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Abstract

The thesis focuses on finding a robust approach to estimating trifocal tensors in video

sequences in real-time using a keyframe-based approach. Instead of estimating the

tensor for consecutive frames, we compute the tensor associated with each video frame

and two reference images. An algebraic minimization method is used for tensor esti-

mation because of its speed and ease of implementation. Additional procedures are

explored to compensate its fragility to strong outliers that can not be avoided in prac-

tice. The second part of the thesis describes an example application of the proposed

framework. By using a method similar to the ARToolkit, our approach enables em-

bedding of virtual objects onto the live video. We demonstrate experimentally that in

our AR-system (1) the registration of virtual objects is accomplished without explic-

itly computing the camera pose; (2) that virtual objects are properly augmented even

though they are occluded or partly out of view. Strategies designed for reducing the

video ’jitter’ or smoothing the object movement are also implemented and described.
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Chapter 1

Introduction

Estimating trifocal geometries of video sequences is an important research topic that

has been studied for many applications including include camera pose estimation [36],

3D modelling [4, 15, 46, 44], novel view synthesis [37, 19, 3, 7, 28, 33], augmented

reality [46, 45], object-based video compression [38], self-calibration [23] and motion

segmentation [39, 14]. Generally it involves feature tracking, matching and tensor

estimation. Most existing approaches are implemented in a chaining [36, 46] or hi-

erarchy scheme [29]. RANSAC-based tensor estimation methods are then applied on

matched consecutive frames to calculate their trifocal geometry. Experiments show

that these approaches work well for post-processing applications that don’t require

real-time computation. However, even in this case error accumulation and poor esti-

mation of camera geometry in consecutive frames still remain a problem.

The thesis focuses on finding a robust approach to estimating trifocal tensors in

video sequences in real-time using a keyframe-based approach. Instead of estimating

the tensor for consecutive frames, we compute the tensor associated with each video

frame and two reference images. An algebraic minimization method is used for tensor

estimation because of its speed and ease of implementation. Additional procedures

are explored to compensate its fragility to strong outliers that can not be avoided in

practice.

The second part of the thesis describes an example application of the proposed

1
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framework. By using a method similar to the ARToolkit, our approach enables em-

bedding of virtual objects onto the live video. We demonstrate experimentally that in

our AR-system (1) the registration of virtual objects is accomplished without explic-

itly computing the camera pose; (2) that virtual objects are properly augmented even

though they are occluded or partly out of view. Strategies designed for reducing the

video ’jitter’ or smoothing the object movement are also implemented and described.

The system has been presented at the ISMAR 2004 conference [16].

1.1 Thesis Contributions

This thesis aims to give a perspective view of the trifocal tensor, including its prop-

erties and utilization. The main contribution of this thesis is a three-view tracking

system to track points over sequences of a moving camera and perform online esti-

mation of the trifocal tensor associated with each frame.

Another important contribution is that we exploit the use of the trifocal tensor for

realtime augmented reality in a novel way, which is completely different from existing

AR approaches. Experiments show that our AR system works at 10fps.

1.2 Thesis Outline

The thesis is organized as follows. Chapter 2 describes the basic theory of the tri-

focal geometry. It starts by giving notations that will be used in the entire thesis.

The trifocal tensor and its important properties are then introduced. Even though

attention is given to trilinear transfer, another way of transferring points or lines by

using a homography is discussed for the purpose of comparison.

Chapter 3 describes several algorithms to estimate the trifocal tensor from image

correspondences; including linear solution, algebraic algorithm and RANSAC meth-

ods. Their performances in terms of the transfer error, time efficiency and robustness

against mismatches are compared by experiments on real image data.
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In chapter 4, a new approach of estimating the trifocal tensor in real-time is

described. It uses a three-view framework that is designed for processing of video se-

quences. Previous methods including using the chained transformation and keyframes

are reviewed at the beginning of Chapter 4. After that, the outline of the approach

proposed in this thesis is given and its implementation details are described. The

scope of this approach and its extension to a camera-matrix framework will be also

addressed.

Chapter 5 gives an application of our approach to augmented reality. First, ex-

isting augmented reality systems are reviewed and the ARToolkit approach which is

used in the new AR system proposed in this thesis is described; After that, implemen-

tation details of rendering using the online estimated tensor are provided; In the end,

a Kalman filter is used to reduce the jitter of inserted virtual objects and example

sequences produced from our AR system are presented.

In the conclusion, Chapter 6, gives a summary of the conclusions and an overview

over possible future work.



Chapter 2

Basic Theory of The Trifocal

Tensor

2.1 Trifocal Geometry

Establishing correspondences of image primitives (points or lines) over multiple views

is recognized as a fundamental problem in computer vision. Assume there are three

images captured by three calibrated cameras with the known extrinsic calibration

(camera positions in Euclidean space) and the intrinsic parameters (camera calibra-

tion information). Figure 2.1 shows the geometry of three cameras. Their optical

centers are denoted by C, C′ and C′′. A 3D point X in Euclidean space has its

unique image on the image plane of each camera at where the ray linking the point

to the camera optical center intersects the plane. However the opposite is not true

since the image point can be the projection of any 3D point on that ray. The nonzero

scale factor λ in the equation 2.1 explains this ambiguity. The Euclidean camera is

defined by a 3× 4 camera matrix P = K[R|t]. The 3× 3 camera calibration matrix

K contains the intrinsic parameters of the specific camera. The camera’s pose with

respect to the world coordinate system is represented by 3 × 3 rotation R and 3D

vector translation t. The projection from 3D point (X,Y,Z) to image point (x,y) is

4
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up to a scale.

λ




x

y

1


 = P




X

Y

Z

1




(2.1)

Figure 2.1: Trifocal geometry of three views.

The scale ambiguity can be overcome by having correspondences for a feature in

two views. The 3D point X can then be reconstructed by means of triangulation

using the point correspondence pair x and x′ on view V and V′. Then this point can

be re-projected into the third view V′′ to find out where the image coordinate of this

3D point should appear on that view. This process x, x′ → x′′ is called transfer, and

it can be done with at least one calibrated camera and correspondences across two

views.

For un-calibrated cameras no transformation between an image point and a ray

in Euclidean space is provided because their intrinsic and extrinsic parameters are

unknown. In this case the cameras are defined to be projective cameras (K = I)

and any one can be replaced by another. The 3D-to-2D projection Pp becomes
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camera independent. The projective spaces where such projections take place are all

equivalent since they can align to each other only by a 3D projective transformation

(4× 4 matrix H)[15].

Pp
i = HPp

j (2.2)

It is the relative camera position that determines the transformation between two

projective spaces. Usually when more than one camera are considered, a normalized

camera coordinate system is used and one of cameras is P = [I|0]. Consequently the

positions of other cameras in this system, and the extrinsic camera parameters are

all that is necessary to define the camera projection matrices. Therefore even when

the three cameras mentioned above are not calibrated, image correspondences can

still be transferred from two views to the third. As will be discussed in the next

section, it is possible to define the projective geometry of the three cameras by a

trifocal tensor. When the tensor is computed the transfer can be done directly by it

without computing an intermediate 3D point. Since this removes the need of camera

calibration, the trifocal tensor has been recognized an important tool for processing

three views.

It needs to be pointed out that corresponding image points on three views are

also related by epipolar geometry. The ray projected from one image point will be

viewed as a line in another view (called the epipolar line). The relation between

image correspondences of a view pair is described by a 3 × 3 fundamental matrix,

i.e. x′TF12x = 0 of view i and j. The three views can be registered together in a

pair-wise manner. Again given a pair of image correspondence (x,x′), intersecting

their epipolar lines on the third view should show the image position of the 3D point.

However, if the point X is in the trifocal plane defined by the optical centers C, C′

and C′′ or if the centers are aligned, it is impossible to determine if three image points

belong to a single 3D point by epipolar geometry. Such ambiguity can be avoided

by using a trifocal tensor since it provides a more accurate and stable description of

three views’ geometry than the fundamental matrices between each pair of views.
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2.2 The Trifocal Tensor

The trifocal tensor is expressed by a set of three 3 × 3 matrices, [Ti], i = 1,2,3. It

describes the projective geometric relations of image triplets taken from three cameras

[15]. Considering a view triplet, if the camera matrix of the first view is in canonical

form, P1 = [I|0], and the camera matrices of the other two views are expressed as

P2 = [A|e′], P3 = [B|e′′], where A and B are 3× 3 matrices, and, e′ and e′′ are the

epipoles corresponding to the image of the center of the first camera on the image

plane of the second and third cameras respectively, then the 3× 3× 3 trifocal tensor

can be denoted as T = [T1,T2,T3]
T , with:

Ti = aie
′′T − e′bi

T
(2.3)

The above equation presents a straightforward way to construct the trifocal tensor

from the camera matrices. However, the trifocal tensor can also be estimated from

image correspondences alone, without knowledge of the camera parameters. This

means that no explicit 3D information is required in order to obtain the tensor rela-

tion. Several methods have been proposed to compute the tensor from a set of point

or line matches. They will be discussed in details in Chapter 3.

Once a tensor is computed the epipoles of the first camera within the second and

third view, e′ and e′′, are those that satisfy the following equations:

e′T[u1,u2,u3] = 0 (2.4)

e′′T[v1,v2,v3] = 0 (2.5)

where ui and vi be the left and right null-vectors respectively of Ti, i.e.

ui
TTi = 0T, Tivi = 0 (2.6)

These equations are important because any effort to recover the complete projec-

tive geometry from the tensor needs the prior knowledge of the epipoles.
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2.3 From tensor to projective geometry

When the trifocal tensor [Ti] is known, the fundamental matrices F21, F31 relating

the first camera with the other two cameras are

F21 = [e′]×[T1,T2,T3]e
′′ (2.7)

F31 = [e′′]×[T1
T,T2

T,T3
T]e′ (2.8)

As mentioned above, [Ti] is defined within a normalized canonical system which

is aligned with the first camera. So that, the camera matrices (P1, P2, P3) corre-

sponding to the computed tensor may be chosen as

P1 = [I|0] (2.9)

P2 = [[T1,T2,T3]e
′′|e′] (2.10)

P3 = [(e′′e′′T − I)[T1
T ,T2

T ,T3
T ]e′|e′′] (2.11)

This triplet of camera matrices expresses the projective transformations between

three views. In order to upgrade to metric or Euclidean reconstruction, self-calibration

is needed to obtain the intrinsic parameters of the camera.

Though the trifocal tensor is usually estimated from point or line-matches as will

be discussed in the next chapter, there are two alternatives to estimate the tensor. (1)

Assuming that the fundamental matrices of three views, F12 and F23, are known, the

tensor can be computed from the entries of the projection matrices obtained from the

fundamental matrices; (2) Given a tensor of three views V123, a new tensor related

to the first two views and an additional view V124 can be derived by [37]

Gi
jk = d1

k ×Ti
j1 + tk × ai

j (2.12)

Gi
jk is used to represent the new tensor. Motion from the last view V3 to the new

view V4 is described by a 3 × 3 homography matrix D and a translation vector t.

Here A is the upper 3× 3 sub-matrix of the projection matrix of the first view. This

equation is often used in novel view synthesis methods (see [7, 37] for example).



9

2.4 Trifocal transfer

The most attractive characteristic of the trifocal tensor is the transfer of points and

lines. A point/line in one image can be computed from its correspondence in the

other two images. If (l, l′, l′′) is a set of corresponding lines and (x,x′,x′′) is a set of

corresponding points in three images, the transfer operations can be represented by

following equations:

lT = l′T[T1,T2,T3]l
′′ (2.13)

[x′]×(
∑

i

xiTi)[x
′′]× = 0 (2.14)

where the notation [x]x indicates a skew-symmetric matrix of the vector x = (x1,x2,x3)

defined as

[x]× =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 (2.15)

2.4.1 Transfer by solving the trilinear equations

Let Ti
ij denotes the (i, j) entry of submatrix Ti of tensor, the point-point-point tri-

linear equation (2.14) can be be expanded as:

xi[−x′3(x′′3Ti
21 − x′′1Ti

23) + x′2(x′′3Ti
31 − x′′1Ti

33)] = 012 (2.16)

This leads to a set of nine equations, of which only four equations are linearly inde-

pendent. Since the z homogenous coordinates, x3, x′3 and x′′3 of image points are

always one, the four equations are:

xiTi
11 − xix′′1Ti

13 − xix′1Ti
31 + xix′1x′′1Ti

33 = 0

xiTi
21 − xix′′1Ti

23 − xix′2Ti
31 + xix′2x′′1Ti

33 = 0

xiTi
12 − xix′′2Ti

13 − xix′1Ti
32 + xix′1x′′2Ti

33 = 0

xiTi
22 − xix′′2Ti

23 − xix′2Ti
32 + xix′2x′′2Ti

33 = 0

(2.17)

They can be written in a matrix form as mxi = 0 where m is a 4-element vector.

The vector m is the most compact representation of trilinear relations because only
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12 instead of all 27 tensor entries appear in each of the four equations. When i ranges

from 1 to 3, the above linear equations contribute a linear system of the homogenous

coordinates of the image point x.

M× x = 0 (2.18)

where M stands for a 4× 3 matrix with entries in terms of the tensor T and a pair of

image point (x′, x′′) between two views. By solving this linear system, one may find

the corresponding point in the first view as (x1

x3 , x2

x3 ).

It is possible to write closed-form expressions to perform a mapping from V to V′

or V′′ using the trilinear constraints. For example, by taking the first and the third

equation in 2.17, we get:

x′′1 =
T11

1 x1+T11
2 x2+T11

3 −x′1(T31
1 x1+T31

2 x2+T31
3 )

T13
1 x1+T13

2 x2+T13
3 −x′1(T33

1 x1+T33
2 x2+T33

3 )

x′′2 =
T12

1 x1+T12
2 x2+T12

3 −x′1(T32
1 x1+T32

2 x2+T32
3 )

T13
1 x1+T13

2 x2+T13
3 −x′1(T33

1 x1+T33
2 x2+T33

3 )

(2.19)

It is important to observe that the equations 2.19 do not contain the y coordinate

of the point x′ so that x′′1 and x′′2 are more heavily influenced by the motion along

the axis x from view V to view V′. To get a better result for generic camera motion,

it is desirable to solve for the two unknowns x′′1 and x′′2 from all independent trilinear

equations in 2.17 simultaneously.

The linear system for the homogeneous coordinates of point x′ is:




a21
1 0 a21

3

a22
1 0 a22

3

0 a12
2 a12

3

0 a11
2 a11

3




x′ = 0 (2.20)
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a1
21 = −x1x′′2T1

33 − x2x′′2T2
33 − x′′2T3

33 + x1T1
32 + x2T2

32 + T3
32

a3
21 = x1x′′2T1

13 − x2x′′2T2
13 − x′′2T3

13 − x1T1
12 − x2T2

12 −T3
12

a1
22 = x1x′′1T1

33 − x2x′′1T2
33 − x′′1T3

33 − x1T1
31 − x2T2

31 −T3
31

a3
22 = −x1x′′1T1

13 − x2x′′1T2
13 − x′′1T3

13 + x1T1
11 + x2T2

11 −T3
11

a2
12 = −x1x′′1T1

33 − x2x′′1T2
33 − x′′1T3

33 + x1T1
31 + x2T2

31 + T3
31

a3
12 = x1x′′1T1

23 − x2x′′1T2
23 − x′′1T3

23 − x1T1
21 − x2T2

21 −T3
21

a2
11 = x1x′′2T1

33 + x2x′′2T2
33 + x′′2T3

33 − x1T1
32 − x2T2

32 −T3
32

a3
12 = −x1x′′2T1

23 − x2x′′2T2
23 − x′′2T3

23 + x1T1
22 + x2T2

22 + T3
22

(2.21)

The linear system for the homogeneous coordinates of point x′′ is given as:




0 a21
2 a21

3

a22
1 0 a22

3

a12
1 0 a12

3

0 a11
2 a11

3



× x′′ = 0 (2.22)

where

a2
21 = −x1x′1T1

33 − x2x′1T2
33 − x′1T3

33 + x1T1
13 + x2T2

13 + T3
13

a3
21 = x1x′1T1

32 + x2x′1T2
32 + x′1T3

32 − x1T1
12 − x2T2

12 −T3
12

a1
22 = x1x′1T1

33 + x2x′1T2
33 + x′1T3

33 − x1T1
13 − x2T2

13 −T3
13

a3
22 = −x1x′1T1

31 − x2x′1T2
31 − x′1T3

31 + x1T1
11 + x2T2

11 + T3
11

a1
12 = −x1x′2T1

33 − x2x′2T2
33 − x′2T3

33 + x1T1
23 + x2T2

23 + T3
23

a3
12 = x1x′2T1

31 + x2x′2T2
31 + x′2T3

31 − x1T1
21 − x2T2

21 −T3
21

a2
11 = x1x′2T1

33 + x2x′2T2
33 + x′2T3

33 − x1T1
23 − x2T2

23 −T3
23

a3
11 = −x1x′2T1

32 − x2x′2T2
32 − x′2T3

32 + x1T1
22 + x2T2

22 + T3
22

(2.23)

2.4.2 Transfer by a homography

Beside solving the trilinear equations, there is another method to transfer a pair of

point to a third view [15]. It is based on the tensor’s constraint for point-line-point

correspondences.
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Figure 2.2: The point transfer

The key idea, as shown in Figure 2.2, is that given a pair of matches (x,x′) between

views (V,V′), the corresponding point on the third view is

x′′k = xilj
′Ti

jk (2.24)

where l′ indicates a line passing through the point x′ in the image plane of the

second view. Together with the camera center C′, it defines a plane which interacts

with the ray of x in the 3D point X. Then the point x′′ is given by the projection

of X on the third view. The above equation represents a homography between views

V and V′′ induced by a line in the second view V′. we can write x′′ = H13x. The

homography is given by

H13(l
′) = Hi

k = lj
′Ti

jk = [T1
T,T2

T,T3
T]l′ (2.25)

For the sake of stability, the line l′ is chosen to be perpendicular to the epipole line

of x′. The method is summarized as following steps:

1. Given a correspondence x ↔ x′, correct the points using the fundamental ma-

trix between the first and second view F21 to get an exact match (x̂ ↔ x̂′).

2. The epipole line of x′ is le
′ = F21x̂. Assume coordinates of le

′ are (le
1, le

2, le
3),

compute the perpendicular line l′ = (le
2,−le

1,−x̂1le
2 + x̂2le

1).
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3. Then calculate the corresponding point x′′ with the homography H13.

The first step of correcting point correspondences is important especially when

the observed point sets are not free of noise. The fundamental matrices w.r.t the first

view, F21 and F31 would be calculated from the tensor as defined in equation 2.8 if

they are not provided beforehand. To compute the fundamental matrix F23 required

in transfer to view V, the conventional 8-point method is sufficient.

The formulas for point transfer into each view are:

le
′ = F23x̂

′′, l′ = (le
2,−le

1,−x̂′′
1
le

2 + x̂′′
2
le

1), H31 = l′jTi
jk, x = H31x̂

′′

le
′′ = F31x̂, l′′ = (le

2,−le
1,−x̂1le

2 + x̂2le
1), H12 = l′′kTi

jk, x′ = H12x̂

le
′ = F21x̂, l′ = (le

2,−le
1,−x̂1le

2 + x̂2le
1), H13 = l′jTi

jk, x′′ = H13x̂

(2.26)

The advantage of this method is that image points can be transferred into view

V′ and V′′ without solving an over-determined linear systems. But on the negative

side, it requires good estimations of the fundamental matrices.



Chapter 3

Overview of Estimation of The

Trifocal Tensor

Since the trifocal tensor is uniquely defined by the projection matrices of the cameras,

it can be computed directly from the knowledge of the relative motions between views

and the internal camera parameters. However, this method can only be applied on

calibrated views. For uncalibrated views, one can compute the tensor from image

correspondences alone. The image correspondences can be points or lines or a mix

of both; Table 3.1 shows the feature combinations and the number of equations that

are necessary to compute the trilinear tensor.

Image Features equations
3 points 4

2 points, 1 line 2
1 point, 2 lines 1

3 lines 2

Table 3.1: Trilinear equations provided from image correspondences

Computation of tensor using correspondences of points or lines has been studied

extensively. This thesis is concerned mainly with points in images. The existing

methods could be roughly divided into two classes. The first class, which are called

the over-parameterized approaches includes a linear least-square solution, algebraic

14
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minimization and geometric distance minimization method. With these methods, the

tensor is parameterized in ways that ignore the fact that it has only 18 independent

degrees of freedom. The main advantage of these approaches is that they are easily

implemented.

The second class is the one that uses random sampling in the estimation of the

tensor. Tensors are computed from points that are randomly selected from a set of

available correspondences. The obtained tensors are scored against the whole point

data so that the desired tensor is the one that has the most support data. The use of

RANSAC (RANdom SAmple Consensus) enable the tensor estimation to be robust

to false matches (”outliers”) that usually cause the aforementioned methods prone to

fail.

In the thesis work, the linear-square method, the algebraic minimization method

and the RANSAC methods are implemented and tested on several sets of synthetic

and real data. The computed tensors are evaluated in terms of residual error between

predicated point positions obtained through tensor transfer and their actual positions.

Comparison of their accuracy and computational efficiency gives a clear picture of the

conditions suitable for each method.

3.1 The linear algorithm

According to equation 2.18, each point-point-point correspondence provides four lin-

early independent equations. It follows that seven corresponding points across the

three views uniquely determine the 27 entries of the tensor matrix. Given n point

correspondences, let A denote a matrix of size 4n× 27 and t a vector containing all

entries of the tensor, we can write

At = 0 (3.1)

Then the tensor can be obtained by the least square or the SVD solution to this linear

system.
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Hartley has shown that this kind of algorithm does not do well if all points are of

the form (x1, x2, 1) in homogeneous coordinates with x1 and x2 very much larger than

1 [15]. Therefore, it is necessary to normalize the points of each image separately

before computing the tensor. The points are translated in each image so that the

centroid of all measured points is at the origin of the image coordinates, and then

scaled so that the average distance of a point from the origin is
√

2 units. This way

the average point will be something like (1, 1, 1) in homogeneous coordinates, and

each of the homogeneous coordinates will be approximately of equal weight. This

transformation improves the condition of the matrix of equations, and leads to a

much better solution.

As a consequence, it is necessary to de-normalize the computed tensor in order to

work with original image coordinates. The overall process is as follows:

1. Normalize the set of point triplets by performing transformations H, H′ and

H′′. Here x̂ = Hx, x̂′ = H′x′, x̂′′ = H′′x′′.

2. Compute the tensor linearly by solving a set of equations of the form At = 0,

where A expresses the equation (2.14) and t is the vector of entries of tensor.

3. De-normalize the tensor by Ti = H′−1 ∑
j(H

T(i, j)Tj)H
′′−T

The linear solution is the easiest method, but also the most unreliable because

of two reasons: (1) the tensor is parameterized by all its entries and this does not

take into account the tensor geometrical constraints i.e the equation 2.3. Therefore

there is always a risk of obtaining an invalid tensor; (2) Using all available point

correspondences causes the tensor to be significantly affected by the presence of strong

outliers.

3.2 The algebraic minimization algorithm

The principle of algebraic minimization is to use the linear solution as an initial

estimate and re-parameterize it by the 24 entries of the projection matrices P′ and
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P′′. The desired tensor is then found by minimizing the residual error. The standard

algorithm of algebraic minimization is briefly given here [15].

1. From the set of point triplets, compute the tensor linearly by solving a set of

equations of the form At = 0, where A expresses the equation (3.1) and t is

the vector of entries of tensor.

2. Find the two epipoles e′ and e′′ from the tensor.

3. According to Equation (2.3), construct the 28× 12 matrix E such that t = Ea,

where a is the vector representing entries of ai and bi.

4. Compute the tensor by minimizing the algebraic error ‖AEa‖ subject to ‖Ea‖ = 1.

Again, all points should be normalized before calculating the initial estimation

of the tensor, and de-normalization should be applied on the resulting tensor. The

algorithm is executed in an iterative manner by repeating the last two steps with

varying e′ and e′′ from the currently computed tensor. The Levenberg-Marquardt

algorithm, a widely-used algorithm for solving the nonlinear optimization problem, is

used to find the optimal e′ and e′′. Since the epipoles have 6 entries, the problem is

of modest size.

The above algorithm leads to a geometrically valid tensor because its entries sat-

isfies the equation 2.3. However, the main weakness of the algebraic minimization

method is that all point correspondences are involved in the tensor computation in the

same way as for the linear method, which consequently makes it to outliers (invalid

correspondences) that are unavoidable in practice.

3.3 The 6-point algorithm

Quan proposed a method to compute the trifocal tensor from 6 point correspondences

in [21]. A set of 6 point non-coplanar correspondences from three uncalibrated images

can lead to at most 3 solutions of the projection matrices of the three camera. From
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the best solution the desired trifocal tensor can be produced. In this thesis work,

Torr’s modified 6-point algorithm [40] has been implemented, which is summarized

as follows:

1. Given 6 point correspondences, in each image transform four points to four basis

points in a canonical frame.

λ1
iHix1

i = (1,0,0), λ2
iHix2

i = (0,1,0),

λ3
iHix3

i = (0,0,1), λ4
iHix4

i = (1,1,1)
(3.2)

where the transformation in the ith image is denoted by Hi for each i = 1, 2, 3

and λj, j = 1, 2, 3, 4 are the scale factors for the four points. Since Hi can be

defined up to a global scale, we set λ4 = 1. Combining the first three equations

result in
H−i = [x1

i x2
i x3

i](λ1
i λ2

i λ3
i)T

or

Hi = [λ1
ix1

i λ2
ix2

i λ3
ix3

i]−1

(3.3)

Substituting the Hi into the equation of the fourth point, we have

(λ1
i λ2

i λ3
i)T = [x1

i x2
i x3

i]−1x4
i (3.4)

which gives a set of three equations for each image to compute λ1
i, λ2

i and λ3
i.

2. Apply the transformation Hi on the coordinates of the other two points x5
i and

x6
i. The transformed points have homogenous coordinates (x5

i,y5
i,w5

i) and

(x5
i,y5

i,w5
i).

3. In the canonical frame, the five point correspondences across three views xj
i, (j =

1, .., 5) are images of space points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

and(1, 1, 1, 1) respectively. To recover the unknown coordinates (X,Y,Z,W)

of the sixth point corresponding to the triplet x6
i, we have




1 0 0 1 x5
i x6

i

0 1 0 1 y5
i x6

i

0 0 1 1 w5
i w6

i


 =




αi 0 0 δi

0 βi 0 δi

0 0 γi δi







1 0 0 0 1 X i

0 1 0 0 1 Y i

0 0 1 0 1 Zi

0 0 0 1 1 W i




(3.5)
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The parameters αi,βi,γi and δi are of the camera matrix for each i = 1, 2, 3.

From this equation, the values of the sixth space point and camera parameters

may be obtained in terms of the fifth and sixth image coordinates as follows:




w5
i 0 −x5

i w5
i − x5

i

0 w5
i −y5

i w5
i − y5

i

w6
iX 0 −x6

iZ w6
iW − x6

iW

0 w6
iX −y6

iZ w6
iW − y6

iW







αi

βi

γi

δi




= 0 (3.6)

The 4× 4 matrix on the left has rank 3 so that its determinant must be equal

to zero. Expending this determinant, we find

(−x5
iy6

i + x5
iw6

i)(WX−YZ) + (x6
iy5

i − y5
iw6

i)(WY −YZ)

+(−x6
iw5

i + y6
iw5

i)(WZ−YZ) + (−x5
iw6

i + y5
iw6

i)(XY −YZ)+

(x5
iy6

i − y6
iw5

i)(XZ−YZ) = 0

(3.7)

This is true in each of the three images. Therefore, we have three equations,

which can expressed as Mt = 0, while M is a 3× 5 matrix with image coordi-

nates of x5
i and x6

i and

t = (WX−YZ,WY −YZ,WZ−YZ,XY −YZ,XZ−YZ) (3.8)

A general solution of t is t1 + µ2t2. t1 and t2 are two null space (or eigenvec-

tors of 2 smallest eigenvalues) of the matrix M and µ2 is a scale factor. The

constraints among elements of t leads to a cubic equation in µ, which has one

or three real solutions for µ and therefore will be one or three solutions for t.

4. For each t obtained from the last step, recover the space point (X,Y,Z,W)

and three projection matrices (P1,P2,P3) (refer to equation 3.6), and calculate

the reprojection error of the six points.

5. Select the triplet of projection matrices that correspond to the smallest repro-

jection error as the best solution.
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6. Transform the camera matrix of the first image to be [I|0] by applying a non-

singular 4 × 4 matrix R such that P1R = [I|0], then there exists a pair of

reduced camera matrices ([I|0],P2R,P3R).

7. Undo the normalization that was carried out in the first step on the camera

matrices. Produce the tensor with coefficients of the the three de-normalized

camera matrices.

It is also important to normalize the coordinates of the 6 points on each image

before execution of the above algorithm.

3.4 The RANSAC methods

Tensor estimation has proved to be difficult in practice because the image matches are

not likely to all be correct. To overcome this difficulty, it is possible to apply solutions

based on the principle of random sampling. Using such an approach, the tensor can

be estimated from the valid inlier matches identified using an iterative procedure.

The standard RANSAC and improved schemes are discussed in this section.

3.4.1 Standard RANSAC

Many computer vision algorithms include a robust estimation step where model pa-

rameters are computed from a data set containing a significant proportion of outliers.

RANSAC is an algorithm for robust fitting of models in the presence of many data

outliers [9].

The algorithm assumes that the model parameters can be estimated from m data

items (where m ¿ N, with N being the total number of available data items). If the

fraction of outliers in the data set is e, then the probability of a randomly selected

item being part of the actual model is (1− e).

The standard RANSAC algorithm proceeds as follows:

1. Randomly select m data items
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2. Estimates the model parameters

3. Find how many data items (of N) fit the model with the computed parameters

within a user given tolerance.

4. If the number of supporting data, denoted by k, is large enough, accept a

candidate model and exit with success.

5. Repeat the last steps from 1 to 4 until a maximum of L iterations have been

performed.

When the m selected points are all inliers, then all other inliers in the data

set should also agree with the computed model. This means that the number of

supporting data items (also called as the score of the model) should be equal to

k = (1− e)×N. However, this is rarely the case because inliers are also corrupted

by (Gaussian) noise. Consequently, the acceptable value for k is set to be a smaller

value.

The value of L is determined by the probability of selecting m inliers in a set of

N values with e×N outliers. Consequently, a good value for L would be the number

of trials required for the probability of selecting m inliers to be equal to p. The value

of L is therefore given by L = lg (1−p)
lg (1−(1−e)s)

. Table 3.2 gives the number of trials that

would be required for different values of m in the case of p = 0.99.

size of subset portion of outliers
s e=5% 10% 15% 20% 25% 30% 40%

6 points 4 7 16 24 37 97 293
7 points 4 8 20 33 54 163 588
8 points 5 9 26 44 78 272 1177

Table 3.2: Standard RANSAC trail numbers

The RANSAC algorithm has been widely used in the estimation of the homog-

raphy, the fundamental matrix or the trifocal tensor. A homography is computed

from a minimum of 4 pairs of point correspondences, while at least 7 pairs of corre-

spondences are required to estimate a fundamental matrix. Using Quan’s algorithm



22

a tensor is estimated using 6 points. Note that compared with homography and

fundamental matrix estimation, using RANSAC to compute tensors can be compu-

tationally expensive. The reason is that tensors must be computed from numerous

triplets of point correspondences, and each of these must be evaluated against all

data points. By their nature, three random correspondence triplets are more likely

to contain outliers than a pair of matches. This means that more random samples

are necessary to compute a valid tensor than a fundamental matrix.

The main drawback of RANSAC is its computational complexity, which increases

rapidly with the number of matches and the proportion of outliers. Ways to improve

the speed of RANSAC schemes are proposed in [31, 32] and [30]. A detailed discussion

of this issue will be given in the next section.

Another potential problem with RANSAC for the estimation of the homography,

fundamental matrix and trifocal tensor is that it does not always work well in a multi-

planar scene. This problem has already been addressed in some papers [11, 42]. If

the selected points are accidently collinear or coplanar, the resulting tensor can only

provide correct geometry for one plane.

The standard RANSAC is implemented in this thesis. Tensors are computed from

randomly selected 7 correspondences by using linear method or algebraic minimiza-

tion, or 6 correspondences by 6-point method of Quan. Our online tensor estimation

method is presented in the next chapter. In our case, the iteration process stops when

one of the following conditions is true:

1. The number of random trials exceeds a preset maximum number.

2. The accumulated computation time is over the time budget.

3. The number of the supporting matches of the tensor is larger than an expected

number.

The default setting used in experiments is: the maximum number of trials is 1000,

the time limit is 10000 ms and the expected size of supporting matches is 0.8 × N .

The “inliers” are defined as points whose transfer error is less than 5-pixels.
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3.4.2 The accelerated RANSAC

With RANSAC, the two most time consuming operations are: model parameter es-

timation and support set evaluation. If L random trials are necessary before the

algorithm finds a good model, the total processing time is equal to L× (th + te),

where

1. The time th spent producing a hypothesis model, which does not vary because

of the fixed size of each sample.

2. The level of contamination determines the number L of random samples that

have to be taken to guarantee a certain confidence in the optimality of the

solution.

3. te is the time spent evaluating the quality of each of the hypothesized model

parameters. It is proportional to the size N of the data set.

A new randomized (hypothesis evaluation) version of the RANSAC algorithm,

R-RANSAC, is introduced in [31]. During the support set evaluation step, computa-

tional savings are achieved by considering only a fraction of the available data points.

The idea comes from the observation that the erroneous models obtained from con-

taminated samples are consistent with only a small fraction of the data. This implies

that it is not necessary to evaluate such models over all data points. Only a small

number of data points need to be tested to conclude, with high confidence, that a

given model does not correspond to the desired solution.

In the new algorithm, the evaluation on all N data points is carried out only if the

tensor passes a preliminary test on d, (d < N) points. Even though the pre-test is,

with a high probability, effective to reject the erroneous models quickly, two types of

errors would also be made in this step: (1) rejection of a good model; (2) acceptance

of a contaminated model. The occurrence of errors of these two types would slow

down the RANSAC procedure. Therefore the increase in the speed of the modified

RANSAC method depends on the likelihoods of these two types of errors.
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Chum [31] demonstrated experimentally on synthetic and real data that R-RANSAC

for computing fundamental matrix shortens the computation time by about 40%.

However no experiments for estimating the trifocal tensor is given.

Locally optimized RANSAC (LO-RANSAC ) is another improved RANSAC method

proposed by Chum [32]. Instead of keeping selecting a random sample to compute the

model parameters until the best estimation is found, LO-RANSAC tries to optimize

the best samples obtained so far to get the best solution. A number of experiments

on two-image estimation of fundamental matrix and homography shows that com-

pared with the standard RANSAC, LO-RANSAC offers a two to three fold speed-up

and an increase in the quality of estimations (measured by the number of inliers) by

10− 20%.

Nister proposed the method of Preemptive RANSAC (P-RANSAC ) and showed

its promising usage in computing relative camera motion between two calibrated views

given five corresponding points [30]. The algorithm consists of repeatedly evaluating

a number of computed models at N levels by different sets of data and only keeping

some of the models for the next level. How many models remain at each level is

indicated by a decreasing function of levels f(i)i = 1, ...,N. The total number of

models is equal to f(1).

The P-RANSAC algorithm is summarized in Table 3.3 by the following steps:

P-RANSAC is significantly fastened because (1) only f(1) hypotheses produced at

the 1st level are evaluated; (2)the hypotheses are scored on single observation instead

of all observations. This is the novelty of this algorithm, but also the weakness.

There are two assumptions that this algorithm is built on: the desired solution must

exist within the hypotheses of number f(1); the observations randomly selected in

the scorings have high probability of being inliers. However, the assumptions can not

be guaranteed in practice.

However, P-RANSAC has two important advantages: first the processing time

is invariant to the size of the correspondence set; second, scoring of tensors over

correspondences is not required anymore. Instead, the tensors are compared against
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1. Randomly permute the available data.

2. At the first level(i = 1), generate the models Mh, when h = 1, ..., f(1).

3. Evaluate all models using the ith point in the data set and accumulate their
error.

4. Reorder the models in such order that the best model obtained so far is the
first. This means only keeping the first f(i) models.

5. Quit at the last level (when i = N) with the remaining models. Otherwise,
increase i by 1 and go to step 3.

Table 3.3: P-RANSAC algorithm summary in [30]

each other based on their accumulated transfer error.

As a part of the thesis work, the algorithm of R-RANSAC and Preemptive RANSAC

are implemented for tensor estimation. Some experimental results will be given in

the next section.

3.5 Experiments

This section presents an experimental comparison of the methods discussed in the

previous section. Experiments are conducted to examine the accuracy of each method

and test their stability against noise or outliers.

3.5.1 Error Definition

Two criterions exist to measure the quality of the estimated tensor. They are transfer

error and residual error (also called reprojection error).

The residual error is defined by the distance between the observed image points
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and the reprojected points. Each point correspondence (x, x′, x′′) is triangulated to

compute the corresponding space point X. Then X is projected on each image plane

using the projection matrices recovered from the given tensor. This gives a reprojected

triplet (x̂, x̂′, x̂′′). The residual error of three views is then:

eres =
1

6n

∑
(dist(x, x̂) + dist(x′, x̂′) + dist(x′′, x̂′′)) (3.9)

In theory this is a reliable measurement of the quality of the tensor because the

projective constraints enclosed in the tensor are evaluated.

The transfer error, based on the transfer property of the trifocal tensor, is easier

to implement. It is defined by the distance between the transferred points and the

measurements.

etrans =
1

6n

∑
(dist(x, x̂) + dist(x′, x̂′) + dist(x′′, x̂′′)) (3.10)

The points (x̂, x̂′, x̂′′) are the transferred points.

In general, there are two reasons why a given point would give a large residual or

transfer error: (1)The computed tensor is not accurate; (2)The point is an outlier.

In the following sections, the tensor computed by different methods from the same

point set is evaluated in terms of these two types of error.

3.5.2 Experiments on calibrated images

The purpose of the experiments in this section is to compare the quality of the tensors

directly constructed from projection matrices and those computed from the image

points by different algorithms.

Figure 3.1, 3.2 and 3.3 show three image triplets. The corner matches across three

images and the projection matrices of images are also known and they will serve as

as ground truth here.

Experimental Results using the above image triplets are shown in Table 3.4. Three

estimation methods are compared here against the tensor constructed from projective

matrices using equation 2.3. The column “Matches” displays how many point matches



27

Figure 3.1: Test images from the house sequence (298 point matches)

Figure 3.2: Another three widely separated images (95 matches) are selected from
the house sequence. They are used as an example of wide-baseline images

are used in the estimation. The transfer error and residual error of each computed

tensor are also listed in the table.

The 6-point RANSAC’s setting is: time budget = 100000ms, max inlier distance

= 3, max samples = 1000, stop precision = 1.5. The final tensor is the one having

the best score computed with the RANSAC procedure.

Images Matches Constructed Linear Algebraic 6-point
tensor Method Minimization RANSAC

house (0,1,2) 298 0.54, 24.59 0.54, 2494.35 0.53, 255.05 3.85, 36.67
house(1,4,6) 95 1.230, 7.77 1.15, 2533.81 1.170, 1019.98 1.54, 12.60

corridor(0,3,6) 199 3.12, 10.49 0.56, 149.7 0.53, 53.22 0.85, 14.58

Table 3.4: Tensors computed with exact correspondences on three image triplets. In
each column, transfer error is on the left while reprojection error is on the right.

Note that the large reprojection errors are due to inaccuracy of the 3D point

reconstruction.
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Figure 3.3: Three images from the corridor sequence (199 matches)

3.5.3 Experiments on noisy image points

The goal of the following experiments is to study the influence of image noise or

outliers on different tensor estimation methods. Understanding the strength and

weakness of each method is very helpful when it comes to selecting one for a particular

application.

Three image triplets as shown in figure 3.1, 3.2 3.3 and their exact point corre-

spondences will be used as experiment data here. New tensors will be computed from

new sets of matches after they have been contaminated by different types of noise.

In the first test, images points are perturbed by a uniformly distributed noise of ±s

pixels. Tensors will be computed at different levels or amplitudes of noises. In Table

3.5, the tensor computed from the contaminated data is evaluated using the exact

correspondences. The impact of the added white noises is measured by comparison

with the tensor constructed from the exact projection matrices. Since RANSAC is

a random procedure, it is executed 20 times in the experiments and the tensor with

the highest score is selected as the final result.

The results show that the linear method and algebraic minimization method are

not too affected by low level of noise. However, the linear method is the most un-

reliable method when the accuracy of projective matrices recovered from tensors are

considered. 6-point RANSAC doesn’t present any advantage in handling image data
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Images Matches Noise Constructed Linear Algebraic RANSAC
±s pixels tensors Method Minimization 6-point

house 298 0.1 0.55, 25 0.53, 7707 0.53, 2798 5.55, 118
(0,1,2) 1 1.42, 82 0.56, 5521 0.56, 2385 5.84, 1251

2.5 3.27, 446 30.92, 125135 0.76, 12242 3.19, 148
5 6.27, 1707 0.72, 16891 0.70, 373 5.93, 206

7.5 9.93, 1744 1.51, 2290 1.52, 5216 8.27, 103
10 12.96, 2551 2.37, 1885 2.26, 761 10.78, 233

corridor 199 0.1 1.63, 9 0.56, 152 0.53, 24 0.53, 261
(0,3,6) 1 1.82, 23 1.57, 887 1.56, 60 2.38, 219

2.5 3.62, 43 3.59, 897 3.57, 405 3.59, 350
5 4.64, 376 2.72, 1410 2.74, 79 4.97, 291

7.5 5.49, 514 21.251, 353 15.948, 475 7.57, 123
10 7.71, 874 8.79, 1280 9.52, 942 14.07, 404

Table 3.5: Results of different algorithms on two image triplets. The exact point
matches are distorted by white Gaussian noise at different levels

globally disturbed by white noise. This can be explained by the fact that RANSAC

expects at least a minimum number of correct data to obtain an acceptable estima-

tion.

The second tests are carried out on point sets that contains different number of

false matches, which are randomly inserted into the correspondence set. Tensors

computed by the four algorithms are compared again in terms of transfer error and

support point number in the table 3.6. The column ’outliers’ show the percentage of

false matches in test data.

This experiment demonstrates that 6-point RANSAC is effective in classifying

exact matches and outliers. In the iterative AM method, an optimized tensor is

obtained by searching the local minimum around an initial tensor. As shown in the

above table, the optimization may not succeed at all time.

The next experiment compares the performance of two accelerated RANSAC ap-

proaches against the standard RANSAC method. Since we are more interested in

their usage in real-time applications, the time budget is set to 1500ms and the max-

imum sample number is 1000. The RANSAC program was executed 50 times and
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Images Matches Outliers Linear Algebraic Iterative 6-point
% Method Minimization AM RANSAC

house 298 0.1 9.05, 107 9.16, 106 9.39, 103 1.63, 282
(0,1,2) 0.15 7.08, 149 7.42, 143 7.19, 144 1.06, 296

0.2 6.88, 155 7.07, 148 6.94, 156 1.05, 298
0.25 9.83, 85 9.59, 97 9.24, 101 1.19, 286

house 95 0.1 10.52, 24 10.06, 27 9.65, 26 1.28, 94
(1,4,6) 0.15 8.46, 35 8.54, 33 8.54, 33 1.81, 91

0.2 17.02, 8 17.32, 8 17.12, 9 1.43, 94
0.25 17.12, 23 17.43, 20 17.07, 21 2.19, 89

corridor 199 0.1 22.39, 8 17.64, 8 16.12, 9 0.85, 199
(0,3,6) 0.15 10.67, 30 10.32, 31 10.41, 31 0.75, 199

0.2 46.25, 3 86.32, 1 41.83, 5 0.93, 197
0.25 104.67, 0 38.82, 3 38.82, 3 0.99, 197

Table 3.6: Results of different algorithms tested on three sets of point triplets that
contain randomly generated false matches.

average process time and transfer error were taken. Different number of exact matches

that are randomly selected are disturbed by ±20-pixel gaussian noises.

Here is a list of the most important parameters used in R-RANSAC and P-

RANSAC program.

1. R-RANSAC: new tensors won’t be scored over the whole data unless it fits a

subset of randomly selected data. The size of the subset is equal to 30% of the

total data number. And the tensor is required to fit at least half data in the

subset.

2. P-RANSAC: to investigate the impacts of the number of hypothesis and eval-

uation levels on this method. P-RANSACs with two configurations are tested.

One is to extract the best tensor estimation from 20 hypothesis through 6 levels

of evaluation. The decreasing function f(i) = 20, 16, 12, 8, 4, 2, i = 1..6, which

means the computation of the transfer error will be executed 62 times. Another

P-RANSAC program uses the decreasing function f(i)=200, 190, 180, ..., 20, 10, 4,

i = 1..21. Transfer error computation need to be carried out 2104 times to ob-

tain the best tensor from 200 hypothesis.
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The results of three RANSAC methods are summarized in the table 3.7 and 3.8.

Each table shows the average transfer error of computed tensors, average computa-

tional time(in milliseconds), average number of samples evaluated and the number

of “inliers” in the exact matches sets that are supported by the tensor. The column

“Outliers” shows the percent of contaminated matches.

Methods Outliers Average Time Number of Number of
transfer error (ms) samples supporting points

Std RANSAC 0.2 3.27 1503.2 565.1 83.3
0.4 6.12 1502.2 822.4 73.85
0.6 9.05 896.8 1000 65.4

R-RANSAC 0.2 1.85 1511.7 614.25 89.45
0.4 5.80 1511.7 1039.75 79.35
0.6 5.55 1508.1 1163.1 77.3

P-RANSAC 0.2 6.92 771.15 200 75.05
(200 models) 0.4 25.41 831.15 200 48.7

0.6 22.99 816.96 200 40.28
P-RANSAC 0.2 8.63 76.15 20 63.85
(20 models) 0.4 29.92 80.15 20 48.35

0.6 70.24 88.92 20 32.66

Table 3.7: Experiment on wide baseline house images (95 correspondences) using
standard and two accelerated RANSAC

The above tables show that R-RANSAC achieved the best results in the number of

support points and average transfer error. The reason is that more candidate tensors

are computed and tested compared to standard RANSAC before the time budget is

reached. On average only about 10% of the computed tensors pass the first test when

the threshold of 0.5 is applied on the scores over the subset correspondences.

However, this threshold may not be proper for all test data that have different

percentage of outliers. It is actually a problem in practice since the outlier information

can not be known beforehand. High thresholds will erroneously block some hypotheses

while small thresholds may have the consequence of increasing RANSAC processing

time.

We see that although P-RANSAC is the fastest method, its performance is quite
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Methods Outliers Average Time Sample Number of
transfer error (ms) number supporting points

Std RANSAC 0.2 1.34 1516.7 280.1 194.85
0.4 2.27 1502.15 477.6 175.35
0.6 4.80 1414.44 992.02 152.98

R-RANSAC 0.2 0.56 939.8 359.1 199
0.4 1.33 1478.1 509 190.9
0.6 3.22 1524.4 1141.78 169.84

P-RANSAC 0.2 3.79 716.8 200 160.72
(200 models) 0.4 5.44 764.1 200 139.92

0.6 17.95 792.9 200 108.28
P-RANSAC 0.2 4.01 91.6 20 163.5
(20 models) 0.4 26.18 98.15 20 129.35

0.6 20.62 91.74 20 92.28

Table 3.8: Experiment on corridor images (199 correspondences) using standard and
two accelerated RANSAC

unstable. Increasing the number of hypothesis can improve its accuracy at a certain

level, but also reduce its advantages in realtime applications.

The comparative efficiency of the three methods is illustrated in Figure 3.4 where

the number of points in the support set is shown for the case of a match set containing

60% outliers.
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Figure 3.4: Histograms of the number of supporting points. Results of house images
and corridor images are shown in rows. The four methods (Standard RANSAC, R-
RANSAC, 6-level and 21-level P-RANSACs) are stored in columns. X-axis an Y-axis
of each graph indicate the number of supporting points and how many times this
number was reached within 50 iterations.



Chapter 4

Online tensor estimation

Estimating multiple view entities in video sequences is the basic building block of

structure-and-motion (SaM) systems to recover 3D structure and camera motions.

In most SaM systems these view entities are either relative to adjacent frames or to

some selected keyframes. In this chapter, we will propose an approach that uses three

reference frames to compute trifocal tensors in video sequences at realtime. Known

image correspondences of three reference frames are tracked on the images of the

moving camera to produce triplets, from which accurate tensors can be obtained by a

combination of several tensor estimation methods. This approach provides a solution

not only for realtime camera pose estimation (when the camera is well calibrated

beforehand), but also for applications like augmented reality that will be discussed in

the next chapter.

4.1 Literature review

Structure-and-motion (SaM) is the technology to recover camera motion and 3D scene

structure from video sequences captured by the camera. The multiple view entities

of video frames, including homography, fundamental matrices and trifocal tensors,

are very important in SaM because they contain information about camera’s relative

motion throughout the frames and they can be obtained from images only.

34
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A basic SaM system generally proceeds as follows: (1)first features are matched

across multiple frames into pairs or triplets and multiple view entities are computed;

(2)pairs or triplets of projective matrices from view entities are integrated into a co-

herent projective coordinate frame;(3)the resulting projective matrices must then be

upgraded into Euclidean coordinates by the use of auto-calibration or calibration pat-

terns;(4)finally 3D models of the scene are built using the computed camera matrices

if required.

The second step where multiple view entities are calculated and registered into

the same projective coordinate system is the most important. Different methods used

at this step make SaM systems distinct from each other. They can be divided into

two categories. An overview of each category will be given.

4.1.1 Approaches using chained transformations

Approaches of the first category are devoted to calculating fundamental matrices or

trifocal tensors of successive frames and chaining camera matrices along the sequences.

The procedure is illustrated by figure 4.1.

First cross-correlation and guided matching based on fundamental matrices are

used to find matches between two adjacent frames. The resulting overlapping match

sets are then used to build putative triplet sets of correspondences between three se-

lected images. By applying RANSAC on triplets of matches, tensors and fundamental

matrices can be calculated along with supporting correspondences. This method to

match consecutive pairs or triplets of video frames is called ”F-based tracker” (”F”

stands for fundamental matrix) or ”T-based tracker” (”T” for trifocal tensor).

When T-based tracker is employed, each consecutive image triplet (i− 1, i, i + 1)

can have its trifocal tensor Ti−1,i,i+1 computed independently. From the tensor, the

projection matrices of the image triplet, denoted by Pi−1
i−1,P

i−1
i,P

i−1
i+1, can be

determined by equation 2.11. They are subjected to Pi−1
i−1 = [I|0].

Adjacent image triplets are then registered into a long chain by the homographies

Hi−1,i linking projection matrices of the overlapping views Pi−1
i = Hi−1,i ×Pi

i. In
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Figure 4.1: Scheme of the approaches based on chaining camera matrices along the
video sequence
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this way, the projection matrices of all images are transformed into a common pro-

jective coordinate systems. Bundle adjustment is then applied on them to obtain

optimized camera matrices and 3D scene structure simultaneously.

This mechanism has been used in many applications, ex: camera pose estimation

[36], object-based video compression [38], 3D modelling [4] and augmented reality [46].

It has two major problems: (1)the error accumulated during the chaining operation

can result in inaccurate reconstruction of long sequences; (2) the accuracy of the

resulting tensor is doubtful because of the small motions involved in consecutive

three frames.

A hierarchical scheme of registration proposed in [10, 29] attempts to reduce the

error accumulation problem. The core of this scheme is to divide the whole sequence

into sub-sequences, register triplets into consistent sub-sequence using homographies

and register sub-sequences, again using homographies, to obtain cameras and struc-

ture for the complete sequence. Bundle adjustment can be applied in each step of

registration throughout the hierarchical structure to increase accuracy.

In order to achieve reliable tensors, frames of every view triplet have to be rea-

sonably separated. The number of frames needed to create a reasonable separation

varies from one video sequence to another. Sometimes it is even necessary to keep

changing this number over a single sequence.

In sum, the above approaches are designed for offline processing of recorded videos

because (1) they process images in a batch mode. Both past and future frames are

required in estimating camera pose of the current frame; (2) Because of using bundle

adjustment and other non-linear optimization methods, these approaches can not

meet speed requirement for realtime processing.

4.1.2 Approaches using keyframes

Approaches based on key frames or reference images of the scene that are captured

during an initialization procedure compose another category of SaM systems. They

consist in registering every video frame with keyframes or reference images. Therefore
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the corresponding view entities are free from error accumulation and more geometri-

cally valid because of the wider baseline that exists between the video frames and the

key frames, which however, on the other hand, can result in fewer matches available

for tensor or other entity estimation.

Because they avoid the computation of long chains of transformations, keyframe-

based methods provide a promising solution for live video applications. Providing a

few of images of the scene, the camera can freely move inside the field of view spanned

by these reference images.

Chia [6] used two reference images to register video frames of a calibrated camera

for an augmented reality application. Optimal camera pose is obtained by minimizing

the epipolar constraints of two pairs of views composed by the current frame and

two keyframes. To avoid the wide baseline matching problem the video frames are

matched with the reference images through their previous frames.

Boufama [5] presents another augmented reality system using two reference im-

ages. The current video frame and the reference images build up one image triplet

instead of two image pairs. The corresponding trifocal tensor is computed for reg-

istration of the current frame. Its idea of envisaging trifocal geometry is similar to

the approach proposed in this thesis. We will demonstrate later that our approach is

different and more effective in tracking and tensor estimation.

The papers described in [35] and [41]use multiple key frames for the tracking of

a known model and the recovery of camera pose. Both model registration systems

require the 3D model of the target object and a number of keyframes captured from

distinct viewpoints that can supply a set of model-image correspondences. The 2D-

3D matches produced by tracking of known points are feed into an iterative procedure

starting from the closest known viewpoint to obtain an optimal camera pose. The

first model registration system uses an aspect table generated from the keyframes and

the visible points in these frames to predict the appearing points during tracking. The

matching problem is simplified by only searching the predicated points on the moving

views. The second system improved this by not only using off-line keyframes but also
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online generated keyframes to achieve a wider span of views. Also a method com-

bining consecutive frame processing and keyframe technique is used in camera pose

estimation. In pose estimation RANSAC is applied on matches between consecutive

frames, while only the pose models supporting matches between the moving view and

the chosen keyframe are evaluated.

4.2 Online tensor estimation from reference im-

ages

This thesis presents an approach for the online estimation of the tensor in live video.

It works with a single camera moving freely inside a scene of interest. Image features

taken from an initial triplet set, detected on three reference images, are tracked across

a video sequence. Then, as the camera moves the tensor associated with each frame

and the two reference images is estimated. The method proposed in this thesis utilizes

a 3-step paradigm where i) the feature points are tracked, ii) a tensor is estimated and

iii) the triplet match set is updated through trifocal transfer. An important aspect

of this work is the fact that the updated tensors associated with every moving frame

and the two fixed reference views are computed based on a common set of detected

features. As a consequence, there is no drift problem. At the same time, the points

of view will always remain sufficiently wide to ensure an accurate estimation of the

tensor. Also, another important point is that because two fixed reference images

are used, all the projection matrices of a video sequence are in the same projective

framework. This simplifies the computation of the camera matrix for each frame with

respect to a global coordinate system.

This method is also distinctive in three aspects: (1) We try to avoid the use of

random sampling techniques during the process of tensor estimation because of their

complexity. Instead, the tensor is estimated by using the algebraic minimization

method and its accuracy is improved after a quick outlier removal step; (2) A simple

tracker is used to provide an evolving point set for the purpose of establishing a
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Figure 4.2: Flow chart of the proposed approach

new set of point triplets. This point set is also updated by recovering lost points and

correcting mismatches using the trifocal transfer. Stable performance of tracking over

a long video sequence is also ensured by automatically resetting the tracker when the

size of the tracked point set becomes too small. (3) The method is flexible in the

sense that the three reference images can be taken from three distinct cameras or by

using a single camera moving to three locations. It is also important to note that

the proposed 3-view system can easily be extended to the case of multiple views; An

additional first step would be to identify the two closest reference views with which

tensor estimation is to be performed. This way the scope of this vision system could

be scaled to a size that a given application would require.

4.2.1 Approach outline

Our proposed approach is illustrated in Figure 4.2. The system has, as input, three

camera views, denoted by V1, V2, V3 respectively. The initialization step consists of

obtaining both an initial estimate of the tensor and a large set of matched triplets.

Several alternatives can be envisaged in order to achieve this goal, including a tensor-

based guided-matching [43] and the PVT tool described in [36]. The feature points

of the obtained triplet set that belong to one reference view will constitute the initial

set of point to be tracked. The match pairs between the other fixed views will serve
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as a match pool that will be used, during the process, to update the list of points to

be tracked.

Once the initialization process is completed, the online tensor estimation process

can start. The detected points in one reference view are tracked from one frame

to another. This leads to new positions of the points for which we still have the

correspondences in the two fixed frames. Section 4.3 describes the methods used to

produce tentative point triplets from the tracking of the feature points. Using this

triplet set, robust and fast estimation of the tensor is achieved; this aspect is discussed

in detail in Section 4.4.

Obviously, when points are tracked over time, more and more features are unavoid-

ably lost. If nothing is done, the tracked set will eventually vanish. To overcome this

problem, the match set is updated after each tensor estimation. Indeed, using the

pool of match pair available in the two fixed views, it become possible to transfer new

points on the image using the newly estimated tensor. This last step ensures the long

term viability of the estimation process. A detail description of this step is given in

Section 4.5.

In a multi-camera implementation, points from the view close to the current ref-

erence views would also be transferred, thus allowing us to identify to which view the

moving camera is transiting.

4.3 Tracking feature points

The task of tracking matched points belonging to one reference view is done using the

widely used Lucas-Kanade tracker [22]. During this tracking process, it is unavoidable

that the tracker will lose some features and will introduce some wrong traces. This is

especially true in the case of handheld cameras where quick and saccadic motion are

often introduced. Therefore, additional efforts are required in order to monitor the

quality of tracked points and get rid of wrongly tracked points. It would be, however,
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too costly to measure the similarity between tracked points and their possible cor-

respondences in the two reference images through cross-correlation. An alternative

solution is to apply a disparity-gradient constraint on the candidate matches com-

posed by the tracked points and their correspondences on the reference frame that is

used to initialize the tracker.

Disparity gradient is used to measure the similarity of disparities of two pairs of

points [34]. If the disparity of two pairs (p1, p2) and (q1, q2) are d1 and d2 respec-

tively, their disparity gradient is equal to d = |d1−d2|
l12

. l12 is the distance between the

midpoints of lines p1p2 and q1q2. Two pairs having the same disparity will have a

zero disparity gradient. Based on a reasonable assumption that a match has a sim-

ilar disparity with its neighbors, a pair of points will be identified as a mismatch if

its disparity gradients with less than 2 neighbor points are below a threshold (say

0.4). Applying such constraint of disparity gradient on a set of match candidates can

remove many mismatches while eliminating few of the good matches.

4.4 Trifocal Tensor estimation

The tensor estimation part uses the set of point triplets produced from tracking as

their input. As has been mentioned previously in Section 3.5, RANSAC methods are

computationally too demanding to be used at frame rate. To achieve the expected

performances in both time and precision, we select an algebraic minimization to

estimate the tensor from all the correspondences. The average value of the transfer

errors is used to assess the quality of the resulting transfer. If its value is smaller than

a given threshold (we used 3 pixels), then the tensor is judged to be of good quality

and can be used as is. Otherwise, additional steps to identify potential outliers are

required.



43

4.4.1 Estimation of tensors with fixed projection matrices

In our framework the tensor is always computed from two fixed reference frames and

one moving frame. The result is that two epipoles and two projection matrices of this

view triplet are actually fixed. Assuming that in equation( 2.3), P1, P3 correspond

to the projection matrices of the two reference frames and P2 of the moving camera,

then it follows that P3 is known from the initial tensor of the three reference frames

and so is e′′. In Algebraic Minimization, the matrix E is constructed in terms of the

6 entries of the two epipoles, e′ and e′′, which are retrieved from the tensor computed

by the linear least-square solution. And the tensor is expressed linearly as t = Ea

where a is a vector of the entries of the left 3× 3 matrices in P2 and P3.

Now, to force the tensor to be consistent with the fixed P3 and e′′, two options are

available: (1) construct matrix E with the fixed e′′ instead of the one computed from

the initial tensor of linear solution. Then solve the equation AEa = 0 to obtain the

tensor; (2) skip the step to solve the linear tensor and construct a new linear system

directly with the entries of P3. Equation 2.3 can be rearranged to

t = H(bi
j)D(ai

j) (4.1)

27× 12 matrix H is composed of known entries of P3 and 12× 1 column vector D

contains the entries of P2. Substituting the vector t in At = 0 yields:

AHD = 0 (4.2)

The linear solution to the above equation gives the entries of the second projection

matrix and the trifocal tensor.

In Figure 4.3(a), we compare the performance of these two alternative approaches

for a test sequence of 250 frames. The tensor computed using e′′ is drawn with a

dash line. From the experiment, it appears that the use of a fixed e′′ in the tensor

computation is not very stable. In contrast, the tensor subject to the fixed P3 exhibits

reliable performance over the entire sequence. It has capability to counter the effect of

false matches and update the solution where few features are being tracked. However,
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Figure 4.3: Comparison of Algebraic Minimization method with the two modified
methods with fixed epipoles or projective matrices

its overall accuracy remains inferior to the one obtained with the tensor computed by

the standard Algebraic Minimization, as illustrated in Figure 4.3(b). Both methods

are applied on a long sequence. The solid line represents the tensor subject to P3.

The standard AM is fragile when few features are being tracked. Its instability

results in peaks of error in the tensors estimated over the sequence while the fixed

P3 approach produces a much smoother curve. In consequence, the use of a fixed

P3 will be restricted to the case where few features are available or a large portion

of false matches exists or when tracked features are not well distributed across the

whole scene.

4.4.2 Removal of outliers

In the case where the quality of the tensor computed from all putative triplets using

standard algebraic minimization is not acceptable, the tensor must be re-estimated.

First a new tensor will be computed using the fixed projection matrix P3. It will be

discarded if it has a even larger transfer error. When the error is over an upper limit,

the tensor estimation procedure will stop without a tensor output. Otherwise, a step

of outlier classification has to take place.
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Figure 4.4: Analysis of transfer errors before implementing x84

The method we adopted requires that the obtained tensor supports a large number

of triplets in the set of points. The quality of the tensor is not good mainly because of

the presence of a few strong outliers. In this case, a statistical method based on the so-

called x84 rule [12] is implemented. Absolute deviations of all triplets’ transfer error

are calculated, from which a threshold is automatically set as the 5.2×MAD(Median

Absolute Deviation). The points having larger deviations are considered outliers

and must then be eliminated. Once the outliers are rejected, the tensor has to be

re-estimated with all remaining triplets and its quality needs again needs to be re-

evaluated.

Implementing the x84 rule in outlier detection has an advantage over using a

fixed threshold because the threshold actually varies from experiment to experiment

and from sample to sample. However, since the rejecting threshold is determined by

the distribution of the majority of the data, x84 is only effective when the tensor

is disturbed by a small number of outliers. In order to determine if this condition

holds for a given tensor a coarse analysis of the distribution of the transfer errors

is necessary before running rule x84. This is done by sorting the transfer errors in

ascending order. In figure 4.4 the error that is larger than the first 80% errors is

denoted by err′ and the average transfer error of an accepted tensor is erracp. The

result is that the x84 is implemented only when the value of err′ is smaller than

0.8
0.5
× erracp.
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Figure 4.5: Computed tensors of a sequence of 1170 frames. The average transfer
errors of the tensors computed before and after using the fixed projection matrices
and x84 rules are given in the left and right plot respectively.

According to the quality of the resultant tensor, the tracked point set will be

updated in different ways that will be discussed in the next section.

4.5 Updating of the tracked point set

The estimated tensor will be used to remove wrongly tracked points so that they

won’t affect the tensor estimation of the next frame. When the number of supporting

triplets is relatively high, then the current tensor is able to guide the identification of

outliers. Points with large transfer errors are removed from the tracking point set.

Another important use of an accurately estimated tensor is that in the addition

of new points into the current set of tracked points. During tracking, the lifetime of

a given tracked point largely depends on the magnitude of the camera motion. Over

time, more and more points will thus be lost, mainly because they go out of the field of

view or because they are occluded by some scene object. However, at the same time,

other points, that are included in the initial pool of matches will appear in the view.

It is therefore important, for the viability of the procedure, to identify those points

and to incorporate them into the tracking process. Using the current estimation of the
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tensor, these points could be identified by transferring all the reference matches (in

the two fixed views) onto the current moving view. The presence of a correspondence

is verified by searching in a small area around the transferred point for a point that

correlates well with one of the two reference matched points. This way, the method

can even recover points that have been badly tracked in the current frame.

In order to illustrate the importance of maintaining a large pool of tracked points,

a long sequence(1183 frames) is recorded when a black-white square was placed on

the desk. Figure 4.5 shows the reference images of this sequence and in these two

views the camera’s viewpoints have dramatically changed. Its four corners on every

frame are detected and compared with the predicted corner positions computed from

the estimated tensor. The number of tracked features across the sequence and the

offset between tensor-predicted corners and their true detected positions before and

after recovering lost and inaccurate features are shown respectively in the left and

right plot in Figure4.5. Note that in the without-adding-features case, the tracker is

reset automatically when too few features remain. In this experiment, this happens

at the 624th frame.

4.6 Additional experiments

Our system runs on a desktop PC with a web camera of image resolution 320 × 240

pixels. Experiments have been performed on various sequences composed of thousand

of frames. Undoubtedly, the performance varies according to different conditions

appearing in the videos. The number of points in the match pool as well as the number

of points actually tracked have also an important impact on the performance. On

average, the median residual error of the tensor is around 3 pixels and the processing

is carried out at a speed of 14fps.

An analysis of processing time is given in Figure 4.6. For each frame, about

8.32ms, that is 12% of the time, is spent on tracking features along the sequence.

Another 32% of the time is consumed on estimating the tensor. Establishing triplets
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Figure 4.6: Reference images of the 1183-frame sequence Black-white Square. Corners
of the square are not in the loop of tracking.
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Figure 4.8: Timing chart

for every video frame consisting of point-wise disparity-gradient test takes the largest

portion of time. It varies with the number of features tracked along the sequence.

Typically in our experiments the initial set of triplets over three reference images

contains around 150 features.

Figures 4.6 to 4.6 presents the tensor estimation results on two long video se-

quences. These sequences include large camera motions resulting in viewpoints that

differ significantly from the reference images. At certain instants, only a few points

are currently visible, which increases the difficulty of the tracking and tensor estima-

tion tasks. The experiment results demonstrate that our system has the capability of

achieving good tensor estimation throughout long sequences. Images given in Figure

4.6 show that our approach is able to transfer scene points (here the corners of a CD

envelop) correctly from the reference views to the current view.

The motion blur problem occurring in the sequences captured by the web camera

used is very significant, which often results in heavily contaminated putative triplets.

The tensors computed from these set of triplets were difficult to correct. Most of the

bad tensors obtained in our experiments due to this reason.

Our system also encounters the problem in resuming the tracking after it has

stopped for some reason. The user then has to move the camera to a viewpoint close

to the reference image that is used to initialize the tracker. No tensor is computed

during this period of time. One way to shorten this waiting time is to match the
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current frame with the closest reference image. How to choose that reference image

remains a problem. Most existed methods [41] need the information about the current

camera pose and those of the reference images. The paper described in [35] uses points

with a different appearance on the reference frames to distinguish them.

Figure 4.9: Reference images prepared for video sequence Table (2026 frames). The
initial set of 154 matched corners shown superimposed on each image.
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Figure 4.10: Plot of the number of tracked corners in the sequence Table. The tracker
was re-initialized twice during tracking.

Figure 4.11: Tensors of 1749 frames in the sequence Table were obtained. Top: the
tensors computed from all putative triplets; Middle: the improvements achieved by
using the fixed P3; Bottom: the resulting tensors refined by x84



52

Figure 4.12: Resulting tensors were used to estimate the location of the CD envelop
in the sequence Table.
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Figure 4.13: Reference images prepared for video sequence Magazine (1359 frames).
123 points were matched across the three images.
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Figure 4.14: Results of the sequence Magazine. Top: tensors of 1302 frames were
obtained. Bottom: the number of tracked points

Figure 4.15: The resulting tensors in the sequence Magazine



Chapter 5

Applications to Augmented Reality

This chapter presents an application to Augmented Reality (AR) of the online tensor

estimation approach proposed in Chapter 4. Augmented Reality is a technology to

register virtual objects into the real world. Computer vision methods have proved to

be a promising way to solve the registration problem. The AR system we propose

computes the trifocal geometry of video frames and two reference images. It is able

to augment live video captured by a camera moving in an unprepared scene with-

out requiring camera calibration, without special markers and with no explicit 3D

information.

5.1 Introduction

When the term of Augmented reality was created by Milgram in 1994, it was used to

identify the systems that augment the real world with computer generated data. Now

this technology has evolved into the ”middle ground” between Virtual environment

(completely synthetic) and telepresence (completely real) [2]. In the same way, Virtual

Reality(VR) immerses a human into a processed environment. They are different in

that VR let human enter a completely synthetic environment while AR combines the

real world with a virtual one so that we still can feel our presence in the real world.

The things added to the real world would be computer generated objects that don’t

55
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exist in the captured scene.

Expeditious improvement of the capability of realtime image processing, computer

graphic systems and display technology enable Augmented reality achieve great pro-

gresses in many promising applications in recent years. The applications include

image-guided surgery and ultrasound imaging, manufacturing and repair, annotation

and visualization, robot path planning, entertainment and military training.

In theory, an AR system is required to have following characteristics: correctly

merge virtual and real views of the world in real-time. In order to create a realistic

looking new environment all virtual objects, including planar ones, must align with

the physical world and stand firmly at their assigned positions as the user changes

viewpoint. This requires that both virtual objects in the graphic coordinates system

and the 3D observed scene in the figure 5.1 are transform into the world coordinate

frame where they are blended together. The new views are then projected onto the

image plane in the same way as real views. Accurate tracking of the viewing pose,

relative to either the environment or the observed objects, is recognized as the key

challenge for developing a successful AR system.

Figure 5.1: the related coordinates systems of AR

An AR system is usually an integration of an image acquisition component that

can capture the real views, a computer graphic workstation, which is responsible for

rendering virtual objects with real views and display equipment that show us the



57

mixed view. Figure 5.2 shows three typical AR systems, whose principle components,

advantages and drawbacks are listed in table 5.1.

Figure 5.2: Conceptual diagrams of AR (from [2])Top figure: optical see-through AR
system, Bottom: video-based HMD AR system and video-based monitor-display AR
system

An optical see-through HMD AR is suitable for applications where realtime aug-

mentations of the scene from user’s point of view are required and the rendering

accuracy is not highly demanding; such as annotation of a real scene, and guided di-

agnosis. When the difficulty of setting up emitters or sensors over the entire environ-

ment increases, video-based AR systems, using either HMD or monitor are necessary

to embed virtual objects by the processing of the live video. They are more flexible

for applications such as remote manipulation of robots, post-processing of a recorded

video, CT/MRI images analysis. The rest of the chapter will discuss the application

of our online tensor estimation in video-based AR systems.
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optical see-through video-based video-based
HMD AR HMD AR monitor-display AR

3D Register head tracker head tracker tracker or
video processing

Real View human’s eye camera mounted on camera held by user
Capture HMD or attached on other

devices
Augmented displayed on monitor monitor in HMD monitor in front of

View then reflected to the user’s eyes
Displayer HMD glasses which is

a partially transmissive
optical combiner

Advantages easiest to implement more realistic views 1.no need to wear a
because of the optical because the real and HMD or any other
combination. virtual views are display devices.

blended in the graphic 2.can be configured
system to see 3D vision

of the environment
with user wearing
a pair of stereo
glasses.

Drawbacks 1.loss of light in the 1.cumbersome not suitable for
optical transmission 2.the composite some applications
or reflection. images are not because the points
2.images of virtual stereographic of cameras’views
objects are overlaid are not agreed to
on real views. the user’s nature

view

Table 5.1: Comparison of three typical AR systems
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5.2 Registration in video-based AR

In video-based AR, the real scene is seen by a video camera, whose (intrinsic) param-

eters and pose determine how the scene is perspectively projected onto a 2D image

plane. The graphic processor needs this information so that it can project 3D virtual

objects onto the image plane. In the area of computer graphics, this is called ren-

dering. In popular graphic rendering tools, ex: OpenGL, OpenInventor and VTK,

virtual objects are modelled in an object coordinate frame. A virtual camera needs

to be created and manipulated in the graphic world frame.

The correct projection of virtual objects by the virtual camera requires: 1. camera

calibration to obtain camera’s intrinsic parameters (camera-to-image transformation);

2. estimation of camera’s motion(world-to-camera transformation); 3. initialization

of the virtual objects’ positions in the real environment(virtual objects-to-world trans-

formation). They are the key technical issues in the registration of video-based AR

systems.

There are many way to achieve camera calibration including using calibration

patterns and auto-calibration methods based on image observations. Tracking camera

pose has been proven to be the most difficult problem in designing a AR system,

because the camera pose must be estimated from 2D images.

Many computer vision approaches have been proposed for registration in video-

based AR. They can be roughly classified into two catalogs: registration by tracking

markers and registration by using the technology of structure and motion (SaM). The

next subsection reviews these approaches.

5.2.1 Registration by markers tracking

Existing augmented reality approaches relying on special markers have achieved im-

pressive results in video-based applications. The markers can be patterns or land-

marks that are introduced in the scene, or naturally occurring features selected in

the scene. Their images on every video frame define the transformation between the
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observed environment and the current image. By applying the same transformation

to arbitrary virtual object, the video sequence can be augmented with such object.

One of the most popular tool to perform scene augmentation is the ARToolkit of

Human Interface Technology Lab at the University of Washington. It is a pattern-

based technology, which can augment virtual objects onto predetermined black and

white square markers [13, 1]. It has been used in [17, 27, 24, 25]. Similar methods can

be found in [26]. The square pattern is assumed at X-Y plane in the graphic world

coordinate frame so that the virtual camera’s 3× 4 projection matrix is degraded to

a 3× 3 matrix. The projection equation of a 3D point X on the pattern is

λx =
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 (5.1)

It can also be expressed in terms of a 2D plane-to-plane homography H.

x = HX (5.2)

Given the images of the four corners on the pattern, H can be obtained by solving a

linear least-square equations of the corners.

H = λP3x3 = λ




fur11 fur12 fut1

fvr21 fvr22 fvt2

r31 r32 t3


 (5.3)

while rij and ti are entries of the camera rotation matrix R and the translation

matrix T. Assume the virtual camera is a zero-skew camera, its intrinsic matrix K

is composed by the focal length fu and fv. Decomposing the homography gives R, T

and K, which are used to set the virtual camera to embed virtual objects.

In Kutulakos’ calibration-free system [18], four or more non-coplanar points are

tracked along the video and an affine object representation is used to overlay virtual

objects on an orthographic video stream without camera calibration. The basic idea
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Figure 5.3: Illustration of marker coordinate frame

behind this approach is that real world and virtual objects are specified in an affine

representation. The user is asked to select at least four non-coplanar points in the

scene during system initialization. These points define an affine frame and its rela-

tionship with four non-coplanar points on the virtual objects. This approach’s using

the affine transformation to replace projective transformation has some drawbacks.

For example, it is not able to handle quick or big motions of the camera. And the ap-

proximation results in increasing errors when the camera is moving close to the object.

Thus this method is limited to the large object-to-camera distance applications.

The approaches that use markers or control points are impressive because (1) no

offline camera calibration is required; (2) they have the capability of operating at

frame rate. The common problems with them are (1) the scene has to be prepared

by inserting markers in it, which can not be always feasible; (2) a minimum number

of markers or control points are required being visible in every frame, otherwise the

registration can not be performed; (3) The virtual object is fixed relative to the

pattern or control points being tracked; (4) These methods are suitable to augment

simple planar scenes since occlusion of virtual and real objects can not be handled

without knowledge of the scene’s 3D structure.
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5.2.2 Registration using Structure-and-Motion

In comparison to marker-based approaches, registration based on the tracking of

natural features provides a general solution to video augmentation, especially when

a scene can not be prepared. The technology of structure-and-motion (SaM), which

has been discussed in Section 4.1, is able to recover camera motion and the scene’s

3D structure from video sequences. Minimal prerequisites to developing a AR system

using SaM are: (1)registering the virtual object in one frame of the sequence, which

usually needs a lot of user interaction; (2)calibrating the camera in order to obtain

scene structure and camera motion in real world coordinate system.

Sequential processing approaches consist of the batch processing of the whole

image sequence. Pairs or triplets of consecutive frames are matched and their corre-

sponding view entities are computed in a chaining operation to find the projection

matrices of the camera. Bundle adjustment or nonlinear optimization methods are

applied on the whole sequence or subsequences to simultaneously obtain optimal

camera matrices and 3D scene reconstruction. Using these approaches in augmented

reality has the advantage that occlusions of real and virtual objects can be properly

handled. However, processing sequences in this batch mode can not deal with live

video.

An excellent AR system that consists of computing projective matrices of the

camera from fundamental matrices or trifocal tensors of consecutive frames can be

found in [46]. Another AR system using sequential processing technique is introduced

in [20]. With the homographies induced by a 3D virtual plane being tracked in the

image sequence, projective matrices of the camera are obtained in the same coordinate

system without the need of scene reconstruction. In the end the scene is reconstructed

separately from the AR system in order to speed up the processing for realtime

augmentation.

Unlike approaches using batch techniques, keyframe-based approaches can esti-

mate the camera pose of the current frame without using both the past and future
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frames. An early approach to using keyframes for augmented reality consists in com-

puting the 3D structure of features matched in the keyframes, then tracking these

features in every other frame in order to obtain 2D-3D matches to compute projection

matrices [8]. Unfortunately, the computational complexity of such reconstruction and

auto-calibration approaches hinders their application to online processing.

In recent years, other approaches have been proposed to solve the camera pose

problem without the need of scene construction. The time efficiency achieved by

such approaches should make them feasible to develop a realtime AR system. For

example, the AR system proposed in [6] can run at 10 fps on 320× 240 images. The

camera pose is obtained by using the epipolar constraints that exists between every

video frame and two keyframes. An alternative method consists of linking the video

frames with two keyframes into image triplets whose trifocal tensors are computed to

transfer the location of the virtual object from the keyframes [5]. However, in these

experiments virtual objects are attached to a calibration pattern, which simplified the

problems of feature matching and tensor estimation. A recent system that performs

very well in real time scene augmentation is the one proposed in [41]. In addition to

keyframes, the system also needs a 3D model of the target object. It combines the

strength of sequential processing in tracking and the keyframe technique to obtain a

stable performance. The processing rate is about 15 fps for 320× 200 images.

All these approaches share the limitation that virtual objects need to be regis-

tered in chosen frames or keyframes beforehand. Not only is the knowledge of the

corresponding camera matrices of these images necessary, but also projections of the

virtual objects on these images.

5.3 Proposed AR system

In this thesis we propose an original system to augment live videos or recorded se-

quences. It works in the context of a three-view system, which consists of a moving

camera and three reference images of the scene. It combines the strengths of both
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keyframe-based techniques and the ARToolkit technique to achieve a good perfor-

mance in terms of robustness and speed. Augmentation is achieved through the use

of a virtual square pattern that is transferred to the video. Every frame is registered

to the graphic coordinate system individually. Therefore, the need for computation of

camera pose and scene reconstruction is avoided, and camera calibration is no longer

required a-priori. The online estimation of the trifocal tensor, proposed in Chapter 4,

produces the trinocular geometry relating every video frame to two of the reference

images. The tensors updated online over the video stream provides all the necessary

information for embedding the virtual objects. In this manner an online processing

system can be easily built and provide a stable performance.

In the off-line initialization stage, three reference images are captured from dif-

ferent viewpoints with a square pattern temporarily placed in the scene. Then, the

pattern is withdrawn, and as the camera is moving freely inside the scene, image

features taken from an initial set of corresponding triplets detected on the three ref-

erence images are tracked across the video sequence. The trifocal tensor associated

with each frame and two of the reference images is then estimated in realtime. Using

these computed tensors, the square pattern, which was visible in the reference images,

can be transferred to the moving frames. Virtual objects are then placed onto the

video, by feeding this virtual pattern to the ARToolkit.

Figure 5.4 shows a schematic overview of the whole procedure. Three reference

images,V1, V2, V3, are shown in the top three figures. Matched corners from the

initial set of triplets are shown superimposed on each image. A blank paper was

selected on the reference images by manually selecting its four corners at system

initialization time. For each video frame, the bottom-left image, the trifocal tensor is

estimated from tracked corners (blank circles). All matches of the view pair (V1,V3)

can be transferred to this frame. The transferred points (white dots) are used for

updating the tracker’s point set. Transfer of the four corners on the blank paper

gives a virtual plane location, shown enclosed by the re-projected black rectangle.

The transferred plane, upon which a virtual object (teapot) can be added, agrees



65

Figure 5.4: Embedding and rendering procedure
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with the real paper that remained on purpose when the video started.

The advantage of the system we developed over the ARToolkit systems is that

once the user completes the initialization step the square marker is not needed any

more. There are two benefits brought by the use of an invisible pattern. First, no

artificial object other than the embedded virtual objects appears in the processed

videos since the augmentation completely relies on the nature features in the scene.

Second, virtual objects can be added anywhere, including on untextured surfaces (see

Figure 5.4), as long as the surrounding regions have sufficient features.

Our system is competitive with the existing keyframe-based online AR systems

because camera pose estimation, the most time consuming part, is not required. In

addition, the development of our system is simplified by the fact that it does not re-

quire camera calibration and 3D model of the target object. It is important to point

out that our system is an improvement over [6] that takes view pairs and fundamental

matrices. The reason is that the trinocular geometry is exploited to provide a more

powerful disambiguation constraint than the epipolar constraints allow. This is be-

cause in a view triplet, image coordinates in a third view are completely determined,

given matches in the other two views, whereas image positions are only restricted to

a line by the epipolar geometry of image pairs. The AR system in [5] has much in

common with ours, computing trifocal tensors of video frames and using the property

of trifocal transfer in embedding. However there are several important differences:

first a semi-automatical camera calibration using two calibration patterns is required

to place virtual objects in the first two images in the sequence so that the registration

plane of the virtual objects can be anywhere in the scene. In our case the same objec-

tive is achieve by a simpler method without camera calibration. Second, the problem

of feature tracking and tensor estimation is simplified by keeping a calibration pattern

in the scene. Our system based on a complete framework is a general solution to the

processing of long image sequences.

The main requirement of this system is a consequence of the feature-based ap-

proach we have taken: the scene must contain a sufficient number of features, and
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that these features must be well distributed. The proposed methodology works effec-

tively as long as the moving camera captures views that remain within the visual hull

spanned by the reference images. The performance of the system can be improved

by adding more reference views.

Our system is also flexible in the sense that for simple applications, such as video

labelling or notation, the line segments and vertices of the rendered virtual objects

may be transferred from the fixed reference views to the moving camera view using the

trifocal tensor that we compute at each frame. For a rudimentary polyhedral object,

this transfer process is quick and direct. Even for a complex object, the transfer of

its rendered triangulation is still straightforward, as long as its rendering in the two

fixed reference images is available.

Our AR system consists of two parts: embedding and rendering. The steps of ini-

tializing the virtual objects in the reference images and determining their registration

plane (the square pattern) in video frames are included in the embedding part. The

details about embedding are given in section 5.3.1. Rendering of video frames will be

discussed in section 5.3.2. Section 5.4 shows the experimental results of our system.

5.3.1 Embedding of virtual objects

First, our AR system needs an initialization procedure to prepare for live video aug-

mentation. It is carried out in following steps:

1. Capture three images of the scene of interest. These will be the reference images

and the associated match set.

2. Choose one reference image onto which the virtual object will be inserted. Spec-

ify the locations (xb
i,y

b
i), i = 1, ...,4 of the four corners of the virtual square

pattern that will define the reference frame for rendering.

3. Apply the ARToolkit method to insert the virtual object on the chosen image.
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This means that (xb
i,y

b
i), i = 1, ...,4 are feed into Projection equations 5.1 to

compute the homography. Set the virtual camera and project virtual objects

on the image. Adjust the pose and scale of the virtual objects to achieve the

desired visual effect.

4. Specify the corresponding locations (x′bi,y
′b

i) and (x′′bi,y
′′b

i), i = 1, ...,4 of

the square pattern in one of the other two reference images with the help of

epipole geometry.

Once the initialization is completed, the camera starts moving from a location

close to one reference image. Our online tensor estimation approach is then applied

as explained in the previous chapter. Using the online estimated tensors the virtual

square pattern is located in the current frame by transferring its four corners from

reference images (x′bi,y
′b

i), (x
′′b

i,y
′′b

i) → (x̃b
i , ỹb

i ), i = 1, ...,4. The transferred cor-

ners, (x̃b
i , ỹb

i ), on each frame yields a new homography.

5.3.2 Rendering

Once the plane on the reference images is transferred on the ith video frame using the

computed trifocal tensor, rendering of this frame is accomplished by the ARToolkit

[27]. The homography from the virtual square pattern to the XY plane of the virtual

objects is computed. It gives the camera matrix K[R|T] of the virtual camera that

projects virtual objects onto the image plane where video frames reside (refer to equa-

tion 5.3). Assuming a constant focal length for the virtual camera, a transformation

matrix [R|T] is then obtained and sent to an openGL graphic server.

Though the online tensor estimation is free of error accumulation, the resulting

tensors may produce ’jitter’ because they are computed from different sets of matches

appearing in images during the tracking. The ’jittering’ of the virtual objects is

generally small but sometimes noticeable, especially when the camera looks at the
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edges of a scene containing multiple planes. One way to reduce this jittering effect

would be to use the previous frames to achieve smoother motion. In our system

under the assumption that the camera is moving slowly, a third-order Kalman filter

is applied on three translations of the transformation matrices.

The camera translations are smoothed by updating estimate state vector (x,x′,x′′)

and predicate error vector (P,P′,P′′) at every frame. Since estimating the general

noise characteristics of the feature tracker and the camera motion is not trivial, the

state vector is simply updated by

x̂k
− = Ax̂k−1 + Bµk−1, x̂k = x̂k

− + KPk (5.4)

The constant matrix A relates the state at the previous time k− 1 to the state at

the current time step k. The matrix B relates the optional control input µ to the

state x. The first equation gives the prior state estimate x̂k
− as an prediction of the

current state. Its difference to the observation is the estimate error covariance Pk,

according to which the Kalman filter gain K the posterior state x̂k is obtained as new

camera translations for rendering.

The result of tensor estimation for each frame is classified according to whether

a tensor can be obtained to correctly represent the trifocal geometry of the current

frame. With good tensors the pattern corners are transferred and then used in ren-

dering. The translations extract from the homographies are then smoothed by the

Kalman filter. When there is a lack of sufficient matches or large number of strong

mismatches the result is that no tensor is estimated or a tensor with poor quality is

produced. The frames where no patterns are transferred to are “holes” left in the

augmented videos. To give user a real-life impression of the augmented results, it is

important to fill these “holes” where the virtual objects looks suddenly disappear.

By using a Kalman filter they can be filled with predicated translations based on

previous motions. This leads to a smoother motion of the virtual objects without

abrupt jumps in the augmented video and can therefore give more appealing results.

Figure 5.5 and5.6 illustrate that smooth motions of the virtual object can be achieved

by Kalman filter in the sequence Magazine (its three reference images are given in
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Figure 5.5: Plot of ’holes’ that were filled with predicated motions in sequence Mag-
azine.

Figure 4.6). Some frames from the augmented sequence are shown in Figure 5.7.

5.4 Experiments

Our system runs on a Pentium 2.0G desktop PC with a web camera of image resolution

320 × 240 pixels. The online tensor estimation can carry out at the speed of 14fps

and the entire augmentation system can perform at about 10fps.

As observed from Figure 5.7 the augmentation was not affected by the changes

of the viewpoint and position of the camera, even though the invisible pattern was

sometimes partially out of images. In our system the transferred pattern always leads

to a homography regardless of its image position. This is another capability of our

system that ARToolkit doesn’t possess, since ARToolkit fails when any corner of the

physically existed pattern is absent.

Figure 5.8and 5.9 show reference images and rendering results of an example

sequence Poster. A square pattern was pasted on the wall when three reference

frames were captured. The transferred patterns are shown superimposed on the

video frames. From these patterns, the homographies are computed which map a

logo image on the wall. The logo is augmented on the wall and is not lost, even

though on some frames, the transferred pattern is almost out of view. Some of the
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Figure 5.6: The computed X, Y, Z-translations through the sequence Magazine before
and after smoothed by Kalman filter.
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Figure 5.7: Sequence Magazine was augmented by a virtual teapot.
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Figure 5.8: Reference images of the sequence Poster

video sequences are available at: http://site.uottawa.ca/ jiali/work.html.
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Figure 5.9: Augmentation results of the video sequence Poster. The frames on which
transferred patterns are superimposed are shown in the left column. They are aug-
mented by a DirectX logo as shown in the right column.



Chapter 6

Summary

6.1 Conclusions

The goal of this thesis is to find robust estimators for the trifocal tensor that can be

used in realtime video processing. First different tensor estimation methods were im-

plemented and tested on real and synthetic triplets of points. Though RANSAC-based

methods are more robust against mismatches than linear and algebraic minimization

method, they are not suitable for online processing because of the computational cost.

The first contribution of this thesis, a three-view framework, utilizes two refer-

ence images to continuously construct correspondence triplets of the moving camera

frames, from which trifocal tensors are estimated. Efforts are invested into eliminat-

ing outliers in putative triplet sets and estimating tensors efficiently. The experiment

results demonstrated that the framework has the capability to compute the trifocal

geometry of the moving camera at about 14 fps without any requirement other than

three reference images. When the camera is inside the view spanned by the reference

images, the estimated tensors are accurate enough to have a transfer error of under

three pixels.

Our second contribution is an augmented reality application built upon this frame-

work. By employing the online estimated trifocal geometry, videos can be augmented
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without computing the camera pose, which has been recognized as the biggest prob-

lem in natural feature based AR systems. Its stable performance under difference

camera motions were proven by augmentation results on several long sequences.

6.2 Future work

There are several issues we plan to address in future work. In online tensor estimation

the procedure of identifying outliers takes the most processing time and we need to

find ways to reduce this time. Another critical problem is how to obtain a good

trifocal tensor even when a higher fraction of mismatches exists. To prevent failures

some other methods have to be studied.

Trifocal tensors are evaluated on identified good matches in terms of transfer error.

However, when only a small number of inliers exist the trifocal geometry of the whole

scene may not be correctly represented by the computed tensor. How to exam the

quality of tensors under such conditions is also an important unsolved question.

As mentioned in Section 4.2 our three-view framework for online tensor estimation

can be extended using more reference images to offer further freedom of the moving

camera. How to register all available reference images and correctly determine the

two closest to the current video frame is another key problem that needs to be solved.

In the long term, we also plan to utilize the proposed online tensor estimation in

applications of camera pose estimation and 3D modelling from videos.
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