image. A proper geometric correction strategy can regulate the comparability of

query images against the images of training set. A popular approach in face alignment

is the positioning of the frontal face images into an upright canonical pose based on the

position of eyes [85].

To locate the eyes, we use the open-source flandmark library [124] that we introduced

in Section 3.2.1. Figure 4.1.1 illustrates some detected facial landmark points on the eyes

and nose. The eyes can be aligned horizontally by an in-plane rotation of the face image

into an upright pose using the angle θ of Equation 4.1.2. In here, the points
�

P l,x , P l,y

�

and
�

P r,x , P r,y

�

denote the center positions of the left and right eye. Typically, the distance be-

tween the eyes de yes (Equation 4.1.1) is utilized to compute the dimensions of the cropping
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Figure 4.1.1: Facial alignment using the landmarks on nose and eyes. The horizontal distance

between Pm and Pn is used to correct the over-scaling problem.

area.

de yes =
r

�

Pr,x − Pl,x

�2
+
�

Pr,y − Pl,y

�2
(4.1.1)

θ = arctan

�

Pr,y − Pl,y

Pr,x − Pl,x

�

(4.1.2)

However, in uncontrolled environments as the head’s yaw angle increases, the eyes

distance de yes shortens. As a result, the dimensions of the cropping area shrink, causing an

over-scaling error proportional to the yaw angle and, consequently, the loss of information

from the upper and lower parts of the face. Figure 4.1.2 illustrates this problem on three

face images posing with different yaw angles. On the other hand, as shown in Figure 4.1.1,

the horizontal distance between the points Pn and Pm on the nose increases when the eyes

distance de yes shortens.

Therefore, we propose to use the horizontal positions of the upper nose Pm,x and the

lower nose Pn,x to compensate for the over-scaling in face alignment. These points can

be extracted using the facial landmark detector. In Equation 4.1.3, we apply the ratio of

these points to find the scale factor S0, which is used to calculate the offset and the size of

cropping area. Indeed, the maximum dimension of the cropping area is limited as a sub-

region of the detected face region in order to avoid under-scaling in the case of unreasonably

large distance between the points Pn and Pm.
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(a) ∠yaw : −22.5◦ (b) ∠yaw : 0◦ (c) ∠yaw : +67.5◦

Figure 4.1.2: Top row: examples [96] of three detected faces posing in three yaw angles. Middle

row uses regular face alignment prone to over-scaling error proportional to the head’s yaw angle.

Bottom row uses our approach to correct the over-scaling problem.

Figure 4.1.1 illustrates this process on a generic face model. In this work, the detected

face region is an Li × Li square, and the resulting aligned and cropped face is an Lo × Lo

square image on which the left eye is fixed at the top-left offset Ωo.

S0 =

�

de yes

Lo − 2Ωo

�

∗max

�

Pm,x

Pn,x
,

Pn,x

Pm,x

�

(4.1.3)

From the scale factor S0, we compute the dimensions Lc × Lc of the cropping area, its

horizontal offset Ωx , and its vertical offset Ωy , as follows:

Lc = S0 ∗ Lo (4.1.4)

Ωx = Pl,x − S0Ωo (4.1.5)

Ωy = Pl,y − S0Ωo (4.1.6)

The description of our experimental setup in Section 5.2 provides the values that we have

used in the face acquisition stage.

56



4.2 Illumination Normalization

In demographics recognition, many researchers have focused only on still face images in

controlled environment. However, in real-life video analysis, the facial texture is prone

to non-monotonic variations in illumination which impacts the demographics perception.

Russell [105] demonstrated the Illusion of Sex on an androgynous face by only increasing

the facial contrast, resulting in a feminine look on a male subject. Similarly, in our ex-

periments we have observed the same effect on various lighting conditions. For instance,

Figure 4.2.1 shows an androgynous male face from the Extended Yale-B database [51],

illuminated under two different light source positions.

In Figure 4.2.1(b), the light source is 35◦ below the horizon inducing non-monotonic

gray value transformations by which the observer perceives a feminine look from the male

subject. In order to normalize the photometry and reduce the effects of local shadows and

highlights, we propose to apply the Preprocessing Sequence (PS) approach [119] on the

aligned face image (Section 3.2.2). The results of applying the PS are shown in Figures

4.2.1(a) and 4.2.1(b). In our work, we have used the default values mentioned in Section

3.2.2 for all PS parameters. Nevertheless, a large amount of textural noise is still present.

We provide a practical solution to this issue in section 4.3.

(a) PS on Masculine Face (5◦, 10◦) (b) PS on Feminine Face (0◦,−35◦)

Figure 4.2.1: The effect of illumination on gender perception of a male subject. Original images

[51] illuminated from (azimuth, elevation). Masculine look after applying Pre-processing Sequence

(PS) [119] on both faces.
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4.3 Face Representation

As a matter of fact, the illumination normalization methods help to standardize the photo-

metric characteristics of the face image in different illumination conditions. Nonetheless,

the classifier may still suffer from the negative effects of the geometrical displacement of

the key features on the face image due to variations in facial pose and expression. Def-

initely, a proper face alignment (Section 4.1) can alleviate the negative effects, but these

variations as well as the morphological facial differences can still deteriorate the classifier’s

performance. Particularly, this problem is more noticeable in holistic approaches that use

pixel intensity values to represent the faces.

A robust candidate to overcome localization errors is the Local Binary Pattern (LBP)

operator which has been widely exploited as a means of extracting local features of texture.

Basically, for each pixel at a center of a neighborhood, the LBPP,r operator builds a binary

sequence by applying the value of the center pixel as a threshold to P pixels in a circular

neighborhood of radius r. Figures 4.3.1(a) and 4.3.1(b) demonstrate the result of applying

(a) Original (b) LBP8,1 (c) Original PS (d) PS+LBP8,1

(e) Filtered PS (f) FPS+LBP8,1 (g) FPS+LBP8,3 (h) FPS+LBP8,5

Figure 4.3.1: Applying the LBP operator and the PS illumination normalization on a face image

[51]. Filtered PS (FPS) is our approach which filters the LBP noise.
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the LBP operator on a face image. Later, the uniform variant of this operator, LBPu2
P,R, was

introduced to capture binary patterns that contain at most two bit-wise transitions from 1 to

0, or 0 to 1. The uniform patterns not only reduce the redundancy, but also can effectively

describe the features in corners, edges, spots, and flat areas [92] (see Section 3.3.2).

Furthermore, to reduce the size of the texture descriptor and mitigate the effects of

misalignment, the LBP histogram (LBPH) was used to represent the features. Ahonen

et al. [4] extended this strategy by first dividing the LBP image into J non-overlapping

regions [M0,M1, . . . , MJ−1], then extracting the local histograms of regions, and finally

concatenating the histograms into a single and spatially enhanced feature vector. Figure

4.3.2 illustrates the feature extraction process from an LBP image.

In essence, LBP operator performs robustly in the presence of monotonic intensity

transformations. However, as can be seen in Figures 4.3.1(a) and 4.3.1(b), the thresholding

process in LBP is highly sensitive to noise and non-monotonic transformations. A solution

is to apply the Pre-processing Sequence (PS) normalization prior to LBP (Section 4.2).

Surprisingly, as shown in Figures 4.3.1(c) and 4.3.1(d), the PS only intensified the negative

effects of the LBP noise and tuning its default parameters could not improve the results.

Tan et al. [119] introduced the Local Ternary Pattern (LTP) operator that employs hys-

teresis thresholding for noise reduction, and a user-defined threshold to build a ternary

pattern (Section 3.3.2). Regardless of the effectiveness of this method, a problem is that the

LTP’s feature vector has double the size of LBP, and also a proper value for the user-defined

threshold is content dependent and cannot be generalized.

Figure 4.3.2: Extracting multi-scale local histograms
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To suppress the noise, we propose to add a Bilateral filtering stage to the PS approach.

Unlike Gaussian filter, a bilateral filter can effectively suppress the noise while preserving

important image features like edges. Also, several fast and embedded-friendly implemen-

tations of bilateral filter exist [93]. It is noteworthy that, as advised in [93], we apply the

bilateral filtering in two separate iterations: before and after the PS approach.

The illumination normalization stage of the architecture in Figure 4.0.1 shows the order

of the applied filters. Filtering the image in Figure 4.3.1(c), we obtain the photometrically

enhanced image in Figure 4.3.1(e). As a result, the corresponding LBP images are invariant

to variations in illumination and noise. Figures 4.3.1(f), 4.3.1(g), and 4.3.1(h), show the

LBP images extracted at three different radii from the Filtered PS image. In addition, Figure

3.2.2 shows the output of our Filtered PS (FPS) approach in comparison to the original PS

and other photometric normalization methods.

As a further enhancement, we employ Multi-scale Local Binary Patterns (MSLBP) [92]

operator to build a scale-invariant feature vector. In our experiments, it has demonstrated its

superior descriptive performance against face localization errors compared to regular LBP.

The MSLBP reinforces the face descriptor by combining the histograms from multiple LBP

transformations at R different radii in J regions. Figure 4.3.3 illustrates the MSLBP features

extraction using four different radii. Equation 4.3.1 defines the uniform LBP histogram

of region M j at radius r and bin i ∈ [0, L) [21]. Herein, L denotes the total number of

bins in uniform LBP histogram. An extra bin has been added for non-uniform feature

Figure 4.3.3: Four radii of Multi-scale Local Binary Patterns (R = 4). The circles represent the

position of each surrounding pixel in the circular neighborhood for each radius.
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accumulation; therefore, L = P(P − 1) + 3.

Hu2
P,r, j(i) =

∑

x ,y∈M j

B(LBPu2
P,r (x , y) = i) (4.3.1)

where r ∈ [1, R], and B(u) is 1 if u ≥ 0 and 0 otherwise. Fusing R histograms at each

region j, we obtain the raw face descriptor segment Q j ∈ R1×(L.R):

Q j=

�

Hu2
P,1, j, Hu2

P,2, j, . . . , Hu2
P,R, j

�

(4.3.2)

Q= [Q0, Q1, . . . , QJ−1] (4.3.3)

In this paper, we refer to partitions of the LBP image as regions, and partitions of the feature

vector as segments. The raw feature vector Q ∈ R1×(J .L.R) is the ensemble of face descriptor

segments for each sample, and is meant to feed the classifier’s input with multi-resolution

LBP features. However, its high dimensionality makes this impractical due to large time

and space complexity. This curse of dimensionality also contributes to accuracy degrada-

tion due to data redundancy and noise. Inspired by [114, 13], we minimize these problems

by applying a segmental dimensionality reduction on each descriptor segment Q j, sepa-

rately. With respect to face recognition applications, we emphasize three major advantages

of using LDA dimensionality reduction on a partitioned feature vector in demographics

classification:

1. In holistic models LDA suffers from the curse of dimensionality, and a large di-

mension reduction prior to LDA can overly discard texture information. In contrast,

applying LDA on separate small regions can mitigate its singularity problems while

preserving important local texture information.

2. In demographics classification the number of classes is finite, but theoretically, an

infinite number of samples can be used to train the classifier. A low dimensional

feature vector along with a large number of training samples work best to lift the

curse of dimensionality from discriminant analysis.

3. Unlike face recognition, the resource-demanding Eigen-decomposition and PCA+LDA

computations are only required in training stage, and not in testing stage. We take ad-

vantage of this fact in our real-time embedded application, because we only perform

a simple computation for subspace data projection in the testing stage.
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4.4 Segmental Dimensionality Reduction

Regardless of the use of image-based or feature-based representation of the face image data,

there are several prohibitive problems associated with the dimension of such data, known

as the curse of dimensionality. Specifically, most of the embedded systems with limited

resources cannot afford the large memory and computation requirements of such face rep-

resentations. On the other hand, the high degree of redundancy and presence of textural

noise can drastically reduce the comparability of the face representations and degrade the

accuracy of classifier.

Therefore, reducing the dimensionality of the representation vector data, and extracting

only the most descriptive and discriminative features from the face image can help to over-

come these problems. To this end, we can take advantage of two natural facts about the face

[21]. First, the appearance of face from a frontal view is almost symmetrical, and the rela-

tive positions of the key features of the face such as eyes, nose, and mouth are constrained.

Second, the texture of the facial skin is mostly consistent and there exists a high correlation

among the adjacent pixels in different regions of the face image. Thus, we conclude that

the face representation can be confined into a discriminative and low-dimensional subspace

that can assist to deal with the curse of dimensionality problem.

Referring to Section 3.4, the two well-known methods for dimensionality reduction are

the Principal Component Analysis (PCA), and the Linear Discriminant Analysis (LDA).

Unlike PCA, the LDA is a supervised reduction method that can linearly separate the

classes to capture the most discriminant features from the face representation. It aims

to maximize the ratio of between-class and within-class separability among N samples of

C classes by projecting samples into a new subspace with C−1 dimensions (Section 3.4.2).

Herein, we have partitioned the feature vector into J smaller segments; therefore, the low

dimension of the face descriptor segments Q j can prevent singularity. Nevertheless, the

redundancy and noise in Q j can still deteriorate the classifier’s performance.

In some researches [12], an oval mask is used to eliminate the background noise. How-

ever, the eyeglasses, facial pose, facial expression, and the lighting and skin conditions

may still influence the results. Hence, prior to LDA, we can wisely make use of PCA along
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with a robust feature preservation criterion in order to only retain the most descriptive fea-

tures. PCA is formulated as a maximization problem (see Section 3.4.1), and its segmental

projection matrix can be computed as:

WPCA
j = argmax

W j

tr
�

WT
j (SΣ) j W j

�

(4.4.1)

(SΣ) j =
N
∑

k=1

�

(Qk) j −µ j

� �

(Qk) j −µ j

�T
(4.4.2)

where (SΣ) j in Equation 4.4.2 is the total scatter matrix computed from each feature seg-

ment (Qk) j of every k-th sample and j-th region, which are centered using the mean of all

N samples µ j ∈ R1×(L.R). Our criterion for eigenvector selection in PCA is that the i-th

eigenvector can be preserved only if the retained energy ei (Equation 4.4.3) from the first i

eigenvalues λm is greater than a threshold τe [69].

ei =

∑i
m=1λm

∑n
m=1λm

(4.4.3)

This enhancement stage can be considered as an efficient weighting mechanism to attain

more influence from more discriminative regions of face. Afterwards, the preserved infor-

mation can be passed for discriminant analysis. In Section 5.4 and Figure 5.3.2 the result

of applying this criterion for eigenvector selection is illustrated.

In LDA, we model the segmental between-class and within-class separation of samples

with scatter matrices (SB) j and (SW ) j, respectively (see Section 3.4.2). For each segment,

the LDA projection matrix WLDA
j can be obtained from maximizing the modified Fisher’s

criterion [13]:

WLDA
j = argmax

W j

tr





WT
j

�

WPCA
j

�T
(SB) j WPCA

j W j

WT
j

�

WPCA
j

�T
(SW ) j WPCA

j W j



 (4.4.4)

where (SB) j is calculated from the number of samples Nc and the mean µc
j of the samples

in the class c ∈ [1, C] (Equation 4.4.5). Also, (SW ) j is computed from the segment
�

Qc
k

�

j

of every k-th sample of each class c in region j (Equation 4.4.6).
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(SB) j =
C
∑

c=1

Nc

�

µc
j −µ j

��

µc
j −µ j

�T
(4.4.5)

(SW ) j =
C
∑

c=1

Nc
∑

k=1

�

�

Qc
k

�

j
−µc

j

��

�

Qc
k

�

j
−µc

j

�T
(4.4.6)

In our method, Q j is already low-dimensional, and N is large, so the matrix (SW ) j will

be non-singular. As a consequence, the matrix WLDA
j can be composed from the (C − 1)

largest eigenvectors um of the matrix (SW )
−1
j (SB) j (Equation 4.4.7).

SBum = λmSW um

WLDA = um, where m ∈ [1, C − 1] (4.4.7)

An often neglected issue in using LDA for face processing applications is the general-

ization problem. Although a minimized within-class measure is desirable for matrix (SW ) j,

the within-class samples may be transformed into such a narrow region that the LDA may

lose its ability to generalize test data. In addition, the inverse of the matrix (SW ) j is used to

compute the LDA transformation matrix which is ill-posed by nature, and is easily prone

to numerical instability. In other words, the very small values in matrix (SW ) j which may

represent noise data can be magnified by the inverse computation (SW ) j
−1. To prevent

over-fitting and improve the numerical stability, we add a regularization term to the diago-

nal of the matrix (SW ) j using a small positive constant γ and the same-size identity matrix

I [94], as follows:

(SW ) j = (SW ) j + γI (4.4.8)

Now, to acquire the most descriptive and discriminant set of features, each segment

(Qk) j of the k-th sample can be projected into our Enhanced Discriminant Analysis (EDA)

subspace (Fk) j ∈ R1×(C−1) using the EDA transformation matrix WEDA
j ∈ R(LR)×(C−1) (Equa-

tion 4.4.9). It is noteworthy that (Qk) j must be normalized to have a zero mean, as Equation

4.4.10 illustrates.
�

WEDA
j

�T
=
�

WLDA
j

�T �

WPCA
j

�T
(4.4.9)

(Fk) j =
�

WEDA
j

�T �
(Qk) j −µ j

�

(4.4.10)
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Finally, we concatenate the (Fk) j of all N samples into a single feature matrix F ∈
RN×(J .(C−1)) to feed the training stage (Section 4.5). However, prior to concatenation we L2-

normalize the rows of matrix F in order to provide the classifier with a coherent descriptor

and regularize the similarity quantification among the samples (Equation 4.4.11). Needless

to say, each row (Fk) of this matrix represents the EDA projection of the feature vector

(Qk) extracted from the k-th training image for all regions. In testing stage, F only has a

single row representing the query image.

F=















(F1)0 (F1)1 · · · (F1)J−1

(F2)0 (F2)1 · · · (F2)J−1
...

... . . . ...

(FN )0 (FN )1 · · · (FN )J−1















(4.4.11)

4.5 Classification on Embedded System

In face-based classification, the objective of classifier is to compare the representation of a

probe (or query) face image with those of the training set templates, and determine the cat-

egory to which the probe image belongs. There exist various classification and similarity

measurement techniques in LDA space, such as Euclidean or cosine distance measurement

between samples. However, in this work we employ the supervised Support Vector Ma-

chine (SVM) classifier [17].

As introduced in Section 3.5.2, SVM is a discriminative binary classifier that finds a

maximum-margin hyperplane that has the widest margin to the closest training data points,

or the so-called support vectors, of any class. In fact, this hyperplane is a decision function

to predict the category to which a new query sample belongs. In our architecture, with have

used SVM with an RBF kernel to guarantee an accurate classification in LDA subspace.

Typically, a soft margin SVM with a penalty cost Cp is utilized to compensate for

misclassification due to asymmetric class sizes and over-proportional influence of larger

classes. We obtain the optimal values for RBF constants γ and Cp using a 10-fold cross-

validation method to avoid the under or over-fitting in training stage (see Section 3.5.2).

We chose the symbol Cp to not confuse it with the number of classes C .
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However, in a multi-class problem (C > 2) with disproportionate class sizes, the clas-

sifier must be balanced using a dedicated weight for each class. For instance, in Age

classification we tune the weight of a smaller data set (e.g., Senior) to counterbalance and

diminish the influence of a larger data set (e.g., Adult). After training, the resulting support

vectors are of dimension R1×(J .(C−1)) each, where C in here is the class size. We model the

multi-class age classifier as a binary classification problem using one vs. one comparison

amongst all classes, and a max-wins voting scheme to determine the age group.

4.5.1 Demography-based Classification

We generalize the work in [55] to improve the performance on embedded system using a

demography-based discriminative model for classification. As shown in Figure 4.5.1, we

build a tree that discriminates the classification of gender based on ethnicity (n groups),

and age (m groups) based on the recognized gender, in sequential stages using n separate

classifiers for gender, and 2n separate classifiers for age recognition. The rationale behind

this method roots in the differences of facial structures among different races and genders.

For instance, usually middle-aged females and males do not show the same facial aging

signs due to better skin-care in females. Or, different cranial structures or skin colors

Figure 4.5.1: Demography-based discriminative tree model for classification. Gender is recognized

based on ethnicity, and age is estimated based on the recognized gender.
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among races may impact the results. Therefore, discrimination based on the parent stage

within this tree can effectively improve the success rate in gender or age recognition. More

importantly, splitting the training database into separate and smaller sets speeds-up the

recognition, significantly. Since in training stage we only include a very limited number of

samples per group of training sets (e.g., Asian Females), then much fewer support vectors

will be generated for each group. Consequently, the number of similarity measurements

(query image vs. training data) and computations will be drastically reduced in testing

stage, which is favorable for embedded systems.

It should be noted that, in our current system, the ethnicity recognition stage has not

been implemented yet, and will be postponed for the future work. However, the effect

of ethnicity on age and gender recognition has been demonstrated in several studies (e.g.,

in [55]) and, therefore, adding an ethnicity recognition stage to our current system shall

improve the generalization capability of our age and gender classifiers for different races.

4.5.2 Video-based Classification

In fact, video-based classification is more challenging than still-image-based techniques,

since still-to-still classification in video sequences is an ill-posed problem [58]. In this

case, regardless of the robustness of the classifiers, the transient variations in head-pose,

facial expressions, or improper photometric conditions can cause misclassification in each

frame of the video. To stabilize the results, a solution is to employ a majority voting

scheme to vote for the best decisions across multiple video frames. We have integrated

this temporal voting technique in our real-time architecture (Figure 4.0.1) to effectively

increase the confidence and reliability of decisions.

Moreover, a face tracker not only improves the face detection performance (Section

4.1), but can accelerate and stabilize the recognition process by continuously preserving the

best classification results until the tracked face is lost. As presented in [41], detecting the

best quality face images among the frames of a video sequence is another viable strategy

to feed the real-time classifiers with only high quality face images, and ignore the non-

informative video frames.
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4.5.3 Embedded Design Considerations

Given the limitations of the available resources in embedded platforms, a real-time age and

gender recognition system requires several design principles to be taken into consideration

in order to minimize the memory and computation requirements.

• Computational Requirements: Technically, without dimension reduction, linear

SVM performs much faster than its RBF counterpart, but it sacrifices the accuracy.

On the other hand, SVM+RBF is accurate but is computation-intensive and can-

not perform in real-time using a large and high-dimensional training set. For this

purpose, our enhanced segmental dimension reduction approach (Section 4.4) is de-

signed to supply the SVM classifier with a low-dimensional enhanced feature vector

which is most desirable for the real-time classification on embedded systems. Also,

our demography-based classification approach (4.5.1) speeds-up the classification by

splitting a large training set into several smaller training sets that are dedicated to spe-

cific group of gender or ethnicity. As a consequence, much fewer support vectors are

generated for each group and fewer computations are required for classification on

the embedded platform. The evaluation results of the computational improvements

are discussed in Section 5.5.

• Memory Requirements: In essence, linear SVM generates much fewer support vec-

tors than its RBF counterpart due to the linear nature of the maximum-margin hyper-

plane, but it is not accurate. However, considering that the size of training data is

proportional to the number of support vectors, the numerous high-dimensional sup-

port vectors generated by SVM+RBF can increase the training data size such that it

becomes so large that it cannot fit on an embedded platform. Again, thanks to our

enhanced segmental dimension reduction technique the training data size is reduced

and, consequently, both volatile and non-volatile memory requirements are reduced.

Section 5.6 provides a thorough memory analysis of the designed architecture.

• Portability of training data and configuration parameters: Originally, the OpenCV’s

SVM trainer stores the support vectors in a very large human/machine readable file

format (i.e., YAML) that is too bulky to be stored on embedded architectures, and
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requires a computation-intensive parser to read the training data. Furthermore, in ad-

dition to the required transformation matrices, there are a plethora of parameters that

need to be transferred to the embedded platform to configure different modules such

as illumination normalization, face alignment, LBP transformation, and classifiers.

For these reasons, a self-contained and portable binary file format is designed which

includes all the configuration parameters, support vectors, EDA projection matrices

WEDA
j , and the mean matrices µ j for J segments (Section 4.4). For our embedded

system we have created a training data file for gender, and two separate training data

files for discriminative age recognition based on the subject’s gender (Section 4.5.1).

4.6 Conclusion

This chapter has provided a detailed explanation of our novel contributions to the method-

ology of age and gender recognition for resource-limited systems. We presented a full

block diagram of the system’s architecture and described different integrated modules of

this system. First, an improvement in face alignment was proposed to rectify the over-

scaling problems in existing face alignment approaches. Next, the effect of illumination on

gender perception was illustrated by an example, and a robust illumination normalization

strategy was presented to standardize the photometric characteristics.

We utilized multi-scale local binary patterns to represent the face image, and introduced

an enhanced segmental dimensionality reduction technique to extract the most descriptive

and discriminative features. To end the chapter, we presented an accurate and resource-

efficient classifier along with a demography-based approach to improve the performance on

embedded systems. In the next chapter, we will describe our experimental setup for evalu-

ating the performance of our system, and provide the results and discussions to demonstrate

the robustness of our methodology.
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Chapter 5

Results and Evaluation

Technically, conducting a fair comparison between the relevant facial trait classification

approaches is very difficult due to diversity of experimental conditions such as the eval-

uation database size and the quality of test images, and also variations in environmental

illumination, facial expression and head pose. In fact, a common protocol is necessary

to standardize the experimental conditions and evaluations methods. For this reason, sev-

eral public face image databases are provided to be used for evaluating the accuracy of

the face-based classifiers. On the other hand, for a typical embedded application, a well-

defined benchmarking framework is required to measure the computational performance

and memory requirements of the embedded implementation.

In this chapter, we present the experimental conditions and the evaluation results of our

age and gender classifiers as well as the computational and memory analysis of the classi-

fiers. We begin this chapter by introducing the face image databases that have been used for

training and evaluation in Section 5.1. Next, our benchmark setup and classifier parameters

are described in Section 5.2, and a series of experiments are presented in Section 5.3 to

investigate the effects of these parameters on recognition rate. Then, the evaluation results

in terms of accuracy, computational performance, and memory requirements are discussed

in Sections 5.4, 5.5, and 5.6, respectively. Lastly, we end this chapter by presenting a

conclusion in Section 5.7.
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5.1 Databases

Nowadays, many face image databases exist which are each appropriate for certain applica-

tions such as face recognition, age estimation, or gender classification. Most of these face

image databases are collected from controlled environments in terms of illumination, facial

expression, and head pose conditions. Therefore, they are not sufficient for demonstrat-

ing the performance and the generalization capability of a classifier in realistic scenarios.

A major breakthrough in evaluation methods was the introduction of the so-called “in-

the-wild” databases that contain face images collected from unconstrained environments.

These uncontrolled databases can help to assess the robustness of classifier against the real-

world conditions. In this section, we introduce several well-known face image databases

that we have used to train and evaluate our age and gender classifiers.

• FERET database[96]: The Facial Recognition Technology (FERET) database is

one of the earliest and most comprehensive datasets that provide face images labeled

with actual age, gender, and ethnicity. These gray-scale images are captured in a con-

trolled environment at a resolution of 256×384, and categorized into several gallery

sets for different facial expressions, head poses, and illumination conditions. The

two widely-used galleries from this database are called “Fa” (1762 images) and “Fb”

(1518 images) which both include frontal pose face images, but with slightly differ-

ent facial expressions. In this work, we have included 1,267 images from gallery

“Fa” into the training set of the age classifier, and used 1,330 images from gallery

“Fb” to test the gender classifier.

• PAL database [87]: The Park Aging Laboratory (PAL) database contains 576 frontal

pose face images of 219 male and 357 female subjects. This controlled database is

divided into four age groups: 18-28, 30-49, 50-69, and 70-93. We have used 515

images of this database in order to test the gender classifier.

• BioID database [68]: Originally, published as a controlled face dataset to test and

compare the face detection algorithms. It is consisted of 1,521 face images of 23

subjects from which 467 male and 341 female face images are used in our work to

evaluate the gender classifier.
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• MORPH database [103]: A multi-ethnic database consisted of 46,645 male and

8,487 female face images which 77% of them are African-American subjects, 19%

White subjects, and the remaining 4% are Asian, Hispanic, and Indian subjects. In

our approach, 1,260 images are included in gender training set and 6,573 images in

age training set. Although, this database is collected in a controlled environment, the

diversity of ethnicity in this database poses a serious challenge for age and gender

classification approaches. For instance, if the classifiers are trained using only White

subjects, then they may not be able to generalize their performance on the African-

American subjects due to differences in facial structures or skin colors. As describe

in Section 4.5.1, separating the classifiers based on ethnicity is a practical solution to

this problem.

• Gallagher database [48]: A very challenging and uncontrolled benchmark com-

posed of 28,231 face images from 5,080 subjects collected from Flickr. Originally,

this “in-the-wild” database was created to study group photos of people (e.g., fam-

ily photos), which most of them are posing for the camera. Therefore, the majority

of face images are captured in frontal facial pose under unconstrained illumination

and expression conditions. A face detection algorithm was used to locate 86% of

the faces in group photos and the rest of faces are located manually. As a common

protocol [32], only 14,760 high quality near-frontal face images are used for age and

gender classification from which 7380 images are male subjects and 7380 images

are female subjects. Moreover, the images are labeled and categorized into seven

age groups: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+. The majority of the face

images in our age and gender training sets were selected from this dataset.

• Adience database [36]: Similar to Gallagher dataset, the face images of Adience

database are captured in unconstrained environments. There are a total of 26,580

images from 2,284 subjects collected from Flickr which are divided into eight age

groups: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+. Specifically, 13,649 face

images of this database are captured in near-frontal pose (±5◦ yaw angle) and in our

evaluation method, these images were merely used for testing our age and gender

classifiers in order to assess their performances under unconstrained conditions.
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5.2 Benchmark Setup

In this work, our embedded benchmarking platform was an Android system running on

a multi-core 1.7 GHz Snapdragon 600 (ARMv7) SoC, with 2 GB of RAM and camera

resolution 720×1280 pixels. We have implemented our framework in C++, and used Java

Native Interface (JNI) to connect with Android system. Notably, several standard routines

from OpenCV [18] have been integrated into our framework for face detection, photomet-

ric corrections, and SVM training. Also, a self-contained and portable binary file format

is designed which includes all the parameters, support vectors, and the segmental projec-

tion matrices WEDA
j and µ j for J segments (Section 4.5.3). The floating-point values have

single-precision for support vectors and double-precision for projection matrices. For our

embedded system we have created a training data file for gender, and two separate training

data files for discriminative age recognition based on the subject’s gender (Section 4.5.1).

Our age classifier categorizes four age groups of: 0-19, 20-36, 37-65, and 66+ years old.

To evaluate these classifiers, a variety of face databases have been used as a cross-

database benchmark for training and testing stages. As demonstrated in [12], the single-

database evaluations in many researches are optimistically biased due to disproportionate

diversity of races and ages, or specific lighting or head pose conditions in each database.

Hence, we have trained our classifiers using a combination of selected face images from

the databases listed in Table 1, and evaluated the same classifiers on a different set of

databases in Table 2. Except the in-the-wild face images of Gallagher [48] and Adience

[36] databases, the rest are captured in controlled lighting and head pose conditions.

From Adience database, even though we have used only near-frontal version (13,649

images with ±5◦ yaw angle), the evaluation on this unconstrained dataset is still very chal-

lenging. Eidinger et al. [36] demonstrated that the difficulty level of this data set is more

than Gallagher dataset. Moreover, unlike some researches [9] that have performed evalu-

ation on manually aligned and normalized images, we have evaluated the classifiers using

our full recognition pipeline; from face detection to age and gender recognition. Therefore,

our evaluation results closely reflect the real-world conditions.
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Table 1: Databases and the number of images used for training

Training Number of images used

Database
Image Gender Age Group (male+female)

size Male Female 0 - 19 20 - 36 37 - 65 66+

FERET (Fa) [96] 256×384 0 0 0 489+357 270+101 20+0

MORPH [103] 200×240 790 470 1590+800 1111+1332 850+875 15+0

Gallagher [48] Variable 7,350 7,350 1410+1350 4000+3911 1650+1800 307+312

Total 8140 7820 3000+2150 5600+5600 2770+2776 342+312

Table 2: Databases and the number of images used for evaluation

Evaluation Number of images used

Database
Image Gender Age Group (male+female)

Size Male Female 0 - 19 20 - 36 37 - 65 66+

FERET (Fb) [96] 256×384 840 490 0 0 0 0

Adience [36] Variable 3948 5060 1608+2294 1330+1724 921+1008 56+78

BioID [68] 384×286 467 341 0 0 0 0

PAL [87] 638×480 200 315 0 0 0 0

Total 5455 6206 1608+2294 1330+1724 921+1008 56+78
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5.3 Experiments and Discussions

This section provides a detailed explanation of our experiments and the parameters of our

age and gender classifiers. Also, several graphs are provided in order to illustrate the ef-

fects of different parameters on the recognition rate of gender classifier. The trends of these

graphs are similar for gender and age group classifiers, because their underlying method-

ologies are identical. Considering the same notations used in Chapter 4, we begin by align-

ing the detected face and cropping it to size Lo = 100 pixels with the left eye offset at

Ωo =
Lo
4 (Section 4.1). The bar graph in Figure 5.3.8 shows the effectiveness of our cor-

rection method for face alignment in controlled and uncontrolled environments. Clearly,

the improvement in uncontrolled environments like Adience benchmark is more than con-

trolled environments like FERET database due to higher variations in yaw angles (head),

and higher number of evaluation samples in Adience database.

In the next stage, the 100 × 100 aligned image is photometrically corrected utilizing

our Filtered PS method (Sections 4.2). As the samples in Figure 5.3.1 show, this method

along with uniform LBP can effectively reduce the effects of illusion of sex (Figure 4.2.1),

difference in skin colors, facial cosmetics and lighting conditions while preserving facial

wrinkles for age classification. As can be seen in Figures 5.3.3 and 5.3.4, the performance

of Retinex method (Section 3.2.2) is superior compared to other methods, but it cannot

normalize facial skin colors and its computation time is slightly more than our Filtered

P.S method (see Section 5.5). According to Figure 5.3.3, illumination normalization in

controlled environments is not required and even can degrade the recognition rate.

In order to compensate for face localization errors, each feature segment Q j is com-

posed of five different radii (R = 5) of uniform (L = 59, if P = 8) multi-scale LBP

histograms (Section 4.3). However, as Figure 5.3.5 shows, the accuracy of six radii config-

uration is slightly better; therefore, depending on the availability of resources on embedded

platform, our classifiers can be easily configured to use six radii of LBP (larger training

data file). According to our experiments, greater radii (R > 6) in uniform LBP could not

improve the results further.

Similar to Figure 4.3.2, the resulting LBP images are partitioned into 10 × 10 non-

overlapping regions (J = 100) to extract the feature vector Q ∈ R100×(59∗5) for each sample.
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Figure 5.3.1: Our illumination normalization approach. Original images (top), Filtered PS (mid-

dle), and corresponding LBP8,1 images (bottom).

It is worth noting that the size of the regions should not be necessarily the same; for in-

stance, on a 100×100 image, a 12×12 overlapping configuration or any other number of

regions with different sizes can be configured in our system. Figure 5.3.6, illustrates how

the recognition rate varies as a function of increasing number of regions.

For eigenvector selection in our segmental dimensionality reduction approach (Section

4.4), we have obtained the energy threshold values τe (Table 3), experimentally. The color

maps in Figure 5.3.2, illustrate the percentage of retained eigenvectors in each segment

Q j for age and gender classifiers. Matching the regions in the color maps and the LBP

image of Figure 4.3.2, the importance of discriminative regions around the eyes and mouth

is evident. Thereby, the effects of eyeglasses and facial expressions can be minimized.

Moreover, as Figure 5.3.7 demonstrates, the success rates of the classifiers are sensitive

to the value of threshold τe. As a rule of thumb, the fewer training samples are used, the

fewer eigenvectors must be retained in order to prevent singularity or overfitting problems

in LDA subspace.

To further improve the numerical stability in discriminant analysis we chose the regular-

ization constant γ= 0.01 to avoid near-zero eigenvalues (Section 4.4). Tuning the constant
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Figure 5.3.2: Color maps showing the percentage of retained energy from PCA in each region for

gender (left; τe = 0.98) and age (right; τe = 0.97). Notice the high variance regions around the

eyes and mouth.

γ with other values did not affect the results significantly. Table 3 lists the configuration

of our classifiers such as the total number of training images, values for the threshold τe,

and the RBF parameters. To balance the age training set, the class weights were adjusted

experimentally, based on the size of each class and their influence on other classes (see

Section 4.5).

Table 3: Configuration of the age and gender classifiers

Classifier #Classes #Training Images
PCA RBF

τe γ Cp

Gender 2 15,960 0.98 1.0125 2.5

Age (M) 4 11,712 0.97 1.0125 2.5

Age (F) 4 10,838 0.97 1.5187 2.5
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Figure 5.3.3: Effect of illumination normaliza-

tion in controlled environments (FERET).

Figure 5.3.4: Effect of illumination normaliza-

tion in uncontrolled environments (Adience).

Figure 5.3.5: The recognition rates per differ-

ent number of regions.

Figure 5.3.6: The recognition rates per differ-

ent number of concatenated LBP scales.

Figure 5.3.7: The recognition rates per differ-

ent threshold values τe for retaining eigenvec-

tors (PCA).

Figure 5.3.8: Effect of our correction method

for face alignment in controlled and uncon-

trolled environments.
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5.4 Accuracy Analysis

In this section, we present the evaluation results of our age and gender classifiers, and

compare their accuracy against several state-of-the-art methods. In spite of the memory-

efficient and real-time performance of our method, the success rates are closely comparable

with other state of the art but resource-demanding approaches. Although the classification

parameters can be tuned to achieve a high success rate for a specific database, it may fail to

generalize the success on other databases.

Some of such non-generic parameterization include: retaining eigenvectors selectively

per database [12], existence of multiple same identity subjects in evaluation [88], or tar-

geted and very low number of evaluation samples [67]. In contrast, we aim to evaluate our

classifiers with the same configurations on every database. It should be noted that, unlike

many other studies, we have provided the recognition rates for male and female groups

Table 4: Gender recognition rates (our MSLBP+EDA+SVM method vs. the state-of-the-art classi-

fiers). Note: only the total success rate is available for the cited papers (#: No. of images used). See

Table 2 for no. images we used for evaluation.

Database
Classifier

Female Male Total
(*:embedded system)

BioID
MSLBP+EDA+SVM* 92.08% 98.50% 95.79%

SHORE[42]* N/A 94.3%

FERET
MSLBP+EDA+SVM* 96.12% 94.64% 95.19%

LUT Adaboost[85] #450 #450 93.33%

SVM+RBF[12] #403 #591 93.95%

PAL
MSLBP+EDA+SVM* 91.43% 90.50% 91.07%

Adaboost[9, 12] #357 #219 87.24%

SVM+RBF[12] #357 #219 89.81%

Adience
MSLBP+EDA+SVM* 90.77% 65.93% 79.88%

Dropout-SVM[36] #6455 #5824 75.8%
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separately in order to present a detailed analysis of accuracy. Also, for the sake of fair

comparison, the total recognition rates along with the number of evaluation images in the

cited papers are given in order to compare with the number of images that we have used for

evaluation (Table 2).

Table 4 shows the recognition rates obtained from our cross-database evaluations for

gender classification on the databases mentioned in Table 2, and the comparisons to some

existing robust classifiers. According to our observations, the reason for lower gender

recognition rate in male group (65.93%) of Adience database can be attributed to the ex-

istence of numerous children of under 6 years old who are very similar in appearance to

females.

Also, the low gender recognition rate on PAL database, confirms the influence of eth-

nicity on demographics classification. Provided that our training set is mostly consisted of

White subjects (Table 1), the gender (or age) classifier may fail for some African subjects

in this database due to different facial structures and features. Likewise, the same condi-

tions may apply for other missing races in the training set. Exploiting the demographics

discriminative classification strategy (Section 4.5.1), the classifier can better generalize on

faces of different races.

As Table 5 shows, our evaluation results for age classification on Adience dataset out-

perform the results of the state-of-the-art dropout-SVM method of Eidinger et al. [36].

The improved accuracy can be attributed to the utilization of our filtered PS illumination

normalization technique, and a multi-scale representation of face images. Nevertheless, in

Table 5: Age recognition rates per age group and gender (our MSLBP+EDA+SVM method vs. the

state-of-the-art classifier) using the Adience uncontrolled benchmark. Note: only the total success

rate is available for the cited paper (#: No. of images used). See Table 2 for no. images we used for

evaluation.

Classifier
Age group 0 - 19 20 - 36 37 - 65 66+ Total

F M F M F M F M F M

MSLBP+EDA+SVM 82.7% 93.0% 85.5% 83.5% 75.8% 75.3% 80.47% 83.6% 82.2% 85.4%

Dropout-SVM[36] #2989 #2487 #1692 #1602 #1027 #1148 #309 #272 80.7%
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Adience database the existence of numerous faces with masks, makeup, occlusions, and

severe distortions, increases the classification errors, considerably.

Particularly, in contrast to males of this data set, many 15-19 years old females are mis-

classified due to high resemblance to the 20-36 age group. We believe the lower intensity of

facial aging signs due to cosmetics and skin-care in females may contribute to these errors.

Also, the senior age group in Gallagher (training database) starts from 66 years old, but in

Adience (evaluation database) from 60 years old. This discrepancy and confusion could be

the reason for the lower success rates in our 37-65 and 66+ age groups.

5.4.1 Limitations for Single-database Evaluation

A common protocol to demonstrate the accuracy of age classifiers is to provide a 7-classes

“Confusion Matrix” using an uncontrolled database such as Gallagher [48, 112, 36, 32].

For such a single-database evaluation, first the database is divided into N folds, then the

classifier is evaluated N times by training with N − 1 folds and testing with the remaining

fold, and finally the accuracy is represented by the mean of all N evaluations. However,

from a technical standpoint this evaluation method is at odds with our segmental dimen-

sionality reduction technique and, therefore, a confusion matrix cannot be created.

The reason roots in the oversensitivity of LDA to the curse of dimensionality in face

representation (see Section 3.4.2), and the highly unbalanced nature of Gallagher and Adi-

ence databases. For instance, the Gallagher database contains only 417 face images for

8-12 years old, compared to 7,921 face images for 20-36 years old. Similar to the proto-

col used in [32, 112, 36], if we divide this database into 5 folds, only 83 images will be

available for training the age group of 8-12.

This small number of training samples along with a high dimensional feature vector

(e.g., 295 for five scales of LBP in each region) is often a recipe for overfitting and singu-

larity problems in LDA subspace. Even utilizing PCA before LDA to reduce the dimen-

sionality cannot solve this ill-conditioned problem, because the available samples are too

few and PCA is a “lossy” compression method that overly discards useful texture informa-

tion and deteriorates the recognition rate, significantly.

As a matter of fact, our main objective in this thesis was to design and implement a
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real-time and accurate (see Tables 5 and 4) age and gender classifier for embedded systems

which could be achieved by collecting an adequate number of training samples.

5.5 Computational Analysis

In this section, using the same embedded benchmark setup of Section 5.2, we analyze the

computational requirements for different stages of our age and gender classification system.

As can be seen in Table 6, most of the computation time for face alignment stage is spent

on landmark detection. In our system, the detection-based face tracker [18] (see Section

4.1) runs on a separate thread (using POSIX library) and we do not take its computation

time into account. This face tracker searches the whole image only at specific intervals, and

otherwise limits the searching scope to the neighborhood of the previously detected faces

in each frame of the video. Therefore, it performs very fast, and also its performance is less

dependent on the dimensions of the input image.

In the next stage, our system provides five different options to perform illumination

normalization on face image which we discussed in Section 5.3. Table 6 shows that our Fil-

tered P.S method is slightly faster than Retinex. In general, bilateral filters are computation-

intensive, but there exist several fast approximation algorithms [93] for bilateral filtering

that can perform in real-time.

Table 6: Computational analysis for preprocessing stage

Face Alignment Illumination Normalization

flandmark Alignment H.E CLAHE Retinex P.S Filtered P.S

21.7 ms 5.1 ms 0.6 ms 1.7 ms 17.3 ms 7.1 ms 15.5 ms

Table 7: Computational analysis for classification stage

Classifier
Stage EDA Projection SVM Classification

Gender 5.9 ms 2.3 ms

Age 11.1 ms 3.5 ms
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Moreover, by applying a discriminative classification strategy on a low dimensional en-

hanced feature vector, the computation time of classifiers can be minimized. As discussed

in Section 4.5.1, the separation of classifiers for different races and gender types, not only

improves the accuracy, but also accelerates the recognition process due to fewer number of

input training samples and support vectors. Table 7 shows the required computation times

for subspace projection and SVM classification. Although an RBF kernel is employed for

SVM classification, it performs very fast thanks to our segmental Enhanced Discriminant

Analysis (EDA) dimensionality reduction technique that we discussed in Section 4.4.

On the embedded platform described in Section 5.2, our experiments demonstrate a to-

tal performance of 15 to 20 frames per second depending on the input frame rate, on-screen

display parameters, illumination normalization technique used and, more importantly, the

status of face tracker. In the latter case, the last recognition results are preserved for the

tracked face, and it is not required to re-perform the classification until the tracking is lost.

5.6 Memory Analysis

In our system, in terms of space complexity, both volatile and non-volatile memory require-

ments are minimized. Originally, the OpenCV’s SVM trainer stores the support vectors in

a very large human/machine readable file format (i.e. YAML) that is too bulky to be stored

on embedded architectures. As Table 8 shows, our self-contained file format along with

low dimensional training data is appropriate for most embedded architectures due to its

high compression ratio of up to 99.5% (see Section 4.5.3).

Normally, without dimensionality reduction (i.e., compression) a regular multi-scale

LBP face representation with an SVM+RBF classifier would need a training data (single-

precision floating-point) of dimension RV×(R.L.J), where V denotes the number of support

vectors. However, utilizing our enhance dimensionality reduction technique, the dimen-

sion is reduced to RV×(J .(C−1)) along with a small overhead to store the EDA transformation

matrix WEDA
j ∈ R(LR)×(C−1) and the mean of all samples µ j ∈ R1×(L.R) for J segments (Sec-

tion 4.4). Based on these dimensions, we formulate the uncompressed training data size su

83



Table 8: Memory Requirements: Regular MSLBP+SVM+RBF vs. Our compressed file format

Classifier #Support

Vectors

MSLBP+

SVM+RBF

Our Portable

File Format

Compression

Ratio

Gender 5,978 ~672 MB ~2.8 MB 99.5%

Age (M) 8,085 ~909 MB ~10.3 MB 98.8%

Age (F) 8,311 ~935 MB ~10.5 MB 98.8%

(Equations 5.6.1) and the compressed training data size sc (Equation 5.6.2).

su = V × R× L × J × E (5.6.1)

sc = (V (C − 1) + 2LR (C − 1) + 2LR) (J E) (5.6.2)

where E denotes the number of bytes for the floating-point type. For example, for gender

classifier in Table 8, if V = 5978 support vectors, C = 2 classes, R= 5 radii of multi-scale

LBP, L = 59 LBP histogram bins, J = 100 regions, and E = 4 bytes floating-point, then

the training data of size:

su = 5978× 5× 59× 100× 4=
705,404, 000 bytes

1024× 1024
=∼ 672 MB

is compressed to size (including a small meta-data size in final approximation):

sc = (5978× 1+ 2× 59× 5× 1+ 2× 59× 5)(100× 4) =
2,863, 200 bytes

1024× 1024
=∼ 2.8 MB

Although we have fewer samples for age classifier, its training data (i.e., support vectors)

is larger than gender classifier due to higher number of classes C and larger value for RBF

parameter γ that generates more support vectors, proportionally.

5.7 Conclusion

In this chapter, the evaluation results of our age and gender classifiers on an embedded

benchmarking platform were presented. In order to demonstrate the robustness and per-

formance of these classifiers a thorough analysis in terms of accuracy, computation, and
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memory was conducted. Also, we introduced several databases and described the bench-

mark setup and the rationale behind choosing different parameters of the classifiers. The

impact of these parameters on the final recognition rates were illustrated by providing sev-

eral graphs.

Our accuracy analysis clearly demonstrates the robustness and the generalization ca-

pability of our classifiers in unconstrained environments with difficult illumination condi-

tions. Also, the complete computational and memory analysis that were presented in this

chapter could acknowledge the very low computational and memory requirements of our

approach.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude this thesis with a summary of the material presented in the

previous chapters, and discuss a number of limitations and potential solutions as our future

work to extend the capabilities of our age and gender classification system.

6.1 Conclusions

This thesis has presented a complete framework for real-time and accurate age and gender

classification on embedded systems in unconstrained environments. We began this thesis

by introducing the challenges of age and gender classification on resource-limited systems

in Chapter 1. Next, we presented a chronological overview of the robust and state-of-the-

art approaches in the realm of gender classification and age estimation, and their potential

applications in Chapter 2.

In Chapter 3, we introduced the relevant theories and the common components of all

facial trait classification systems which were the prerequisites to prepare for describing

our contributions, and the embedded implementation of our classifiers. We described and

compared different photometric and illumination normalization techniques such as His-

togram Equalization (HE), Contrast Limited Adaptive Histogram Equalization (CLAHE),

Retinex, and Preprocessing Sequence (PS). Also, we explored the variants of Local Binary

Patterns (LBP) such as Uniform and Rotation Invariant LBP, and the Local Ternary Pattern

(LTP) which could overcome the noise sensitivity problem of LBP for representing the face
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image. In order to reduce the dimensionality of face image representation, we described

the Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) ap-

proaches, and also the drawbacks of LDA such as singularity problem in high-dimensional

space were discussed. Next, we introduced the theory of Support Vector Machine (SVM)

classifier, and investigated several problems such as the large resource requirements of the

non-linear kernels, the overfitting, and the underfitting in training stage.

In Chapter 4, we presented the details of our contributions to the methodology of video-

based age and gender classification for embedded systems, and in Chapter 5 we evaluated

the accuracy of our system and analyzed memory and computational requirements. Our

first contribution was an improvement in face alignment using two positions on the nose to

rectify the over-scaling problem in existing approaches that use the distance between the

eyes to find the cropping area of the face image. This approach could increase the success

rate of evaluation up to 1.5% depending on the head’s yaw angle.

Next, the effect of illumination on gender perception was illustrated by an example, and

an enhanced illumination normalization strategy using the bilateral filtering and Prepro-

cessing Sequence (PS) method was proposed to standardize the photometric characteristics

of the face image. In our experiments, although the Retinex approach was slightly superior

(~1%), but our approach performed faster on embedded systems and could normalize the

skin color as well. For a robust face representation, we utilized a multi-scale variant of LBP

operator in order to reduce the localization errors caused by variations in facial expression

or head pose. Concatenating five scales of LBP, our experiments clearly demonstrated the

effectiveness of this approach that increase the recognition rate up to 2.5%, compared to

single-scale LBP operator.

However, this approach added a large amount of redundancy to the feature vector,

and increased its dimensionality, significantly. To counter this problem, we introduced an

enhanced segmental dimensionality reduction technique utilizing Enhanced Discriminant

Analysis (EDA) to extract the most descriptive and discriminative features from the face

representation. This technique not only improved the accuracy by reducing the noise and

redundancy, but also enabled the implementation of our classifier on the resource-limited

embedded systems. Thanks to this strategy we could achieve 99.5% compression ratio in

the size of age and gender training sets. As another advantage, we were able to employ
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a non-linear SVM classifier with RBF kernel in order to perform an accurate classifica-

tion in the EDA subspace which otherwise was not possible without our dimensionality

reduction approach. Furthermore, our generalization of demography-based gender and age

classification was another major contribution to minimize the computation time of the clas-

sification by decreasing the number of generated support vectors. For this purpose, we have

trained two separate age classifiers for male and female subjects, and in testing stage the

recognized gender determines which age model to use.

In spite of the memory-efficient and real-time performance of our method, the recog-

nition rates are closely comparable with other state-of-the-art but resource-demanding ap-

proaches. For instance, we have improved the age recognition rate up to 3% compared to

the Drop-out SVM classification approach by performing a cross-database evaluation on

the uncontrolled Adience dataset. This improvement can be attributed to our illumination

normalization technique, multi-scale face image representation, and demography-based age

classification using SVM classifier with non-linear RBF kernel.

For gender classification, we could achieve 95.79% recognition rate on BioID database

which is 1.5% better than the embedded SHORE project [42]. We have provided a detailed

accuracy analysis in Section 5.4. In addition, our computational analysis in Section 5.5

demonstrated the real-time performance of our resource-efficient classifiers at a frame rate

of 15-20 fps on an Android embedded platform. The low memory and computation re-

quirements of our methodology, makes it a viable choice for real-time pattern recognition

in embedded vision applications.

6.2 Limitations and Future Work

As discussed in Section 5.4.1, perhaps the most limiting factor in all systems based on the

Linear Discriminant Analysis (LDA), including our system, is the inadequacy of training

data and the curse of dimensionality [14, 94]. Essentially, for a given number of training

samples, there is a limit for the maximum number of features, or the so-called dimension-

ality of the feature vector. With the growth of dimensionality (i.e., volume of the space),

the number of required training samples must grow exponentially, otherwise, the data in

high-dimensional space will become sparse.
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This sparsity of data can lead to overfitting since there are not enough training samples

so that the LDA can learn to generalize well to predict the unforeseen samples (i.e., the

query face images in our system). Also, utilizing PCA before LDA to reduce the dimen-

sionality cannot solve this ill-conditioned problem, because the available samples are too

few and PCA is a “lossy” compression method that overly discards useful texture informa-

tion and deteriorates the recognition rate, significantly.

For our future work, we will test different enhanced variants of Discriminant Analysis

(DA) such as Regularized DA, Null-space DA, and Orthogonal DA, and will employ a

variant that is robust to singularity problems in high-dimensional feature space.

Another limitation of our work, and many demographics classification approaches, is

the effect of ethnicity on age and gender classification due to differences in facial structure

and skin color in different races [84, 55]. According to our experiments, when we mixed

African face images into a training set consisting of mostly White subjects, the recognition

rate of our classifiers decreased, moderately (even by evaluating only on White subjects).

As mentioned in Section 4.5.1, in addition to ethnicity, the gender of a subject can also

affect the age classification. In this work, we have separated the age classifiers for male

and female subjects in order to overcome the effect of gender on age group classification.

Nevertheless, the remaining limitation in our system is the lack of an ethnicity classifier

that enables us to separate the age and gender classifiers based on the subject’s ethnicity

(see Figure 4.5.1). Such an ethnicity classifier is expected to bring three advantages: (1)

obviously, it can complete our demographics classification system by reporting the ethnic-

ity as well, (2) our age and gender classifiers can generalize their prediction capabilities

to non-white races, (3) the computational performance of age and gender classifiers can

be further increased by separating them based on ethnicity which generates much fewer

support vectors for each group.

In future, we will design an ethnicity classifier that can complete our system. We plan

to utilize the same methodology of this thesis, but utilize a “color” type of LBP in order

to capture the skin color, and add it to our existing multi-scale LBP face representation.

We expect this enhancement to significantly increase the accuracy and the computational

performance of our framework.
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